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Abstract. A convergence law in logic pertains to a language and class
of finite structures on which a probability measure has been assigned to
each set of structures of a given size. It states that, for every sentence
in the language, the probability that it holds for a random structure
approaches a limit as the size of the structure grows. A 0-1 law states
that this limit must be 0 or 1. The original convergence law was a 0-1 law
for first-order logic and relational structures with a uniform probability
distribution. This expository article shows how it has been extended
by numerous authors to more powerful logics and the class of random
structures known as random graphs. In many cases, the 0-1 law no longer
holds, but a convergence law can still be proven. Full proofs are not given,
but a uniform framework is provided which emphasizes ideas common to
all the proofs.

1 Background

Let us begin by introducing the conventions we will use. C will denote a logic of

some type τ. Co, Ci, £2, will stand for a sequence of sets of r-structures where

all structures in Cn have universe {0, 1, . . ., n — 1}, which we will abbreviate as

n. For every n £ ω, prn is a probability measure on Cn. For a sentence σ £ £,

we put pr(σ, n) for
p r n ( { S i μ σ : 2 l e C n } )

In this article, we will examine the behavior of pr(σ, n) for growing n (given £,

(Cn)n£uM and (P Γ n)n€ω) The first theorems on this topic considered a first-order
logic £ of a purely relational type τ, where each Cn is the set of all r-structures

on n, and prn is the uniform distribution. For example, if £ has a single relational

symbol of arity r, then

Theorem 1 Fagin [11], Glebskiϊ et al. [13]. For every σ e £,

lim pr(σ, n) = 0 or I .
n-»co
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When this theorem first appeared, it did not attract much attention from the
logic community. It was mostly combinatorialists and computer scientists who
appreciated it, and they suggested two orthogonal directions for future research.
The combinatorialists pointed out that there are many other classes of random
structures besides uniformly distributed relations, and the computer scientists
felt that first-order logic was not powerful enough to describe interesting com-
putational processes.

However, when one attempts to extend the 0-1 law in either direction, it
often fails. Here are some examples where it fails on classes of structures which
are not purely relational (but still with a uniform distribution).

Glebskiϊ et. al. [13]: Add constants c ι , c 2 , . . . to £. Then if R is a binary
relation symbol,

pr(Λ(cι,cι),n) = - .

In fact, every dyadic rational (i.e., of the form u/2v) in [0,1] is pr(σ, n) for
some σ in this language and sufficiently large n.

Mycielski [23]: To each 21 E C we add the successor relation

{(x,x + l) :x <n-l}.

Then

pτ(3xVy(x / y + 1 Λ R(x, a?)), n) = - .

Again, all possible dyadic rationale are realized.
Fagin [11]: Let / be a unary function symbol. Then

n - Γ "

n

I
—Y - as n —ϊ oc .

e

In cases where the 0-1 law fails, it is sometimes possible to prove something
almost as strong. A convergence law states that for every σ £ £, limn.+oo pr(σ, n)
exists. The three examples above have convergence laws:

Glebskiϊ et. al. [13]: Let L\ be a first-order language with relational and con-
stant symbols only. Then for every σ £ £ι,

u
lim pr(<τ, n) = — for some w, v £ ω .

n—> oo Zυ

Lynch [16]: Let £2 be a first-order language with relational symbols only, plus
one binary relational symbol which is always interpreted as the successor
relation. Then for every σ E £2,

u
lim pr(σ, n) = — for some w, v E ω .

n—too 2V
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Lynch [17]: Let £3 be a first-order language with unary function symbols only.
Then for every σ £ £3,

lim pr(σ, n)
n—too

exists, and is denoted by an expression constructed from 1, +, —, , /, and
the Poisson operators e~xxk/k\.

Note that these convergence laws are still subject to the criticisms of the
computer scientists and combinatorialists, since they pertain only to first-order
logic and uniform distributions. In the remainder of this article, we will explore
two directions of research: more powerful logics, and an important class of ran-
dom structures known as random graphs. Another problem we will look at is
obtaining rate estimates. These are approximations of how fast the probabilities
of sentences converge. As we will see, rate estimates have potential applications
to optimization of database queries.

2 Recursive Logics and Infinitary Logics

Recursive logics and infinitary logics were developed by Barwise [3], Moschovakis
[22], and others, in order to study the model theory of infinite structures. How-
ever, they are currently the focus of much of the research in finite model theory,
because of motivations from computer science. For example, various complexity
classes are captured by recursive logics. That is, every problem in such a class
can be defined by a sentence in the appropriate logic. Also, recursive logics are
needed to express the queries in modern relational database languages. Before
defining some of these logics, we will make a digression into database theory.
There are two reasons. First, it will provide some motivation for the study of re-
cursive and infinitary logics in finite model theory, and second, it will introduce
an important equivalence relation that has been used in proofs of the convergence
laws (and nonconvergence laws) and rate estimates.

A database machine is an abstraction of a relational database system. It con-
sists of a control unit that interacts with a finite model. The control unit is similar
to a Turing machine, but restrictions are often imposed on its power. In addi-
tion, it cannot manipulate its data (the finite model) directly. In a single step,
it can only perform a first-order query. A query is an automorphism-invariant
mapping of finite models to finite models. That is, given a collection of relations,
it computes a collection of relations. A 0-ary query computes the value TRUE or
FALSE. A first-order query is one that is defined by a first-order formula. Thus,
a 0-ary first-order query is defined by a sentence.

The earliest relational database systems could perform only first-order que-
ries. It was quickly realized that these were inadequate for many applications; for
instance, it is not possible to test whether a relation is connected or to compute
the transitive closure of a relation using only first-order queries. Consequently,
relational database systems that had the power of recursion were developed.
The canonical example of a database machine for testing the connectedness of a
graph is the following. Let
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E be the symbol for the edge relation of the graph,

R be another binary relation symbol,

Φ(E, R) be the query defined by { ( x , y) : 3z(E(x, z] Λ R(z, y)) }.

INPUT: graph (V,E).

PROGRAM: R := { ( x , x) : x eV}

while R^Φ(E,R)do R:=Φ(E,R).
OUTPUT: if MxVyR(x,y) then "YES" else "NO."

Note that the final value of R computed by the program is the transitive

closure of E. Because the ability to compute transitive closures of relations

is important in many database applications, a language known as transitive

closure logic (TCL) has been developed. It is first-order logic augmented with
the transitive closure operator. Let σ(x, y, ~z) be a formula of type τ whose free

variables are

X — X\ , . . . , Xj ,

y = 2 / 1 , . . . , 2/j, and

Z = Zι,...,Zj,

where i, j > 0. Then TC(σ, #, y, ~z] is a formula with the same free variables as

σ such that for any r-structure 51 with universe A and α = αi, . . . , α, £ A,

is the transitive closure of

The least fixed point is another logical operator more powerful than the

transitive closure. Let φ(x, S) be a formula of type τ extended with the new k-

ary relational symbol S whose free variables are ~x — a?ι, . . . , x^. For any r-model
51 with universe A, φ induces an operator Φ : P(Ak) -> P(Ak). Given S C Ak ,

Φ(S) = { ( f l l , . . . , α f c) £ A* : 21 |= φ(aι , . . . , ak , S) }.

Inductively, we can define the iterates of Φ:

We say the operator Φ is monotone if S C T implies Φ(S) C Φ(T). In that case,
φ^ ς_ φi-f i for ajι j ^ ̂  jf there is some i such that Φ* = Φί+1, then Φ1 is said to

be the least fixed point of Φ. The formula φ is positive in S if each occurrence

of S is within an even number of -ι signs. It is easily seen that if φ is positive,

then Φ is monotone. The Knaster-Tarski theorem (see [22]) states that if Φ is

monotone then Φ has a, least fixed point. Of course, if 51 is finite, this is obvious.

In fact, it must occur on or before \A\k iterations. We put φ°° (x) for the least
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fixed point of Φ. The least fixed point logic (LFP) is first-order logic closed under
the least fixed point of positive formulas.

Other operators, such as the partial fixed point, can be added to first-order
logic, resulting in the logic PFP. But all the logics mentioned here are contained
in the infinitary logic Lt^oω.

Definition 2. For k G u;, L^ω is the extension of first-order logic obtained by
closure under conjunction and disjunction of arbitrary sets of formulas, provided
only the variables x\, . . . ,Xk occur among them. Then

It can be shown that

TC C LFP C PFP C L^ω .

The first inclusion is known to be proper. The last inclusion is easily seen to be
proper because L(^>Qω can express non-recursive properties, whereas all properties
expressible in the other logics are recursive. It is not known whether LFP C
PFP . As shown by Abiteboul and Vianu [1], this is equivalent to showing that
P is properly contained in PSPACE, so it should not be expected that it is easy
to answer.

Continuing with our example, let us show how transitive closure and con-
nectedness can be expressed in L£oa,. Let R1 be the value of R after the ith
iteration of the above program. Then

R° = {(x,x):x£V} and

R? = {(x,y):3z(E(x,z)MV-l(z,y))} .

Inductively, we can express Rl(x,y) using only three variables:

Then we can express "(I/, E) is connected" using an infinite disjunction and only
three variables:

A fundamental problem in the model theory of L^ω is, given k £ ω, to
characterize those relations (i.e., queries) that can be defined by a formula in
^ooω- The following equivalence relation is central to this problem.

Definitions. Let 21 and 03 be models of the same type, / < &, α i , . . . , α/ E 21,
and 6 1 , . . . , bι G 03. Then (51, α i , . . . , α/) Ξ^ (03, & ι , . . . , &/) if and only if for all
σ ( a ? ι , . . . , a r / ) G !&„,,
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This equivalence relation plays a key role in many proofs of the expressibility
of properties in L%Qω, and as we will outline later, the convergence laws for
L^ω. Since database queries are expressible in this infinitary logic, it is also
useful in studying the power of database languages. For example, let M be a
database machine. Given an input 21, M computes the model M(2l). As is often
the case, we assume that 21 and M(2t) have the same universe. Let R be an /-ary
relation in M (21). For inputs 21 and 2J, αi, . . . , α/ £ 21, and 61, . . . , 6/ £ 2ϊ, put
(2l ,αι, . . . ,α,) =M|jR (<B, &ι, . . . , & / } if and only if

M(a) f = Λ ( α 1 , . . . , α / ) θ M ( B ) (=Λ(6ι , . . . ,6 , ) .

Then, for some k, =^ refines ΞM;JR
We conclude this section with a potential application of these ideas to database

query optimization. When a model 21 is the input to a database machine, it must
be encoded as a string of bits. If the the universe of 21 has n elements, then the
length of this encoding is on the order of nr for some fixed r. Let / < k. Suppose
that there is a function d: ω — >• ω such that d(n) <C nr , and for every n, there
is a collection CΊ, . . . , Cd(n) °f =& classes of /-tuples on inputs 21 of size n such

that for almost all 21, every /-tuple is in (jfi^ £»• Then there is the possibility of
optimizing σ(x\, . . . , # / ) G L^oω. The case studied by Abiteboul, Compton, and
Vianu [2] was for the partial fixed-point logic of a relational type, and the uni-
form probability distribution on models of that type. Using rate estimates, they
proved that, for every / < k £ ω, there is a finite set of Ξ^ classes Ci, . . . , C<j

and first-order formulas φι(x\, . . . , Z ί ) > . . . ,φd(xι, • • - , # / ) such that:

1. For all 21, αi, . . . , α/ 6 21, and all ί = 1, . . . , ef,

(21, αi , . . . , α/) E C, if and only if 21 |= φi(a\^ . . . , α / ) .

2. There is c < 1 such that

i=ι

On a parallel processor, the time complexity of a first-order query is bounded
above by a constant, but the known methods for answering a fixed-point query
require time n* for some t, in the worst case. However, by exploiting facts 1. and
2. above, the average time complexity of the fixed-point query σ is

< pr f Van . . . xι Uxi, . . . , x,) G UfLi d) > n)

x maxι<i<rf(complexity((Sl, x i , . . . , #/} G (7,))

-f p r Ξ x ! . . .3a?/ ( a ? ι , . . . , a ? / ) ^ U = ι C ! * ) n x complexity(σ)

ϊX^ (complexity (φi)) + cn x nέ < A"

for some constant A". Thus, on average, the cost of a fixed-point query is also
constant.
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3 Random Graphs

Random graph theory was initiated by Erdδs and Renyi [10], and has since grown
into a very active branch of combinatorics. A good introductory text is Palmer
[24]; for those with some familiarity with the subject, a standard reference is
Bollobas [5]. We will consider only one model of random graph, but it is by far the
most widely studied. Unlike our previous examples, the probability distribution
on random graphs of a given size is not in general uniform.

For each n £ ω, Cn is the collection of undirected graphs whose vertex set is n.
The probability distribution prn on Cn is defined in terms of the edge probability,
a function p(n) taking values in [0, 1]. For any (n, E) E Cn,

Another, perhaps more intuitive, way of regarding this probability is to construct
the random graph {n, E) by choosing independently for each pair {i, j} C n, that
{i, j} G E with probability p(n). It is evident that when p(n) = 1/2 for all n,
this is identical to the uniform distribution.

There are many possible edge probabilities, but we will restrict our attention
to those of the form p(n) — βn~a , where α, β > 0. This is a crude characteriza-
tion of edge probabilities, but it is important because it is simple, involving only
two parameters a and β, and yet by varying these parameters, a wide range of
monotonically decreasing edge probabilities is covered. (Increasing edge proba-
bilities are a symmetric case because we can replace p(n) by 1 —p(n).) Constant
edge probabilities occur when α = 0. In this case, we assume 0 < β < 1. When
a > 0, the graph is said to be "sparse." As a increases, the random graph
becomes sparser, i.e., its edge density decreases, until α > 2, when almost all
random graphs have no edges. Thus the interesting values of a are in the range
[0, 2]. A slight generalization of the proofs of Fagin and Glebskiϊ et. al. extends
their 0-1 law to all random graphs with constant edge probabilities.

Random graph theorists are particularly interested in threshold functions.
These are parameterized functions that characterize the random graph such that
as the parameter passes through a certain value (the threshold), the qualitative
behavior of the random graph changes. In the logics we will be considering, a is
the important parameter for the edge probability. For example, the asymptotic
probability that the graph has a 4-clique is 0 if α > 2/3, 1 if a < 2/3, and

1 — e~P /24 if a = 2/3. In the logics we will be studying, when a > 0, the value
of β does not affect the qualitative behavior of the random graph as long as it
is greater than 0, so we will assume it is 1 in this case.

Table 1. summarizes the behavior of random graphs, categorized horizontally
according to α, with the sparsest graphs to the left, and vertically according to
the logic: FOL (first-order logic), TCL (transitive closure logic), LFP (least fixed
point logic), and L^ω.
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Q > 1 , α > 1, a = 1 a € ( 0 , l ) , α 6 ( 0 , l ) , α = 0
rational irrational

τω
^ooω

LFP

TCL

FOL

Con7

Con

Con

Con6

O-l7

0-1

0-1

O-l4

Noncon

Noncon

Noncon8

Con6

Noncon

Noncon

Noncon

Noncon4

Noncon

Noncon9

O-l9

O-l4

O-l5

O-l3

0-1
O-l1'2

Table 1: Summary of convergence laws.

Three types of behavior are distinguished: 0-1, Con, and Noncon, standing for 0-1
law, convergence law, and nonconvergence law respectively. The superscripts are
cross-references to the following list of citations. They are arranged in chrono-
logical order of journal publication dates, although in many cases, they were
preceded by publications in conference proceedings. In the cases that are not
cross-referenced, the behavior is a simple consequence of either a 0-1 or conver-
gence law above, or a nonconvergence result below. Perhaps the most striking
feature about this table is the threshold at a = 1. For all other values of α, the
behavior of FOL and TCL is the same. For all four logics, it demarks the onset
of complex behavior, i.e., nonconvergence. This is not surprising because it has
been long known that the probabilities of important graph properties change
when a passes through the value 1. For example, when α > 1, the random graph
is almost surely planar and not connected, but when a < 1, it is almost surely
nonplanar and connected. In fact, a much more precise analysis of this threshold
has been done (see Bollobas [5]).

1. Glebskiϊ et al. [13]. Also contains the convergence law for structures with
relations and constant mentioned earlier.

2. Fagin [11]. Also contains a 0-1 law for unlabelled relational structures. That
is, two structures are identified if they are isomorphic.

3. Blass, Gurevich, and Kozen [4]. Actually proven for the stronger partial fixed
point logic.

4. Shelah and Spencer [27]. A rate estimate when a is irrational is given in
Lynch [20].

5. Kolaitis and Vardi [15].
6. Lynch [18].
7. Lynch [19].

8. Tyszkiewicz [28]. Improved to deterministic transitive closure logic in Lynch
and Tyszkiewicz [21].

9. Lynch, McArthur, Tyszkiewicz, and Spencer (in preparation). They also
show that the convergence law fails for LFP, which immediately imples that
TCL is weaker than LFP. It was incorrectly stated in [21] that convergence
holds for L" ,

The proofs of 0-1 or convergence law in each category α > 1, α = 1, α < 1 ir-
rational, and a — 0 are all quite different. There is, however, a unifying principle
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in all the proofs. It is the use of combinatorial pebble games to characterize defin-
able properties of structures. The original pebble game was invented by Ehren-
feucht [8] to characterize the equivalence classes of structures indistinguishable
by first-order sentences of bounded quantifier rank. The quantifier rank of a
first-order sentence is the depth of nesting of its quantifiers. These classes had
been studied earlier by Fraϊsse [12], and the game is often called the Ehrenfeucht-
Fraίsse game in their honor. We will describe the game as it is played on two
graphs G, = (Vi,Ei), for i — 0,1. The game consists of k rounds numbered
1, . . . , k, for some fixed k £ ω, and is played by two players, which we will refer
to as I and II. There are two sets of pebbles numbered 1, . . . , k. In each round r,
player I places one of the pebbles numbered r on a vertex of GO or GI , and then
player II places the other pebble numbered r on a vertex of the other graph (Gi
or GO). For i = 0, 1 and r = 1, . . . , / ? , let αz )Γ be the vertex in Vi that is pebbled
(by either player) in round r. After round k, we say that player II has won if
and only if the structures ({α^i, . . . , α ί j f c}, E{ \ {α^i, . . . , α,-,*}, α^i, . . . , αt ,*}),
i — 0, 1, are isomorphic. That is, the induced subgraphs on {α^i, . . . ,0,-^} are

isomorphic via αo,r >->• αι,r

Definition 4. Let GO and GI be two graphs and k £ ω.

1. GO ~fe GI if and only if player II has a winning strategy for the Ar-round
Ehrenfeucht- Fraϊsse game on GO and GI. That is, no matter how player I
moves, player II can always respond so that he wins after k rounds.

2. GO =k GI if and only if GO and GI satisfy the same sentences of quantifier
rank < k.

It is easily seen that ~k and =k are equivalence relations. The key result on the
game is the following.

Theorem 5 Ehrenfeucht [8]. Let GO, GI, and k be fixed. Then the following
are equivalent.

There is a similar game for the infinitary logic L(£Qω which does not seem to have
a widely accepted name, but it is sometimes called the eternal game. Again,
it is played by two players on two graphs GO and GI, and there are two sets
of pebbles numbered ! , . . . , & . The first k rounds are played exactly like the k-
round Ehrenfeucht- Fraϊsse game, but after that, it may continue indefinitely. In
succeeding rounds, player I moves a pebble to some (possibly the same) vertex
in the same graph. Then player II responds by moving the other pebble with
the same number to some vertex in the other graph. The game ends and player
I wins if, after any round, the mapping αoj •->• a\ j for j = 1, . . . , k is not an
isomorphism.

Definition 6. Let GO and GI be two graphs and k £ ω.
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l GQ ^£0 GI if and only if player II has a winning strategy for the fc-pebble
eternal game on GO and GI. That is, no matter how player I moves, player
II can always respond so that the game continues.

2. GO Ξ^ GI if and only if GO and GI satisfy the same sentences in L^.

Again, ~£o and Ξ^ are the same equivalence relations.

Theorem? Barwise [3], Let GO, GI, and k be fixed. Then the following are
equivalent.

2. G o = * > G ι .

The original proofs of the first-order 0-1 law for a = 0 by Fagin and Glebskiϊ
et al. did not rely on pebble games. But the Ehrenfeucht-Fraϊsse game provides
a simpler proof by showing that, for every Ar, almost all graphs belong to the
same ~fe class. Therefore by Theorem 5, every sentence is almost always false
or almost always true. We shall not present it here because the L^ω 0-1 law
for a — 0 by Kolaitis and Vardi follows from essentially the same proof using
the eternal game instead of the Ehrenfeucht-Fraϊsse game. That is, we show that
almost all graphs belong to the same ^^ class. This equivalence class has a very
simple axiomatization. We say a graph is Ar-extendible if it has at least k — I
vertices and, for every set of k — I vertices, every possible one- vertex extension is
realized. In other words, it satisfies the following finite set of first-order axioms:

f\ u

Λ x ίxl\ χιψ x j

Λ E(xjty)* Λ

The proof of the L<£oω 0-1 law for a = 0 is finished by showing:

1. GO ~£Q GI for any two fc-extendible graphs.
2. Almost all graphs are &-extendible.

Both parts have elementary proofs. Part 1. follows because the extension axioms
(1) state that player II can always match any move of player I. To prove Part
2., let 0j, j = 0 , . . . , k — 1, enumerate the extension axioms, where the j is as in
(1). Then, letting p(n) = 0 be the edge probability,

, sk-l ^ ^ /k-l

k-l
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Since 0 < β < 1, there is some 6 < 1 such that βj(1 - 0)k~^~l < b for all
j = 0, . . . ,*- 1. Then

-k-l

-k + 1

—> 0 as 7i —)• oo .

Note that this also yields a rate estimate. Letting c — Vb, knk~1bn~k+l < cn

for sufficiently large n, so

pr(σ, n) < cn, or

pr(σ,n) > 1 - cn .

A slight generalization of the proof shows that when a = 0, £^ω almost
surely collapses to first-order logic. That is, for every formula σ(#ι,.. . , £ / ) G
L^oun there is a first-order formula σ'(xι,...,#/) such that

) - 1 . (2)

To construct σ', let 71(2:1,. . . , £ / ) , . . ,7d(#ι,. ,#/) be an enumeration of the
quantifier-free formulas that describe the possible isomorphism types of / (not
necessarily distinct) vertices. For i = 1 , . . . , d, let

k-l

φi(xι,...,xι] = 7 i ( a ? i , . . . , X f ) Λ f\ ΘJ .
j=0

Then, as in 1. above, each first-order formula φi defines an Ξ^ class d of /-
tuples, and, as in 2., for almost all graphs, every /-tuple belongs to some C, . In
fact, the probability of not belonging to some C{ is less than cn for some c < 1.
(Note that we have just proven the claims of Abiteboul, Compton, and Vianu
mentioned earlier.) Since each d is an Ξ^-class of /-tuples, either

1. for every graph G and vertices α i , . . . , α/ in G,
( α ι , . . . , α / ) G Ci => G \= σ ( α ι , . . . , α/), or

2. for every graph G and vertices α i , . . . , α/ in G,
(αi , . , α / ) G Gj => G (= - σ ( α ι , . . . , α / ) .

Let 7 be the set of i such that a. holds, and σ' — Vie/ ^ i- Equation (2) now
follows.

Player IΓs strategy in the case a = 0 is the simplest possible. He just imitates
player Γs move without regard to any future moves. But this does not work for
nonzero α because there are some moves that are "hard to imitate". This is
true even for the first-order Ehrenfeucht-Fraϊsse game. For example, take the
case when 1 > a > | and k > 3. Suppose, as illustrated below, player I places
the third pebble on 03 in one of the graphs, where 03 is adjacent to αi but not
to 02- This is an easy move to imitate, because almost surely, for every two
vertices in the random graph, there is a third vertex adjacent to exactly one
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of them. However, if player I had chosen 0,3 adjacent to both a\ and 02, then
player II will probably lose because almost surely, the random graph contains
only O(n3~2α) = o(n2) pairs of vertices with a common neighbor.

Easy Hard

Thus player II must look ahead to possible future moves. But it is not suf-
ficient to look ahead only one move. In the fourth round, if player I chooses a
new vertex adjacent to a\ and 02, it is again unlikely that player II can match
this move. There is, however, a probabilistic upper bound on the number of such
vertices. Almost surely, there is no pair of vertices with more than 2/(2α — 1)
common neighbors. More generally, there is a probabilistic upper bound on the
number of hard moves that player II must consider, and this makes a winning
strategy possible.

The notions of hard moves and looking ahead were formalized by Shelah and
Spencer in their proof of the first-order 0-1 law for 1 > α > 0 and irrational.
The full proof is much longer than the previous proof of the 0-1 law for L<^Qωί

and we will only sketch the highlights.

Definitions. We will use the convention that if (V, E) is a graph, and W C V,
then (W, E) is the graph (W,E\W).

1. (V, E, c i , . . . , c, ) is a rooted graph if (V, E) is a graph, and GI , . . . , c, £ V.
We also say (V,E,R) is a rooted graph when R C V, and the order of the
vertices in R is immaterial.

2. The weight of (V, E, R), ζ((V, E, R)), is \V-R\-a\E-E\ R\.
3. (V, E, R) is dense if ζ((V, E, R)) < 0.

4. (V,E,R) is rigid if (V, E, S) is dense for every set of vertices 5 such that
R C S C V. By convention, we will say that (Λ, E, R) is rigid.

Note that, since a is irrational, the weight of a rooted graph cannot be 0 unless
V = R.

Lemma 9. // (V, E, R) and (W, E, R) are rigid, then so is (V U W, E, R).
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Definition 10. For a rooted graph (V, E, R), Rig((V, E, R)) is the maximal set
S such that R C S C. V and (S,E,R) is rigid. Note that by Lemma 9, 5 is
unique.

The closure operator Cl in the next definition captures the notion of how far
ahead player II must look when there are j moves left in the game.

Dennitionll. Let G- (V,E). For ij £ω and α ι , . . . , α t G V,
CP (G] α i , . . . , α;) is defined by induction on j.

Cl°(G;αι, . . . ,α, ) = ( { α i , . . . , α;}, E1, α i , . . .,α, } for all i G ω .

Assume CP has been defined for all i G ω. Fixing i and a\,..., αz G V, for all
ai+l G V, let

C P ( G ; α ι l . . . l α f +ι) = {^(α < + ι ) , J B,α l j . . . ,α f + 1 >,and

5(αί+ι) = Ri^

Then

Lemma 12. For ewery i,j G w, ί/ϊβre 25 ra 5wc/ϊ ί/zαί

p r ( V α ι . . . V α i G G(|CF(G; αi, . . . , α<)| < m),n) -> 1

as n — > oo.

Because of the preceding lemma, for every Ar, there is some ra such that with
probability asymptotic to 1, for all i < k,

Vαi . . . Vα f G G(|C1*-''(G; αi, . . . , α<)| < m) .

Therefore, the following can be expressed as a finite set of first-order axioms,
where i = 0, . . . , k — 1:

Vxi . . . V x j (

for any graph H = (W, F) and c\ , . . . , c, +ι G M^ such that

We say that a graph is (α, fc)-extendible if it satisfies all these axioms. The proof
of the first-order 0-1 law for irrational α is completed by showing:

1. GO ~fc GI for any two (α, &)-extendible graphs.
2. Almost all graphs are (α, Ar)-extendible.
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The proof of the TCL 0-1 law for irrational α uses many of the concepts
from the proof of the first-order 0-1 law. In essence, it shows that for almost all
graphs, the transitive closure operation stops growing after a bounded number
of steps. This happens in two ways: either its growth rate is so rapid that it
absorbs all the tuples that it can very quickly, or its growth rate slows down
until it stops absorbing new tuples. This is a generalization of the fact that, in
a random graph with edge probability n~α, if a < 1, then every pair of vertices
is joined by a path of length [1/(1 — or)], but if α > 1, then there is no path of
length greater than l/(α - 1).

Definition 13. Let σ(x, y, ~z) be a first-order formula in the language of graphs
whose free variables are

~x = a?ι, . . . , #2,

where i, j > 0. Let G = (V, E) be a graph and a = aι , . . . , αt G V .

1. TC(G,σ,α) is the transitive closure of {(6,_c) G V2j : G \= σ(α,6,c)}.
2. An α-link is a rigid rooted graph (W, F, ά, 6, c) where 6, c G V^ .
3. An α-chain of length / is a sequence of α-links ((Wk, Fk, ά, 6/c, Έk) : I < k < I)

such that bk+i = ~Ck for 1 < k < / and for all u, v G Wh Π Wk (1 < h, k < /),
^(w, ι;) if and only if Fk(u, v). We say the chain connects 61 to Q".

Lemma 14. There is a finite set of ά-ίinks S such that for almost all graphs
G = (V, E), for all a G Vi andl,c G Vj , G \= σ(ά, 6, c) if and only if there is
W C V such that (W,E \ W,α,6,c) G S.

Lemma 15. For almost all graphs G — (V, E), for all a G V* and b,c G V^ ,
(6, c) G TC(G, σ, a) if and only if there is an ά-chain connecting btoc with links
in S.

Here is the main lemma.

Lemma 16. There js a constant m such that for almost all graphs G = (V, E],
for all a G Vi and 6, c G VJ ', if (6, c) G TC(G, σ, α); then there is an a-chain of
length at most m connecting b to c with links in S.

A consequence of this lemma and the finiteness of S is that almost surely TCL
collapses to first-order logic when a < I is irrational. The 0-1 law for TCL in
this case is an immediate consequence of the 0-1 law for first-order logic.

The proof of the first-order convergence law at the threshold a — I will
not be covered here, since it is quite involved. It has many similarities to the
convergence law for unary functions [17] mentioned earlier. Some flavor of the
proof can be obtained from a sketch of the L^ω convergence law for α = (/+!)//.
Thus we will finish our outline of 0-1 and convergence proofs by moving to the
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region a > 1, i.e., the region of very sparse random graphs. In fact, we will
outline a stronger result for all p(n) — n~α, a > 1: for every σ £ L^, either

pr(σ, n) < 2~n<i for some d > 0, or (3)

pr(σ, n) ~ cn~d for some c > 0, d > 0 . (4)

If we take f ( n ) ~ n~°° to mean /(n) < n~d for all d > 0, then the conclusion
implies pr(σ, n) ~ cn~d for some c £ (0,oo), d £ [0,oo]. This kind of rate
estimate is known as a power law in physics and engineering. When a > 1 but
not of the form (/-hi)//, the proof of the rate estimate shows that if d = 0, then
c = 1. Thus the 0-1 law holds in this case.

When a > 1, no version of extension axioms seems applicable. Instead, we
use a theorem of Kolaitis which states that for each /?, the Ξ^ class of a graph
is determined by counting how many components it has in each Ξ^ class. In the
following, C E G means that C is a component of G.

Theorem 17 Kolaitis [14], Let Go and GI be two graphs such that for every
connected graph C, either

K /^i i— /^t . /~ι —k s^i \ I I f /~ι I— /~f . /~ι —k /^ 1 I \. L
GO L GO ί-Ό =00 ^ J h l l ^ l b r ^ l ^l —oo ^ J I ί *

or
|{ Go C Go : Go =So G }| = |{ GI C Gi : GI Ξ^ C }| .

Then Go =*, GI.

We will actually use a weaker version of this result.

Corollary 18 Let GO and GI be two graphs such that for every connected graph
C, either

|{ Co C Go : Co S C}|, |{ CΊ C d : CΊ S C7}| > fc

or
I { CO C GO GO — G } I — I { GI C GI : GI — C } I .

Then Go =^ GI.

We will use GO =A GI to mean the condition in the Corollary is satisfied by GO
and GI . Thus =k is a refinement of Ξ^.

We will categorize connected graphs in three ways:

(I) Trees with υ vertices, v < a/(a — 1).
(II) Trees with υ vertices, v = a/(a — 1).
(III) Connected graphs with v vertices and e edges, v — ae < 0.

To see that these three classes partition the set of connected graphs, consider
any connected graph that is not of type (I) or (II). If it is not a tree then v < e,
which implies v — ae < 0 since a > 1. If it is a tree, then v > a/(a — 1) and
e = v — 1, again implying v — ae < 0. Conversely, similar calculations show that
any connected graph of type (III) is not of type (I) or (II).

The proof consists of three cases. Let σ £ Lk

yoω.
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Case 1. For every graph G such that G |= σ, there is some tree T of type (I)
such that G has less than k components isomorphic to T.

Case 2. Not Case 1, and a/(a — 1) is not an integer.
Case 3. Not Case 1, and a/(a — 1) is an integer.

Case 1. has probability < 2~n for some d > 0. Combined with Corollary 18,
(3) follows. In Case 2., the existence of components of type (III) has probability
~ cn~d for some c > 0, d > 0, which implies (4). Further, if d = 0 it can be
shown that c = 1, i.e., the 0-1 law holds. Lastly, in Case 3., the existence of
components of type (II) has a Poisson distribution, which also implies (4), but
here d — 0 and c ̂  I is possible, as we show next.

We conclude with an example of the kinds of computations used to derive
asymptotic probabilities in Case 3. They rely on sieve methods that are gener-
alizations of Ch. Jordan's formula and Bonferroni's inequalities. These formulas
may be found in Bollobas [5]; their generalizations are explained in detail in
Lynch [17]. As previously mentioned, similar computations are needed when
a = 1, but they are considerably more complicated. Let a = —5/4, and consider
the property that the graph has exactly 3 components isomorphic to the tree (a)
below and at least 7 components isomorphic to the 5-path (b).

•

(a) (b)

The probability of this property is

24

3!(β-3)!

3!
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4 Future Directions
As Table 1. shows, there is a complete classification of convergence laws for the
four logics according to the value of α. Future research is likely to be concerned
with subtler questions. For example, in our analysis, we ignored the value of β
in the edge probability /3n~a. This was because it did not affect the existence
of 0-1 or convergence laws as long as it was strictly between 0 and 1. It has long
been known, however, that the asymptotic probability of particular properties
can be strongly affected by β. For example, in an early paper Erdos and Renyi
[9] showed that for α = 1, if β < 1, then the random graph is almost surely
planar, but if β > 1, then it is almost surely nonplanar. It is not known whether
planarity is expressible in Li£oω, but the property that all components have at
most one cycle is expressible in TCL, and it is almost surely false when β < 1
but almost surely true when β > 1. A metatheorem characterizing properties
that have thresholds involving β would be of great interest to random graph
theorists.

Other forms of edge probability should be studied. An important one is
/?nlog2n. When β < 1, the random graph is almost surely not connected, but
when β > 1, it is almost surely connected. As we saw earlier, connectedness is
expressible in TCL.

The original motivation of Fagin and Glebskiϊ et al. in studying 0-1 laws was
to find limitations on the expressive power of logics. The general idea would
be to establish a 0-1 law or convergence law for some logic £, and then show
that some property violates the law, and is therefore not expressible in C. Po-
tential benefits could be lower bounds in computational complexity. That is, if
C captures some complexity class, this would show that the property is not in
this class. The fond hope that this approach will eventually produce significant
inexpressibility results may not be unreasonable. A recent article by Rosen, She-
lah, and Weinstein [25] uses the methods described in Section 3 to prove that
certain graph properties are not definable as infinitary disjunctions of first-order
existential sentences that involve only a finite number of variables.

On the pessimistic side, it seems that any logic that is powerful enough to
capture a complexity class is also too strong to obey a convergence law. For
example, many of these logics have a symbol <, which is interpreted on n in
the standard way, and the presence of a linear ordering is enough to destroy the
convergence law. We have seen that random graphs have 0-1 and convergence
laws for many edge probabilities of the form βn~a. But Compton, Henson, and
Shelah [6] showed that when < is added as a new relation, the convergence
law fails for constant edge probabilities, and Dolan and Lynch [7] showed that
convergence fails for any edge probability p(n) as long as p(n)n2 and (1 — p(n))n2

are bounded below by some unbounded recursive function. A phenomenon that
several researchers have started to investigate is slow variation. This happens
when I pr(σ, n) — pr(σ, n + 1)| is asymptotic to 0 for every σ G C. In at least
some of the cases where the convergence law fails, including random graphs with
constant edge probability and the < relation, the slow variation law holds (Shelah
[26]). Perhaps this is the kind of behavior that will serve as a discriminator of
complexity classes.
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