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II. THE ALGEBRA OP CALCULUS

1. The Algebra of Derivatives.

We shall now introduce an operator D associating with a

function f a function Df, called the derivative of f• We

shall not attempt to formulate criteria as to which functions

form the domain of the operator D or as to which constants, if

any, may be substituted into Df. In our Algebra of Deriva-

tives, we shall adopt the same point of view as in our Algebra

of Functions: We shall derive formulae which are valid in

classical calculus provided that the terms involved in the

derivation of the formulae are meaningful. In classical cal-

culus, for a given function f and a given constant c, the

symbol (Df )c is meaningful if the function -rf-ĵ  has a limit

for c. We, too, might define (Df)c in terms of a limit opera-

tor, L, and derive the fundamental properties of D from

postulates concerning L. But in the present exposition we

start out with an undefined operator D subject to a few

assumptions connecting D with the Algebra of Functions.

Since D is not a function, the postulates of the Algebra

of Functions can not be applied to D. .Especially the associ-

ative law for substitution does not hold for D. Thus the sym-

bol Dfg is ambiguous. It may mean D(fg) or (Df )g. In order

to save parentheses we shall make the convention that the

symbol D refers only to the immediately following function or

group of functions combined in parentheses. Thus we shall

briefly write Dfg for (Df )g and reserve parentheses for the

case D(fg).
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Three postulates will connect D with the three funda-

mental operations of the Algebra of Functions i

I. D(f + g) a Df + Dg

II. D(f«g) * f»Dg+g*Df

III. D(fg) a Dfg*Dg

Postulate III replaces the associative law for substitution

with respect to D. It states that D(fg) and (Dg)f differ by

the factor Dg.

By postulate I we have

DO • D(0 + 0) * DO-I-DO.

Thus DO a 0. This formula has two Important consequences. „

By means of It we first see that

0 a DO * D(f +neg f) - Df +D neg f,

and thus

D neg f a neg Df.

Secondly, If c Is a constant, that is to say, if c * cO,

we obtain

DC a DcO a D(cO) a DcO-DO a DcO*0 » 0.

Postulate II now yields

D(c«f) « c»Df+ f»Dd * c«Df -i-0 • c»Df.

We shall call this result the-Constant Factor Rule.

In view of f J - f postulate III yields

Df - D(fJ) « DfJ-DJ « Df-DJ.

Hence DJ » 1 unless Df = 0 for each f which we shall later

exclude* Anticipating this development, we shall from now on

assume that DJ = 1. A frequently used consequence of DJ * 1

and Do a o is the formula

D(J + o) • 1.
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Applying the formula D neg f = neg Df to f s J we obtain

D neg = -1.

If f Is even, that Is, if f - f neg, then

Df - D(f neg) = Df neg*D neg =* Df neg*-l = neg Df neg

from which It follows that neg Df = Df neg, or in other words,

that Df is odd. Similarly, one can prove that if f is odd,

then Df is even. Using this fact, we see that

0 =* Dl - D(J«rec) - J»D rec + rec-DJ » J«D rec+rec.

It follows that J»D rec = neg rec and D rec = neg (-2) -po.

By virtue of postulate III we conclude further that

D(rec g) - neg (-2)-po g»Dg.

By means of postulate II we obtain

D(f«rec g)«f«D(rec g) +rec g-Df "f *neg(-2)-po g*Dg + rec g-Df,

that is, the Quotient Rule

D(f»rec g) * (g-Df -f-Df)»(-2)-po g.

Let g be a right inverse of f. From fg » J it follows

by virtue of postulate II that

Dfg*Dg s D] B 1, and thus Dg = rec Dfg.

If h is a left Inverse of f, then hf • J implies that

Dhf *Df • DJ « 1, and thus Dhf » rec Df.

If h is also a right Inverse, then substitution of h into the

last formula yields the preceding formula for the derivation

of a right inverse. For

Dh = DhJ s Dhfh ̂  rec Dfh*

By Induction we obtain from the three postulates

D(fn + f« *••••*• f ) « Df. •«• Df« •«-••• 4- Df1. & u JL £ n
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where p^. denotes the product of the n factors fĵ fg, ...,fn

with the exception of f^.

The second of these rules, for equal factors, yields the

in particular ^ _

This formula In conjunction with postulate I and the Constant

Factor Rule enables us to derive each polynomial

We call f an algebraic function, more specifically, an

algebraic function belonging to the polynomials P0,p1,***,pn,lf

. ~ . J2 . . *n „ ̂
Po * PI** * ̂ 2 * *"* **n*r °*

By virtue of the formulae derived In this section we obtain
n v n

Df » neg( 2 r«D« )*rec( 2

2, The Derivation of Exponential Functions*

Let ezp be an exponential function. We apply the formula

exp(f +g) « exp f*exp g to f * J and g • c. We obtain

D[exp(J -t-c)] =D exp(J -»-,c)»D(J *c)»D exp(] +c)-l=D exp (J +e).

On the other hand

D[exp(J -»-c)] »D(exp J«exp c) «D(exp*exp c) *exp c*D exp.

Thus, D exp(J -f c) sexp c*exp. Substituting 0 in this equality

we obtain

on the left side: D exp(J+c)0*D exp(0 + o)*D exp c

on the right side: exp cO*D exp 0»exp c«D exp 0«

Thus D exp c « exp c»D exp 0 fbr each constant o. If we have
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a base of constant a It follows that D exp * exp*D exp 0* We

see that the derivative of an exponential function Is a con-

stant Multiple of the function*

We shall postulate the existence of an exponential funct-

ion for which D exp 0*1. From now on we shall restrict the

symbol exp to this exponential function defined by the two

postulates

1. exp(f + g) * exp f-exp g

2. D exp 0 « 1.

Postulate 2 Makes the previous stipulations exp f 0 and 7* 1

superfluous since DO * Dl « 0 and thus DOO » D10 * 0 f !• In

the classical theory, the only differentiate (and even the

only continuous) function satisfying the postulates 1 and 2 is

the function associating ex with each x.

From the two postulates we have derived that D exp • exp*

In Chapter I we saw in the algebra of the exponential

functions that exp c ̂  0 for each c. Hence D exp c ̂  0 for

each c. Thus our postulate 2 concerning the exponential

function implies the existence of a function which, in an al*

gebra with a base of constants, justifies our conclusion

DJ * 1 In the preceding section. In the sense., that DJc =* 1 for

each constant c* We merely have to apply pur previous reason-

ing to f » exp* From exp J * exp it follows that

D exp * D(exp J) » D exp ]«D] m D exp«Dj

hence D exp c =» D exp c»DJc for each constant c. Since

D exp c ̂  0, we may multiply.both sides of this equality by

rec D exp c and thus "obtain Djc * 1 for each constant c. Hence

DJ « 1 if we have a base of constants.
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Applying postulate 3 to the formula D exp =* exp, we obtain

D(exp f) « D exp f-Df » exp f*Df.

3* The Derivation of Logarithmic Functions.

87 log we shall from now on denote the Inverse of the

function exp for which D exp 0 = 1 and D exp • exp*

From exp log * J by virtue of -postulate III it follows

that

1 =DJ * D(exp log) »D exp log*D log*exp log*D log*J«D log.

Thus, D log * rec.

The function reo on the right side admits the substitut-

ion of .each constant jf 0, the function log on the left side

the substitution of squares only* Instead of log we shall

study the function logabs • log abs which, like rec, admits

the substitution of each constant ̂  0.

2> logabs - Df| •log(J.J)] - | •D[log(J-J)] -f *Dlog(J.J)-D(J-J)

• £«rec(J«J)»2«J *rec(J»J)»J =(rec J«rec J)«J *(rec*rec)*J

» rec*(rec*J) * rec*l « rec.

Next we compute D abs. We have

D abs »p(exp log abs) *D(exp logabs) *D exp logabs«D logabs

* exp logabs • rec * abs »rec «sgn.

We remark that the formulae D log " reo and D abs • sgn

by virtue of postulate III entail the formula D logabs * rec.

Applying the last formula and postulate III we obtain

D( logabs f) » D logabs f «Df " rec f *Df.

4. Logarithmic and Exponential Derivation.

The formulae at 'the end of the two preceding sections can

also be written as follows:
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Df • f«D(logabs f) and Df • rec exp f*D(exp f).

Replacing f In the former formula by a particular function f

la called logarithmic derivation (or differentiation) of f.

Similarly, replacing f In the latter formula by a particular

function f might be called exponential derivation of f •

We -apply the former. method with benefit whenever logabs f

IB simpler than f. As an example of logarithmic derivation,

we treat the power functions* From c - po m exp(c-log) it fol-

lows that log c-po « c*log which is Indeed simpler than c-po.

We have D(log c-po) • c»D log * c*rec. Hence by the formula

of logarithmic derivation

D c-po * c-po»D(log c-po) » c-po«c«rec * c«(c-l) -po.

We mention that this formula holds also for the extended

c-th powers in case that c is a rational number with an odd

denominator. For in these cases we obtain

- po*pec

• ̂ " Si

We see that, in accordance with the general role, the deriva-

tive of the even function ' ~. - po la odd, and the derivative_. «nrl
of the odd function T1!, - po Is even.
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.As another example we apply logarithmic derivation to the

function f = exp(J•logabs) in the classical theory denoted by

x*. We have logabs f = J*logabs, thus

Ddogabs f) = logabs + J«rec » logabs + 1.

Hence, Df » f-D(logabs f) • exp(J*logabs)•(logabs + 1).

In general, for functions starting with the symbol exp

the function logabs f is simpler than f, and hence logarithmic

derivation is convenient* The same is true for functions f

which are products f̂ «fg»...*fn provided that we can find

Ddogabs t±) for 1 • 1,2,...,n. For D(logabs f) la the sum of

these n functions.

Exponential derivation Is convenient whenever exp f is

simpler than f. This is the ca»e for functions starting with

the symbol log or logabs. As an example, we treat the funct-

ion f • iogabs{J + logabs). Now,D(exp f) »D(J + logabs) »1 +rec.

Hence,
Df -rec exp f«D(exp f) "recCj -rlogabs)•(! +ree).

5. The Derivation of the Trigonometric Functions,

Let tan be a tangential function, c a constant. From the

definition of tan it follows that

tan(J+c) •*•*.***" c m tan-Htan c
1 - tan j*tan c 1 - tanrtan e

By virtue of the quotient-rule we obtain

D tan(J -f e) - D[tan(J ê)]

m (1" tan*tan c)*D tan - (tan + tan c)* - tan o*P tan
(1 - tan*tan c)2

» D tan•(!-»-tan c«tan c)«rec(l - tan*tan c)2.

Substituting 0 we obtain

D tan c * D tan 0*(l+tan c*tan c)»rec(l-tan 0*tan c) .
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Since tan 0 = 0 we have

D tan c =D tan 0«(l+tan c*tan c) for each eonatant c.

If we have a base of constant a, then

D tan - D tan O-U+tan2).

We shall now postulate that there Is a tangential function tan

for which D tan 0 = 1. From now on we shall reserve the sym̂

bol tan for this function given by the postulates

1. tan(f+g)- tanf+tang
1-tan f «tan g

2. D tan 0 * 1.

For this function we have
Q Q

D tan • 1 4- tan m rec cos .

In the classical analysis, for each constant a the funct-

ion tan (a-x) satisfies postulate 1. The function associating

tan x with z is the only one which satisfies postulates 1 and

2. In a paper "e and ir In Elementary Calculus11 (to appear in

the near future ) we describe how the postulates

D tan 0*1 and D exp 0 * 1 in conjunction with the functional

equations for the tangential and exponential functions yield

an intuitive introduction of ir and e, as well as a simple dev-

elopment of the ̂ natural* tangential and exponential functions

ex and tan x (x measured in radians).

From tan arctan » J we obtain

1 » D(tan arctan) * D tan arotan*D arctan

« (1 +tan2)arctan«D arctan = (1 + J )«D arctan.

It follows that
D arctan * rec(l + J ).

From the definition of the sine function we conclude by

virtue of the Quotient Rule
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2*D sln(2*J) = D[sln(2«J)]

* 2«[(1+tan2)-D tan-2*tan«D tan* tan] Teed * tan2)2

* 2-{l-tan2)«D tan-ree(l +tan2)2 »2«(1 - tan2)«rec(l+tan2)

a 2*cos(2«J).

It follows that D(sln(2;J)] * cos(2«J). Substituting i • J
2

we obtain
D sin = cos.

Similarly, we arrive at D cos * neg sin. (It goes without say-

Ing that the symbols sin and cos are reserved for the functions

defined In terms of the tangential function for which

D tan 0 * 1).

6. The Foundation of the Algebra of Antlderivatlves.

The Algebra of Anti derivatives Is based on an equivalence

relation which we shall symbolize by ~, and a right Inverse of

the operator D which we shall symbolize by S. We shall read

the symbol Sf *an ant 1 derivative of f* or 'an integral of f*

Indicating by this expression the multi-valuedness of the

operator S In contrast to the uni-valuedness of D. The latter

Is expressed in the Implication

If f - g, then Df » Dg

which will be of basic Importance for the Algebra of Anti-

derivatives.

Sf is what in the classical analysis is denoted by

/f (x)dx while f ~g expresses the relation f f(x) = gf(x) for

which the classical theory does not Introduce a special symbol.

Only to some extent f -»g corresponds to what in classical

integral calculus is denoted by f(x) a g(x) + const. As we

shall see In this section, f * g + c implies f~g. However,
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our Algebra of Antlderivatlon neither infers nor postulates

that conversely f~g Implies f = g + c. In classical analysis

the proof of the fact that functions with equal derivatives

differ by a constant, requires deeper logical methods than

the proof of any theorem corresponding to our Algebra of Anal-

ysis (see Introduction).

In view of the connection of our antiderivation with

the classical calcuTus of indefinite Integralsf we shall call

f the Integrand of Sf .

The two fundamental concepts of the Algebra of Anti deri-

vation are Introduced by the postulates:

A. f ~g If arid only if Df » Dg

B. D(Sf) * f.

No ambiguity will arise if we write postulate B in the form

DSf » f since we shall leave DS undefined. We mlgit, of

course, express postulate B in the form DS = J. At the begin-

ning of this section, in calling S a right inverse of D, we

adopted this point of view. But we shall refrain from elabor-

ating on this idea (as In the Algebra of Antlderlvates we re-

frained from briefly writing D neg =* neg D instead of

D neg f = neg Df) since its consistent extension would necessi-

tate the use of functions of more variables.

From the definition A it follows that the equivalence re-

lation Is reflexive, symmetric, and transitive. Since DO * 0

and DJ = 0, we have 0~1. In fact, for each constant c we

âve c~0. More generally, from the Algebra of Derivatives

it follows that f + c~f.

Next we consider two fundamental consequences of postu-

late B. If 3f~g, then DSf a Dg, thus by postulate B, f-Dg.
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Conversely, If f • Dg, then from B It follows that DSf » Dg

and hence Sf ~ g. We thus see

C. Sf - g if and only if f » Dg.

Secondly, we see: If SDf ~ g, then DSDf « Dg and from B

it follows that Df = Dg* Hence f ~ g and g ~ t• We thus

obtain the result

D. SDf ~ f.

Obviously, this Algebra of Antiderivation solves all the

difficulties connected with the multi-valuedness of the

operator 3. In our formula, Sf stands for any function g for

which Dg = f. The formulae concerning antiderivatives result-

ing from our two postulates of the Algebra of Anti derivation

express only the equivalence (never the equality) of anti-

derivatives with functions or other antiderivatives* For in-

stance, from DO » DC « 0 it follows that SO ~ c. Clearly,

also the classical integral calculus lacks formulae expressing

the equality of any antiderivation and any other function*

7. Formulae of the Algebra of Derivation in the
Notation of Antiderivation,

The formulae A. - D. of the preceding section enable us to

translate each formula of the Algebra of Derivation into a

formula about antiderivation* We start translating the

postulates I - III of the Algebra of Derivations

Sf +Sg~ SD(Sf + Sg) ~ S(DSf + DSg) ~ S(f + g).

f «g ~ SD(f «g)~ S(f *Dg +g-Df ) - S(f «Dg) +S(g«Df).

fg - SD(fg) - S(Dfg«Dg).
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We thus obtain

I» S(f + g) ~Sf + Sg

II1 f »g ~ S(f »Dg) + S(g-Df )

III1 fg~ S(Dfg-Dg).

Important la the special case of II f for f - c and g ~~ Sh. We

obtain the Constant Factor Rule

c«Sh ~ S(c*h)«

Translating the formulae
o

D exp - exp, D logabs = rec, D tan = rec cos

we obtain

S exp — exp, S rec ~ logabs, S rec cos2 ~ tan.

From D c - po = c*( c - 1) - po, It follows that

S[c*(c -1) -po]^c -po.

Applying the Constant Factor Rule for i (if c / 0) and re-

placing o*l by c, we obtain

S c - po * — - * ( c+1) - po if c 7* 0.
C"*"l

8. The Three Methods of An ti derivation,

If in formula III' we replace f by Sh we obtain
+

IĤ  Shg~ S(hg'Dg).

' The formula lU * is the source of two methods for the computa-

tion of antiderlvatives.

The first of these methods consists in applying formula

III* read from the right to the left, that is, in the form

3(hg*Dg) ~ Shg.

In words: If the Integrand of an antiderl vative which we

wish to find, can be represented as the product of what re-

sults from a function h by substitution of a function g times

the derivative of this function g, then we obtain the
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antiderivative we are looking for, by substituting g Into the

antlderlvatlve of h. The problem of finding the antideriva-

tive of hg*Dg Is thus reduced to the problem of finding the

antiderivative of h.

Examples:

S(rec g»Dg) ~ logabs g

S(tan g-Dg) ~ rec cos2g

S(exp g*Dg) ~ exp g, etc.

The second method, called antlderlvatlon by substitution,

consists In substituting Into formula III*, read from the left

to the right, the right Inverse of g which we shall denote by

g*. We obtain

Shgg*~S(hg-Dg)g*"

thus

B. Sh~ S(hg*Dg)g*.

In words: We find the antiderivative of h by substituting

Into h any function g, multiplying the result by Dg, finding

the antiderivative of the product, and substituting Into this

antiderivative the right Inverse of g.

While formula E Is correct for each h and g, It Is of

practical use for given h only if we can find a function g

with a right inverse such that S(hg*Dg) is simpler than Sh.

Example:

Sh -~ S(h tan*D tan)arctan.
o

The formula is useful If S(h tan Tec cos ) is simpler than Sh.

For Instance, this is the case if h = (-gf) -Po(l+2-po), in

classical notation, h(x) - (l+x2)'3/2. We have
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h tan - (-f ) -po (I* tan2)

h tan Tec cos2 = cos,

cos3

S[(- ij ) - po (1 + 2 - po)] ̂  S cos arctan ~ sin arctan.

The third method, called an ti derivation by parts, consists

in an application of formula IIf, written in the following

form

P. S(f-Dg)~ f*g - S(g-Df).

While this formula holds for each f and g, it is of practical

use for the computation of an ant i derivative Sh only if we

succeed in representing h as the product of two functions f

and f1 such that

1) Sf̂  can be found,

2) S(Df -Sf-ĵ ) can be found.

If we set Sf̂ ^ g, then formula F enables us to compute

F'. S(f -f̂  ~ f -Sf-L - S(Df -Ŝ ).

While it is immaterial which ant i derivative of f^ we use in

the expression on the right side, It is essential that on both

places the same antiderlvatlve Sf̂  Is selected.

Example:

S logabs ~ S(logabs-l) ~ S(logabs-DJ)

^» J«logabs - 8(J»rec) ̂ J*logabs - Sl~*J*logabs - J.


