ASYMPTOTICALLY MOST POWERFUL TESTS AND ASYMPTO-TICALLY SHORTEST CONFIDENCE INTERVALS9) V

As we have seen, if a uniformly most powerful (unbiased) test and a shortest (unbiased) confidence interval exist, they provide a satisfactory solution of the problem of testing a hypothesis and the problem of interval estimation. Unfortunately, they exist only in a restricted class of cases. As substitutes for them the use of a critical region of type A and a short confidence interval, respectively, have been proposed. The appropriateness of the region of type A seems somewhat doubtful, since we are more interested in the behavior of the power function at values of θ far from the value θ_0 to be tested than at values of Θ near to Θ_0 . Similar objections can be raised to the use of a short confidence interval. Recent investigations show, however, that the situation is much more favorable than appears at first glance. It is shown that the difficulties arising because of the non-existence of uniformly most powerful unbiased tests and shortest unbiased confidence intervals gradually disappear with increasing size of the sample, since so-called asymptotically most powerful unbiased tests and asymptotically shortest unbiased confidence intervals practically always exist.

We shall assume that the observations x_1, \ldots, x_n are n independent observations on the same random variable X whose distribution function involves a single unknown parameter 9. We shall also assume that X has a probability density function,

⁹⁾ See references 17-20 29

say $f(x, \Theta)$. Since in our discussions the number of observations n will not be kept constant, we shall indicate the dimension of the sample space by proper subscripts. For instance, a critical region in the n-dimensional sample space will be denoted by a capital letter with the subscript n. A point of the n-dimensional sample space will be denoted by E_n , and a confidence interval based on n observations by $\delta_n(E_n)$.

For any region U_n denote by $G(U_n)$ the greatest lower bound of $P(U_n | \Theta)$. For any pair of regions U_n and T_n denote by $L(U_n, T_n)$ the least upper bound of

 $\mathbb{P}\left[U_{n}(\Theta) - \mathbb{P}(T_{n} | \Theta) \right].$

A sequence $\{W_n\}$ (n=1,...,ad inf.) of regions is said to be an asymptotically most powerful test of the hypothesis $\theta = \theta_0$ on the level of significance a if $P(W|\theta_0) = a$ and if for any sequence $\{Z_n\}$ of regions for which $P(Z_n|\theta_0) = a$,

 $\lim_{n\to\infty} \sup L(Z_n, W_n) = 0 \text{ holds.}$

A sequence $\{W_n\}$ (n=1,...,ad inf.) of regions is said to be an asymptotically most powerful unbiased test of the hypothesis $\Theta = \Theta_0$ on the level of significance a if $P(W_n | \Theta_0) = \lim_{L} G(W_n) = a$ and if for any sequence $\{Z_n\}$ of regions for which $P(Z_n | \Theta_0) =$ lim $G(Z_n) = a$ the inequality lim sup $L(Z_n, W_n) \leq 0$ holds.

Let $P_n(\Theta, \alpha)$ be defined by

$$P_n(\Theta, \alpha) = 1.u.b. P(Z_n|\Theta)$$

with respect to all regions Z_n for which $P(Z_n | \theta_0) = a$. We will call $P_n(\theta, a)$ the envelope function corresponding to the level of significance a. Similarly let $P_n^{\star}(\theta, a)$ be the least upper bound of $P(Z_n | \theta)$ with respect to all unbiased critical regions Z_n which have the size a. We will call $P_n^{\star}(\theta, a)$ the unbiased envelope function corresponding to the level of significance a. The two previously given definitions are equivalent to the following two:

A sequence $\{W_n\}$ of regions is said to be an asymptotically most powerful test of the hypothesis $\Theta = \Theta_0$ on the level of significance a if $P(W_n | \Theta_0) = a$ and

$$\lim_{n \to \infty} \left\{ P_n(\Theta, \alpha) - P(W_n | \Theta) \right\} = 0$$

uniformly in θ .

A sequence $\{W_n\}$ of regions is said to be an asymptotically most powerful unbiased test of the hypothesis $\theta = \theta_0$ on the level of significance a if $P(W_n | \theta_0) = a$ and

$$\lim_{n=\infty} \left\{ P_n^{*}(\Theta, \alpha) - P(W_n | \Theta) \right\} = 0$$

uniformly in 0.

Let $\hat{\Theta}_n(x_1, \ldots, x_n)$ be the maximum likelihood estimate of Θ in the n-dimensional sample space. That is to say, $\hat{\Theta}_n$ denotes the value of Θ for which the product $\frac{n}{\alpha=1}$ $f(x_\alpha, \Theta)$ becomes a maximum. Let W_n^i be the region defined by the inequality $\sqrt{\pi}(\hat{\Theta}_n = \Theta_0) \ge c_n^i$, W_n^m defined by the inequality $\sqrt{\pi}(\hat{\Theta}_n - \Theta_0) \le c_n^m$ and let W_n be defined by the inequality $\left|\sqrt{\pi}(\hat{\Theta}_n - \Theta_0)\right| \ge d_n$. The constants d_n , c_n^i , c_n^m are chosen in such a way that

 $P(W_n^{\dagger}|\Theta_0) = P(W_n^{\dagger}|\Theta_0) = P(W_n|\Theta_0) = \alpha.$

It has been shown that under certain restrictions on the probability density $f(x,\theta)$ the sequence $\{W_n^i\}$ is an asymptotically most powerful test of the hypothesis $\theta = \theta_0$ if θ takes only values $\geq \theta_0$. Similarly $\{W_n^n\}$ is an asymptotically most powerful test if θ takes only values $\leq \theta_0$. Finally $\{W_n\}$ is an asymptotically most powerful unbiased test if θ can take any real value.

There are also other asymptotically most powerful tests. Let Wi be the region defined by the inequality

$$\frac{1}{\sqrt{n}} \frac{n}{\alpha^2} \frac{\partial}{\partial \theta} \log f(\mathbf{x}_{\alpha}, \theta_{0}) \ge c_{n}^{\prime},$$

 W_n^m defined by the inequality

$$\frac{1}{\sqrt{n}} \sum_{\alpha} \frac{\partial}{\partial \theta} \log f(\mathbf{x}_{\alpha}, \theta_{0}) \leq c_{n}^{"},$$

and Wn defined by the inequality

$$\left|\frac{1}{\sqrt{n}}\frac{\partial}{\partial \Theta}\sum_{\alpha}\log f(\mathbf{x}_{\alpha}, \Theta_{0})\right| \ge c_{n}$$

where the constants c_n , c_n^t and c_n^{tt} are chosen in such a way that

$$\mathbb{P}(\mathbb{W}_n^{\dagger}|\Theta_0) = \mathbb{P}(\mathbb{W}_n^{\dagger}|\Theta_0) = \mathbb{P}(\mathbb{W}_n^{\dagger}|\Theta_0) = \alpha.$$

Then $\{W_n^i\}$ is an asymptotically most powerful test of the hypothesis $\theta = \theta_0$ if θ takes only values $\geq \theta_0$. Similarly, $\{W_n^n\}$ is an asymptotically most powerful test if θ takes only values $\geq \theta_0$. Finally $\{W_n\}$ is an asymptotically most powerful unbiased test if θ can take any real value.

The sequence $\{A_n(\theta_0)\}$ is an asymptotically most powerful unbiased test of the hypothesis $\theta = \theta_0$, where $A_n(\theta_0)$ denotes the critical region of type A for testing the hypothesis $\theta = \theta_0$

Since there are many asymptotically most powerful tests, the question arises whether they are all equally good or whether one can be preferred to another. It is clear that if $\{W_n\}$ and $\{W_n\}$ are two asymptotically most powerful unbiased tests, then for sufficiently large n they are equally good. In fact, for sufficiently large n both power functions $P(W_n|\Theta)$ and $P(W_n^i|\Theta)$ are in a small neighborhood of $P_n(\Theta, \alpha) \left[P_n^{*}(\Theta, \alpha) \right]$. However, they may behave differently in the sense that with increasing n one power function, say $P(W_n|\Theta)$ approaches the envelope function faster than $P(W_n^i|\Theta)$ does. In such a case it seems preferable to use W_n , especially if the sample is only moderately large. If the sample is so large that both power functions are in a small neighborhood of the envelope function, then it is immaterial whether we use W_n or W_n^i .

These considerations lead to the idea that it is preferable to use that asymptotically most powerful (unbiased) test $\{W_n\}$ for which the approach of $P(W_n | \Theta)$ to the envelope function is, in a certain sense, fastest.

A region W_n is called a most stringent test of size a for testing the hypothesis $\theta = \theta_0$ if $P(W_n | \theta_0) = a$ and

 $1.u.b.\left[P_n(\theta,\alpha)-P(W_n|0)\right] \qquad 1.u.b.\left[P_n(\theta,\alpha)-P(Z_n|\theta)\right]$

for all Z_n for which $P(Z_n | \Theta_0) = a$. The abbreviation l.u.b. means "least upper bound with respect to Θ ."

If W_n is for each n a most stringent test, its power function will approach the envelope function, in a certain sense, faster than any other power function. It seems, therefore, desirable to use a most stringent test. A region of type A is not exactly a most stringent test, but probably it is quite near to it (this question has yet to be investigated), and this would provide a very good justification for the use of a type A region. The mathematical difficulties in finding explicitly a most stringent test are considerable. Let $\delta_n(\mathbf{E}_n) = \left[\underline{\Theta}_n(\mathbf{E}_n), \overline{\Theta}_n(\mathbf{E}_n)\right]$ be an interval function and denote by $\mathbb{P}\left[d_n(\mathbf{E}_n) \ \mathbb{C}\Theta^* | \Theta^*\right]$ the probability that $d_n(\mathbf{E}_n)$ will cover Θ^* under the assumption that Θ^* is the true value of the parameter.

A sequence of interval functions $\{d_n(E_n)\}$ (n=1,2,...,ad if) is called an asymptotically shortest confidence interval of Θ if the following two conditions are fulfilled:

> (a) $P[d_n(E_n) \ C\Theta|\Theta] = a$ for all values of Θ (b) For any sequence of interval functions $\{d_n'(E_n)\}$ (n=1,2,..., ad inf.) which satisfies (a), the least upper bound of $P[d_n(E_n) \ C\Theta'|\Theta''] - P[d_n'(E_n) \ C\Theta'|\Theta'']$ with respect to Θ' and Θ'' converges to zero with $n \to \infty$.

A sequence of interval functions $\{\mathcal{L}_n(\mathbb{E}_n)\}$ (n=1,2,..., ed inf) is called an asymptotically shortest unbiased confidence interval of Θ if the following three conditions are fulfilled:

- (a) $P\left[d_n(E_n) C\Theta | \Theta\right] = a$ for all values of Θ
- (b) The least upper bound of $P[e_n(E_n) C \Theta^* | \Theta^*]$ with respect to Θ^* and Θ^* converges to a with $n \to \infty$
- (c) For any sequence of interval functions $\{ \delta_n^{\dagger}(\mathbf{E}_n) \}$ which satisfies the conditions (a) and (b), the least upper bound of

 $P\left[d_n(E_n) \ CO^{\dagger} | O^{\dagger}\right] - P\left[d_n^{\dagger}(E_n) \ CO^{\dagger} | O^{\dagger}\right]$ with respect to Θ^{\dagger} and Θ^{\dagger} , converges to zero with $n \rightarrow \infty$.

Let $C_n(\Theta)$ be a positive function of Θ such that the probability that $\left| \frac{1}{\sqrt{n}} \sum_{\beta} \frac{\partial}{\partial \Theta} \log f(\mathbf{x}_{\beta}, \Theta) \right| \leq C_n(\Theta)$ is equal to a

constant a under the assumption that θ is the true value of the parameter. Denote by $\underline{\theta}(\mathbf{E}_n)$ the root in θ of the equation

 $\frac{1}{n}\frac{\partial}{\partial \theta} = \frac{2}{\beta} \log f(x_{\beta}, \theta) = C_n(\theta) \text{ and by } \overline{\theta}(E_n) \text{ the root of}$

 $\frac{1}{pn}\frac{\partial}{\partial \Theta} \sum_{\beta} \log f(\mathbf{x}_{\beta}, \Theta) = -C_{n}(\Theta).$ It has been shown that under some restrictions on $f(\mathbf{x}, \Theta)$ the interval $\delta(\mathbf{E}_{n}) = \left[\underline{\Theta}(\mathbf{E}_{n}), \overline{\Theta}(\mathbf{E}_{n})\right]$ is an asymptotically shortest unbiased confidence interval of Θ corresponding to the confidence coefficient a. This confidence interval is identical with that given by Wilks¹⁰. The definition of a shortest confidence interval underlying Wilks' investigations is somewhat different from that of Neyman's, which has been used here. According to Wilks, a confidence interval $\delta(\mathbf{E})$ is called shortest in the average if the expectation of the length of $\delta(\mathbf{E})$ is a minimum. The main result obtained by Wilks can be formulated as follows: The confidence interval in question is asymptotically shortest in the average compared with all confidence intervals the endpoints of which are roots of an equation of the following type:

 $\sum_{\beta} h(x_{\beta}, \theta) = \pm C_n(\theta).$

In the present investigation such a restriction is not made. The confidence interval in consideration is shown to be asymptotically shortest compared with any unbiased confidence interval.

Now let $C_n(\Theta)$ be a positive function of Θ such that the probability that $|\widehat{\Theta}_n - \Theta| \leq C_n(\Theta)$ is equal to a constant c under

10) See reference 22

the assumption that Θ is the true value of the parameter. Denote by $\underline{\Theta}(\mathbf{E}_n)$ the root in Θ of the equation $\widehat{\Theta}_n - \Theta = C_n(\Theta)$ and by $\overline{\Theta}(\mathbf{E}_n)$ the root of $\widehat{\Theta}_n - \Theta = -C_n(\Theta)$. Consider the interval $\mathbf{\Phi}(\mathbf{E}_n) = \left[\underline{\Theta}(\mathbf{E}_n), \ \overline{\Theta}(\mathbf{E}_n)\right]$. Under some restrictions on the density $f(\mathbf{x}, \Theta)$, it can be shown that $\mathbf{\Phi}(\mathbf{E}_n)$ is an asymptotically shortest unbiased confidence interval.

This is a much stronger property of the maximum likelihood estimate than its efficiency and gives a justification of the use of the maximum likelihood estimate also in the light of Neyman's theory of estimation.