
Combinatorial Principles from Adding Cohen
Reals *

I. Juhasz

Mathematical Institute of the Hungarian Academy of Sciences
Budapest, Hungary

juhasz@math-inst.hu

L. Soukup **

Mathematical Institute of the Hungarian Academy of Sciences
Budapest, Hungary

soukup@math-inst.hu

Z. Szentmiklόssy

Department of Analysis
Eόtvόs Lor and University

Budapest, Hungary
szentmiklossy@math-inst.hu

Abstract. We first formulate several "combinatorial principles" con-
cerning K x ω matrices of subsets of ω and prove that they are valid in
the generic extension obtained by adding any number of Cohen reals to
any ground model V, provided that the parameter K is an ω-inaccessible
regular cardinal in V.
Then in section 4 we present a large number of applications of these
principles, mainly to topology. Some of these consequences had been
established earlier in generic extensions obtained by adding ω? Cohen
reals to ground models satisfying CH, mostly for the case K = ω^.

1 Introduction

The last 25 years have seen a furious activity in proving results that are inde-
pendent of the usual axioms of set theory, that is ZFC. As the methods of these
independence proofs (e.g. forcing or the fine structure theory of the constructible
universe) are often rather sophisticated, while the results themselves are usually
of interest to "ordinary" mathematicians (e.g. topologists or analysts), it has
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been natural to try to isolate a relatively small number of principles, i.e. in-
dependent statements that a) are simple to formulate and b) are useful in the
sense that they have many interesting consequences. Most of these statements,
we think by necessity, are of combinatorial nature, hence they have been called
combinatorial principles.

In this paper we propose to present several new combinatorial principles that
are all statements about P(ω), the power set of the natural numbers. In fact, they
all concern matrices of the form (A(a,n] : (α,n) £ K, x ω), where A(a,n) C ω
for each (α, n) £ K x ω, and, in the interesting cases, K is a regular cardinal with
c = 2ω > κ>ωι.

We show that these statements are valid in the generic extensions obtained
by adding any number of Cohen reals to any ground model V, assuming that
the parameter K is a regular and u -inaccessible cardinal in V ( i.e. λ < K implies
\ω < K).

Then we present a large number of consequences of these principles, some of
them combinatorial b u t most of them topological, mainly concerning separable
and/or countably t ight topological spaces. (This, of course, is not surprising
because these are objects whose structure depends basically on P(ω).)

The above formulated criteria a) and b) as to what constitutes a combina-
torial principle are often contrary to each other: for more usefulness one often
has to sacrifice some simplicity. It is not clear whether an ideal balance exists
between them. It is up to the reader to judge if we have come close to this
balance.

We would like to express our thanks to the referees for the careful reading of
the manuscript and ίbt the numerous valuable suggestions.

2 The combinatorial principles

The principles we formulate here are all statements on K x ω matrices of sub-
sets of ω claiming - roughly speaking - that all these matrices contain large
"submatrices" satisfying certain homogeneity properties.

To simplify the formulation of our results we introduce the following pieces
of notation. If 5 is an arbitrary set and k is a natural number then let

(S)k = {seSk :

and

(S)<"= \J(S)k.
k<ω

For A), . . . , A;_ι C ,S' we let

(Do, . . . , Dk-ι) = {s e (S)k : Vi E k (s(i) G D;)}.

Definition 1. If S is a set of ordinals denote by M(S) the family of all S x ω-
matrices of subsets of u;, that is, A £ M(S) if and only if

A= (A(θL,ί) :aeS,i <ω),
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where A(a, i) C ω for each a G 5 and i < ω. If

A = ( A ( ( \ , i ) : α G S, * < u>) G M(S)

and R C S we define the restriction of A to R, A \ R in the straightforward way:

A= (A(<\<i) :a£S,i<ω} G M(S),

t G ω<ω and s G (S)1*' then wo let

Now we formulate our first and probably most important principle that we
call Cs(κ). We also specify a weaker version of Cs(κ) denoted by C(κ) because
in most of the applications (28, 30, 38, 41, 45, 51 ) we don't need the full power
ofC"(«).

Definition2. For T C ω<ω a matrix A - (A(a,i) : α G 5, i G ω) G M(S) is
called T-adic if for each t G T and s G (S)1*1 we have A(s,t) φ 0.

Definitions. For K — cf(κ) > ω principle Cs(κ) (C(κ)) is the following state-
ment:
For every T C ω<ω and A G M(κ) we have (1) or (2) below:

(1) there is a stationary (cofinal) set S C K such that A \ S is T-adic,
(2) there are t G T and stationary (cofinal) subsets DQ, DI, . . . , D|t|-ι of /c such

that for every 5 G (£^θι D\t\-ι) we have

Next we formulate a dual version of principles Cs (K) and C(κ). Although
we don't yet know any application of principles Cs(κ) and C(/c), for the sake
of completeness we include their definitions here. Let us remark that we don't
know whether Cs(κ) (C(κ)) implies Cs(κ) (C(κ)) or vice versa.

Definition4. If K = cf(/c) > ω, then principle Cs(κ) (C(κ)) is the following
statement:
For every T C ω<ω and A G M(κ) we have (1) or (2) below:

(1) there is a stationary (cofinal ) set S C ft such that for each t G T and 5 G

(2) there are t G T and stationary (cofinal) subsets DO, DI, . . . , Ό|ί|-ι of K such
that for every s G (£)o5 ^|ί|-ι) we have

\A(s,t)\=ω.
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Let us remark that, in the "plain" dual of principle Cs(κ) we should have
\A(s,t)\ = 0 in 4(1) and \A(s,t)\ ± 0 in 4(2), but this "principle" is easily
provable in ZFC.

The principles D(κ) and Ds (AC) that we introduce next easily follow from C(κ)
and C S (AC), respectively, but as their formulation is much simpler, we thought it
to be worth while to have them as separate principles. We first give two auxiliary
definitions.

Definitions. If A — (A(a, i) : α < AC, i < ω) £ M(κ), then we set

A = {Y C ω : |{α < AC : 3i < ω A(a, i) C Y}\ - K]

and

A2 = {Y C ω : {a < K : 3i < ω A(a, i) C Y} is stationary in AC}.

Now we can formulate Ds (K} (D(κ)) as follows.

DefinitionG. For Λ: = cf(Ac) > ω principle Ds(κ] (D(κ)) is the following state-
ment:
If A £ M(κ) and A' (A] is centered then there is a stationary (cofinal) set
S C K such that A \ S is ω<ω-a.dic.

Theorem?. Cs(κ) (C f(/c)) implies Ds(K) (D(κ)).

Proof. We give the proof only for Ds (AC) because the same argument works for
£>(«).

Let A G M(κ) so that A2 is centered and put T - ω<ω. By Cs(κ) either
3(1) or 3(2) holds.

If 5 C K witnesses 3(1) for our T then A \ S is clearly ω<ω-adic. So it is
enough to show that 3(2) can not hold.

Assume, on the contrary, that there are t £ T — ω<ω and stationary subsets
DO, .Di, . . . , D\t\-\ of AC such that for each s £ ( D o , . . . , D\t\_ι) we have

A(M) = 0. (+)

We can obviously assume that the sets Di are pairwise disjoint. Let

Xi=\J{A(δ,t(i)):δeDi}

for every i < \t\. Then clearly X{ £ A2 for every i < |*|, while (+) implies
p| Xi = 0, contradicting that A2 is centered.

i<fc

Definitions. If AC = cf(«) > cj, then principle F s ( κ ) (F(κ)) is the following
statement:
For every T C ω<ω and >l £ Λ^(AC) (1) or (2) below holds:

(1) there is a stationary (cofinal) set S C AC such that

\ { A ( 8 , t ) :teT audse (S)ltl}\<ω.
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(2) there are t G T and stationary (cofinal) subsets DO, DI, . . . , D|t|-ι of K such
that if SQ,SI G (Do, . . . , U\t.\-ι) with s o ( i ) φ s \ ( ϊ ] for each i < \t\ then we
have

Clearly, i f / , D0, ... ,D\t\-ι satisfy (2) then

There is a surprising connection between these principles and the dual ver-
sions Cs(κ) ( C ( κ ) ) o f C s ( κ ) ( C ( κ ) ) , respectively.

Theorem9. Fs(κ) (F(κ)) implies Cs (K) ( C ( κ ) ) .

Proof. Let A G M(κ) and T C ω<ω and apply Fs(κ) to A and T. Assume first
that there is a stationary set ,S' C ft such that the family

is countable.
Now for teT,i< \t\ and 7 G Z Π [u;]" set

) = { α G S : A ( α , φ )) D 7}.

If for some tf G T and 7 G Ί, Π [α/']α the set D(I ,t, ϊ) is stationary for each i <
then this t and the sets £ > ( / , / , 0), . . ., £>(/,/, | ΐ | - 1) witness 4(2).

So we can assume that for all t £ T and / E ί Π [α;]ω the set

6(7, ί) = {?' < |/ 1 : D(/,/, i) is non-stationary in «}

is not empty. Then the set

D = \J{D(Lί, i) : / eln[ω]ω,t G T, i G 6(7, <)}

is not stationary and so 5' = S \ D is stationary. We claim that 5' witnesses
4(1). Assume on the contrary that t £ T, 5 G (S")'*' and 7 = >l(s,ί) is infinite.
Then 7 G ΪΠ [α;]w and 5(7) G D(I,t,i) for each i < |ί|. Since s(i) £ D it
follows that D(7,ί,z) is stationary for each ?' < |/|, that is, 6(7, t) = 0, which is
a contradiction.

Assume now that there are i G T and stationary subsets DO, DI, . . . , Dμj-i
of K; such that if SQ, si G (Do, . . . , D\t\_ι) with SQ(Z) φ sι(i] for each i < | t f | then

We show that in this case again 4(2) holds. Indeed, for each 7 G [ω] ω pick
si G (Do, .,7}μ|_ι) such tha i v4(s/,ί) = 7 provided that there is such an s.

Let Λ = UMO : I € H < α \« < |ί|} and DJ = A \ Λ for i < |ί|. Now if

s G (Do, . . . , ̂ ftι i) then for any 7 G [ω] ω we have s/(i) ^ s(i) for each i < \t\,

hence 7 = A ( S I , t) -φ. A(s, t ) . As 7 was an arbitrary element of [ω~\ ω we conclude

that A s , * = ω.
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The following observation is almost trivial.

Proposition 10. // /,• = cf(κ) > c then Cs(κ) and Fs(κ) are valid.

Proof. Indeed, given A E M(κ) and T C ω<ω there is a stationary set S C «
such that for any a,β G S and n G ω we have A(a,n) = A(β,n). Then 5
witnesses 8(1) and so principle Fs(κ) holds. If S does not witness 3(1) then for
some t = (n0, . . . , ??A:- i ) G T we have p| Ant = 0. Thus t and D0 = D\ = - =

»<fc
D fc_! = 5 witness 3(2).

As was mentioned in section 1, our principles are of interest only for K > ω\.
In fact, for AC = ω\, they are all false!

To see that D(ω\] (so also C(ω\}) is false we may recall that in [7] we have
constructed, in ZFC, a separable, first countable P<ω space X of size ω\. (A
Hausdorff space X is called P<u, if the intersection of finitely many uncountable
open subsets of X is always non-empty.) We can assume that the underlying set
of X is ω\ and ω is dense in X. For each a < ωι let {{/(α,n) : n < ω} be a
neighbourhood base of α in X . Now consider the u i x u -matrix

,4 — (ί/(α, n) Πcj : α < u>ι, n < u;} .

Then jB G .4 if and only if there is an uncountable open set U C X such that
U Γ\ω C B. Since Λ' is a. P<ω space it follows that A is centered. But the space
X is Hausdorff, so there is not even a two element subset 5 of X such that A \ S
is u><ω-adic.

To show that F(ω\ ) (and so also C(ωι)) is false we need the following obser-
vation.

Theorem 11. There /'.s a subfamily A = {Aa : a < ωι} of [ω]ω such that

for any n E ω and /o, . . .,/n-ι E [^i]^1 there are ji,S{ £ 7, /or i < n with
P|{Aγt : i < n} is infinite but AS, Π A^ 25 /znzίe for any i < j < n.

Proof. The proof is based on two lemmas which are probably well-known.

Lemma 12. There is a function f : [ω\] — >• 2 such that for any n E ω and

/o, . . .,/n-ι G [^i]"' there are 7, ,ίt G /ι /or i < n swc/i that /(7<,7j) = 0 and
/(ίi , ίj) = 1 for each i φ j < n.

Proof. We show that the Sierpienski coloring has this property. So let {ra :
a < ωι} be pairwise different real numbers and for α < β < ω\ put /(α,/?) =
0 iff ra < rβ. Given n E ω and /0,...,/n-ι G [ωi]"1 let x, be a complete
accumulation point of A; = {rα : α £ /<} with ar^ ^έ Xj for i < j < n. We may
assume that XQ < «ι < < »n-ι So there are I £ [/i]^1 for i < n such that
if A( = {rα : α G /7 } then v4 <β A^ whenever i < j < n. Now pick first 70 G /J,
then7ι G /i\(7o-|-l), then 72 G /2\*(7ι + l) and so on. Then we have /(7i,7j) = 0
for each i < j < n. Next we pick On_ι G /ή-ι> then ^n-2 G /£_2 \^n-ι, then
δn-3 G /ή_3 \ ίn-2 3iicl so on. Then we have /(ί, , Sj) = 1 for i < j < n.
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A family X C P(ωι) is called downwards closed if P(I) C X for each / G Z.

Given a family A - {Aa : a < ωλ} C P(ω) and /, J G [ωι]<ω, let

Clearly, if A C P(ω) then {/ G [^i]u ; : |^4[/]| = ω} is downward closed. Our
next result is a converse of this statement.

Lemma 13. If X C [u>ι] is downwards closed then there is a family A =
{Aa : a < ωι} of subsets of ω such that

X = {/ G [uι]<ω : A[I] is infinite}. (f)

Proof. For a < ωι write Ia = I Π [α + l] <α"'.
We will define Aα C ω by induction on a < ω\ so as to satisfy the following

inductive hypotheses (\)a which is stronger than (f) restricted to α:

Jα = {/ G [α + 1] <α' : V J G [α \ /] <ω A[I, J] is infinite.) (Jβ)

The induction uses the following elementary fact.

Fact 14 IfB andT> are countable subfamilies of [ω]ω such that no element of B
is covered by the union of finitely many elements ofD then there is a set X C ω
such that

(i) B Π X is infinite for each B G B,
(ii) B\X is infinite for each B G B,

(iii) D Π X is finite for each D G T>.

Now, if Aβ has been defined and ({^) holds for all /? < a then let

β = {A[I, J] : / G L, J E [α]<ω Λ / Π J = 0),

V = { A [ I , J ] : I E [a]<ω\Ia,Je [a]<ω Λ / Π J - 0}

and apply fact 14 to get Aa. It is easy to check that (ία) will be satisfied.

To get a family A satisfying the requirements of theorem 11 take the function

/ given by lemma 12 and apply lemma 13 to J = {/ G [uι]<ω : /"/ C {0}}.

Theorem 11 yields immediately the following corollary:

Corollary 15. There is a family A — {Aa : a < ωι} such that

A = {Y C ω : |{α < ωl : Aa C Y}\ = ωι]

is centered but for no S G [u^]" ' is {Aa : a G S} linked.
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Let us remark that if A is almost disjoint then A is centered if and only if
A is a strong Luzin gap (i.e. there is no partition of ω into finitely many pieces
such that each piece is almost disjoint to uncountably many elements of A). If
Mλωι holds, then there is no strong Luzin gap (see [7, Theorem 3.2]), so in ZFC
one can not construct an almost disjoint family A satisfying the requirements of
corollary 15.

The family A of 15 can be used to give counterexamples to both D(u>ι) and
C(u ι), in fact via the same matrix in M(ωι).

Corollary 16. C(ω\) (and so F(ω\) too) and D(ω\) are both false.

Proof. Consider the family A = {Λa : a < ωι} given by 15. Put T = ω<ω and
A(a, i) = Λa for each rv < ω\ and i < ω. Then neither 4(1) nor 4(2) can hold for
A — (A(a,ϊ) : α < ω\ , / < ω) and T. Moreover, the matrix A clearly contradicts

3 Consistency of the principles in the Cohen model.

A cardinal K is ω --inaccessible if \ω < K holds for each λ < /c. Given any infinite
set / we denote by Cj the poset Fn(7, 2,ω), i.e. the standard one adding |/|-many
Cohen reals.

In this section we prove that if AC is a regular ω-inaccessible cardinal in some
ground model V and we add λ-many Cohen reals to V, where λ is an arbitrary
cardinal, then in the extension the principles Cs(κ), Cs (K) and Fs(κ) are all
satisfied. As we remarked in section 2 above the case K > λ is trivial, while the
case K < λ can be reduced to the case K — λ.

Since the proof of the latter is long and technical, we first sketch the main
idea. So let us be given a matrix A £ M(κ) and a set T C ω<ω in V[G], where
G is CΛ-generic over V . In the first part of the proof we find a set / £ [ κ ] ω and
a stationary set 5 C /; such that in V[G \ I] the sequences (A(a, i) : i < ω) for
α £ S have also pair wise isomorphic names with disjoint supports (contained
in K \ /). This reduction, carried out in lemma 22, will be the place where we
use that K is regular and ω-inaccessible in V. In the second part of the proof,
using slightly different arguments for Cs(κ) and for F5(/c), we show that if some
A £ M(S) has names with these properties then either 5 witnesses 3(1) (or 8(1),
respectively) or some stationary sets Di C S witness 3(2) (or 8(2), respectively).
In this second step we don't use that AC is ω-inaccessible or regular.

In our forcing arguments we follow the notation of Kunen [11]. Let us first
recall definition [11, 5.11].

Definition 17. A C/-name B of a subset of some ordinal μ is called nice if for
each v < μ there is an antichain B^ C Cj such that

B = {(/>,//> :vζμΛp€B,,} = \J{Bl, x {ι>} : v G μ}.

We let supp(B) = U{dom(p) : p G U BΛ
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It is well-known (see e.g. lemma [11, 5.12]) that every set of ordinals in V[G]
has a nice name in V.

If φ is a bijection between two sets / and J then φ lifts to a natural isomor-
phism between C/ and Cj, which will be also denoted by φ, as follows: for p £ Cj
let dom(φ(p)) = φ" dom(p) and φ(p)(φ(ζ)) = p(ζ) Moreover φ also generates a
bijection between the nice C/-na,mes and the nice Cj-names (see [11, 7.12]): if B

is a nice C/-name then let φ(B) ~ {(φ(p),ξ} ' (Piw ^ &}• If I an<^ J are se^s

of ordinals with the same order type then φ^j is the natural order-preserving
bijection from / onto J.

Definition 18. Assume /, J C «, moreover A, and BI are nice Cκ-names of
subsets of ω for i < α;, such that supp(yiz ) C / and supp(βj) C J. We say that

the structures of names ί /, A, : / < uΛ and (j,B{ : i < uΛ are ίiϋms if / and J

have the same order type and for the order preserving bijection φij we have

(1) φι}j is the identity on / Π ,/,

(2) φιj(Ai) = Bi for each / < ω.

Definition 19. Assume that / C AC, G is a C^-generic filter over V and H =
G \ I. If B is a nice C^-name of a subset of some ordinal μ we define in V[H] the
Cκ\j name πH (B) as follows:

π*(B) = {(p\ κ\I,ί>) :(p,v)€BΛP\l€ H}.

Lemma 20. πH (B) is a nice Cκ\j-name in V[H] and

supp(πH(B))Csupp(B)\I,

moreover
val(5, G).

Proof. Straightforward from the construction.

Definition 21. Assume that ,Sf C K. A matrix B = (B(a,i) : a £ 5, i < uΛ of

nice CΛ-names of subsets of ω is called a nice S-matrix if conditions (i) and (ii)
below hold:

(i) putting Ja = \Ji<ω supp(/?(rv, i)) the sets { Jα : α G 5} are pairwise disjoint,

(ii) the structures of names {( Λn 5(α, z) : ?' < uΛ : α G 5} are pairwise twins.

We denote by λf(S) the family of nice S-matrices.

Lemma 22. (Reduction lemma) Assume that K is a regular, ω -inaccessible
cardinal, G is Cκ-generic over V and A E M(κ) in V[G]. Then there are a
countable set I C K and a stationary set S C K in V such that, in V[G\ I],
there is B£λf(S) satisfying V[G] (= "A(a,ι) = val(5(α, i), G\ («\/)) ;; for each
a G S and i £ ω.
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Proof. Assume that

IcJH- "A =

We can assume that all the names A(i, a) are nice. Let Ia = U*<ω supp(Λ(α, 0)
We need a strong version of Erdδs-Rado Z\-system theorem saying that there

is a stationary set T C K such that {/α : α £ T) forms a zi-system with some
kernel /, moreover sup 7 < min/α \ / for each α £ T. Although this statement
is well-known we present a proof because we could not find any reference to it.

Erdδs-Rado Theorem // K is an ω -inaccessible regular cardinal and X —
{Xa : a < K} is a family of countable sets then there is a stationary set I C K
such that {Xa : a £ /) forms a Δ- system.

Proof. Since | U A\ < /»• we can assume that Xa C «. Let J — {a < K : cf (α) =
u>ι}. Define the function / : J — >• K by the stipulation f ( a ) — sup(Xα Π α).
Since Xa is countable and cf(α) = ω\ we have f ( a ) < α, i.e. the function / is
regressive on the stationary set J. So by the Fodor lemma, / is constant on a
stationary set K C J Say f"K — {z/}. For α £ K let h(a) = Xa Π v. Since
v < K it follows that the range of h is of size \v\ω < K. But K is stationary, so
there is a stationary M C K such that h is constant on M, say h" M — {A}.

For α £ K let #(α) = supXα. Then the set

C = {β < K : ̂  (7) < β for each 7 < /?}

is club in /c. Let / = A/ Π C. We show that {Xa a G /} forms a ^-system with
kernel A. Let α , / ? £ 7, α < /?. Then Xan^ = (XαΠ^Π^JUίXαΠ^V/?).

But (Xβ Γ(β) = A and so (Xa Γ } ( X β Γ \ β ) ) = A. Since β € C it follows that
#(α) < /?, i.e. Xα C /^ and so (Xα Π (X^ \ β) = 0. Putting together these two
equations we obtain Λ'α Π X^ = A which was to be proved.

Since 2ω < K = cf(κ ) and there are only 2ω different isomorphism types of
structures of names there is a stationary set 5 C T such that the structures of

names {(la, A(a, ? ' ) : / < uΛ : a £ S} are pairwise twins.

From now on we work in V[G\ /]. Let β(α,ι) = π σ f J (A(α,ΐ)) for α E 5
and i £ u;. Then sιιpp(jB(α,i)) C Jα = 7α \ 7 and the structures of names

( Jα, 5(α, ?') : i < α/Λ are pairwise twins by lemma 20 above.

Thus B = (β(a, i) : a £ 5, i < ω) G

Definition23. Assume that 5 C AC. A sequence β = jα,5αy : α G 5y is

called a mce S -sequence if conditions (i) and (ii) below hold:

(i) Ja G [/c] , -̂ α is a nice Cjtt-name, and Ja for a £ S are pairwise disjoint,

(ii) the structures of names ( Jα, 73ay for α £ 5 are pairwise twins.
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We denote by S(S) the family of nice S'-sequences.

Lemma 24. (Homogeneity lemma)

Assume that S C K and B — ((ja,Ba\ ' a £ S) is a nice S-sequence. If

φ(xQ1x\ί . . . ,#n-i,2) is a formula with free variables XQ,XI, . . .,xn-\,z and Z
is an element of the ground model, then (1) or (2) below holds:

(1) lCκll- " φ(B,(0)B,(1), . . . , β,(π-ι), Z) /or «// s € (S)n ",
(2) /or some r 6 CΛ we /zαt e

rll — " ί/zere are subsets D0 #ι, . . . , jDn-ι 0/5 suc/z ί/zaί
(a) for each i < n and A E [5]^ Π V" we have Di Γ\ A ^ 0,

(b) -<φ(B8(0}Bs(l}, . . . , B e ( n-i), Z) /or α/ί 5 E (A), I>ι, . - , Dk-ι) "

Proof. Assume that (1) fails, that is, there are p E Cκ and s E (S)Λ such that

pii — ς;-ι^(55(0), . . . , 5β(n_i), Z)n .

Let J = (J J5(i) and p; = p f J and r = P\pf- Since the sets Jα are pairwise
i<k

disjoint we can assume that dom(r) ΓΊ J^ = 0 for each a E 5.
For (a,/?) E S2 we denote by φaβ the natural order preserving bijection

between Ja and Jβ. For /? E 5 and i < k let p(/?, i) = φs(i}β(p \ «/«(*))• For i < fc

define the CΛ-name Dt of a subset of S as follows: jD, = {(p(β, i),β) ' β £ 5}.

Then
^[G] (= "A = val( A, G) = {/? e 5 : p(/?, i) E (?}",

where G is Cκ-generic over I7. Since the supports of p(β, i) for β E 5 are pairwise
disjoint a standard density argument gives that Ό{ Π A φ 0 whenever
Λ E [5]̂  Π 7, hence (a) holds.

To show (b) assume that r E G and

Since u is finite we have u E V. Let J* = |J Jw^ ) and φ = \J φu(i),s(i) Then ψ
i<k i<k

is a bijection between J* and J and so it extends to isomorphisms between Cj*
and Cj, and between the families of nice Cj* -names and of nice Cj-names. Let
Ψ be the natural extension of φ to a permutation of AC:

v(ι/) if i / e J*,
ψ-^^if j / e J,
// if ί / e « \ ( J u J*).

Then \F extends to an automorphism of Cκ, and also to an automorphism of nice
CΛ-names. Clearly if q E Cj* and B is a nice Cj -name then ψ(q) = Ψ(q) and
ψ(B) = Ψ(B). Observe that ί/(r) = r and Ψ(Z) = Z.

Let G* = Ψ"G. Then G* is also a CΛ-generic filter over V and since

i)) - Bs(i] it follows that
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But p(n(i),i) € G, so p \ Js(ί) = V'(p(«(t), 0) e G*. Thus p = rU (J p f J,(i) € G*
«fc

as well. Since pil -- >φ(B,(o), ••••, -Bj(n-i), Z) and so
V[G*] \= α-v(B,(o), . ..,Bt(n-i),Z)n, by (•) this implies

which was to be proved.

Theorem 25. If K is a regular, ω -inaccessible cardinal then for each cardinal X
we have

yCλ uCs andC*κ hold.'1

Proof. We deal only with Cs(κ) because the same argument works for Cs(κ).
As we observed in section 2 we can assume that K < λ. First we investigate the
case λ = K.

Assume that

"A = A(a,z) : a < A C ; ? ; < ω E M(κ) and T C ω <ω "

Applying the reduction lemma 22 and that T is countable we can find a countable
set / C K and a stationary set S C K in V and a nice 5-matrix B in V[Gf /]
such that

V[G] \= "vaiμ(α,i),G) = va l (B(α, i ) ,Gf(«\/)Γ

for α E 5 and i E ω, moreover T £V[G\ ϊ ] .
We show that for each q G CΛ there is a condition r < q in CΛ such that

Πh- "3(1) or 3(2) holds". Let Γ = /Udom(g).
For each / G T let y?f (#o> . . . , x \t\-i) be the following formula:

: k < ω) , . . . , (S,tμι|Λ : * < ω)) ^> f| B i | t(f) ^ 0.

Applying the homogeneity lemma 24 to V[G \ I1] as our ground model and to
every φt we get that, either gl l — "3(1) holds" or q U p\\ — "3(2) holds". Let us
remark that 24(2) (a) implies that as S is stationary, so is each D, .

Thus we have proved the theorem in the case /c = λ. If λ > K, and A E
(M(κ))v^G\ where G is Cλ-generic over V , then there is J E [λ]Λ such that
A E V^Gf J]. The stationary sets that witness 3(1) or 3(2) in V[G \ J] remain
stationary in V[G], and so we are done.

Theorem 26. If K, is a regular, ω -inaccessible cardinal then for each cardinal λ
we have

VCχ \= "F°(κ) holds."
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Proof. As in 25 the important case is when λ = /c, because the case λ < K is
trivial and the case K < X can be reduced to the case K = λ.

So assume that

Icjl— "A = (a,i) : a < κ,i < ω E M(κ).n

Applying lemma 22 we can find a countable set 7 C ft, a stationary set 5 C K
in V and in V[G \ I] a nice 5- matrix B such that
V[G] b "A(α, i) = val(J3(α, / ) , G \ (AC \ /))" for each α G S and i G ω, moreover

We need the following lemma that is probably well-known.

Lemma 27. If H is a Cκ-generic filter over V and 7, J are disjoint subsets of
K then

V[H] [= "P(ω) Π V[H \ I] Π V[H \ J] = 7>(<j) Π K "

Proo/. Assume that A is a nice C/-name, B is a nice Cj-name, p G CΛ and pll —
"A = 5". We can assume that dom(p) C 7 U J . We show that for each n G ω
we have that p \ I\\— "n E i" or p f 7ll— "h £ A". Indeed, if p f 7 i^- "n G -A"
then there is a condition q < p \ I in C/ such that q\\ — "n ^ A" and so p U gll —
"n ^ .B". But B is a Cj name so (p U q) \ J — p f J forces the same statement,
p f Jll — "n ^ 7Γ. But pii — A — B and so pi! — n £ A as well. Thus p decides the
elements of A, in other words, pii — "A E V" .

To conclude the proof we show that if q G Cκ then there is a condition r < q
in CΛ such that r\\— "8(1) or 8(2) holds". Let Γ - 7Udom(g).

For each t E T let φt(%Q, < #|t|-ι) De the following formula:

φ((B0>k : k < ω) , . . . , (BM_ltk : k < ω)) <=ϊ f| βiιt(i) E (P(ω))v .
i<\t\

Applying the homogeneity lemma 24 to V[G \ I1} as our ground model we get
that (A) or (B) below holds:

(A) Icjh- " B(s, t) E (P(ω))v for each t E T and s E
(B) for some t E T and p E CK. we have

pll — " there are subsets 7)0, 7>ι, . . . , ^|t|-ι of •? such that

(a) for each A E [S]ω Π V we have A Π A ^ 0 for each i <

(b) I f β e ( D 0 ϊ Z > ι , . . . , ί > | t | - ι ) we have

Let Jα = Ut<ω supp(β(α, i)) for α E 5 and denote by ^>α>/0 the natural order
preserving bijection between Jα and Jβ for (α,/?) E 52.

Assume first that (A) holds. Fix t E T and 5 E (S)'*1. Write α< = β(ί) for
i < |ί|. Since C« is c.c.c , there is in V a countable set It C P(ω) such that

IcJH- "Π B(αi,n t ) G l t " .
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Assume that (<J0, ,ήί|-ι) G (S)k .
Let J* = (J Λ,, J = \J Jat, and ψ - (J <£<5t,αt Then ^ is a bijection

*<fe «<& i<fc
between J* and J and so it lifts up to an isomorphism between Cj* and Cj and
between the families of nice Cj* -names and nice Cj-names.

Let G be C«-generic and put Gq = G\J*. Since supp(jB(ί, , Hi)) C J* it
follows that val(5(όV",:),G) = val(β(ίt ,n t ),Go) ; Let GI = ^"G0. Then GI is
also a Cj-generic filter and since ψ(B(&i,rii)) — B(&i, n, ) it follows that

- val(β(α, ,n, ),<3ι) (•)

Since 1CJI— " f| £(αt ,n t ) G ϊt", by (•) we have
i<k

l — " Π va\(B(6i, r i i ) , G ) G Xt" as well. From this it is obvious that we have

lC|t»-{B(/, s) : t G T Λ β G (5)ί|} C I -

where X is countable as T is.
Assume now that (A) fails and so (B) holds. Let G be CΛ-generic with p G G

and (70, . . .,7/c-ι), {<J() ---- ,4-ι) G (Do, . - . , D / c _ ι ) such that

\/[G] |= "{7i,rf/} G [A] for i < * are pairs of distict ordinals".

Let J* = U JΊι and J* = |J Jδ.. Then J* Π J^ = 0, hence by lemma 27 we
'

have T(ω) n V[G [ J*] Π f V[G f J*] = P(ω) Π V and so V[G] (= "Πi<fe B(ii , n, )

V" implies that V[G] N «fi«fc -6(^ "0 Φ Πi<fc 5(7* , "<)"
The theorem is proved.

4 Applications

We start with presenting some combinatorial applications because they are quite
simple and so they nicely illustrate the use of our principles.

Kunen [12] proved that if one adds Cohen reals to a model of CH then in the
generic extension there is no strictly C* -increasing chain of subsets of ω of length
u>2 The first theorem we prove easily yields a corollary which is a generalization
of Kunen 's above result.

Theorem 28. IfC(κ) holds then for each A C [ω]ω of size K either

(a) 3B G [A]" \/B φ B' G B \B \ B'\ = ω

or

(b) 3X e [ω]ω \{A G A : A C X}\ = \{Λ G A : X C* A}\ = K.
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Proof. Fix a 1-1 enumeration {Aξ : ξ < K} of A. Let A(ξ,2n) = Aξ \ n and
A(ξ, 2n + 1) = (ω \ Aξ) \ n. Put T = {(2i, 2i + 1} : i £ w}. If S £ [«]* witnesses

3(1), then B = {Aξ : ζ 6 5} satisfies (a). If on the other hand D, £ £ [*]*,
D Π E = 0, with (2ι, 2?: -f 1) £ Γ show that 3(2) holds, then let

Then Aξ C X for each ξ £ D and X \ i C Ac for each C £ £".

Theorem 28 yields immediately that if C(κ] holds then there is no strictly C*-
increasing chain T C [ω]ω of length K. However, as the referee pointed out, this
follows already from the weaker assumption D(κ) and from the dual principle

Theorem29. If D(κ) or C ( κ ) holds, then K is not embeddable into P(ω)/fin.

Proof. Assume that {Aa : a < /c} is a strictly C*-increasing chain in [ω] . For
a < AC and n < ω let

λ / N ( ω \ Aa if n — 0,
A(a, n) = < . \ ,v (̂  Aa \ n otherwise.

We show that A = (A(a,n) : o < A c , n < ω) is a counterexample to D(κ) and

To see that A is centered, observe that if Y £ A, then there is αy < K
such that Aβ C Aaγ C* Y for each αy < /? < AC. Thus if YΌ, . . . , Vn-i £ -4
then taking a = max{αy. : i < n} we have Aa+\ C ^4α C* Π »̂' On ^ne

ί<n

other hand, if a < /? < AC then /4α C* A/3, thus Aa Π (α; \ Λ/3) is finite and so
A(a, k) Π A(/?, 0) = 0 for some large enough k. Thus there is no S of size AC (even
of size 2) such that A \ S is ω<α)-adic. Thus D(κ) fails.

Next, let t - (0,1) and T - {t}. Then for any 5 C AC of size AC, if 5 £ 52 is
such that s(0) < s(l), then A(s,t) is infinite. Hence 4.(1) does not hold. Likewise
if DO, DI C AC are of size AC, taking s £ (D0, £>ι)2 such that s(0) > s(l), A(s,t)
is finite. This shows that 4.(2) does not hold, i.e. C*(AC) fails.

The next theorem can be considered as a kind of dual to 28.

Theorem30. // C(κ] holds then for each A C [ω]ω of size AC and for each
natural number k either

(a) there is a family B £ [A]h such that for each B' £ [β] we have

or

(b) there are k subfamilies BO, . . . , Bk-ι of B of size AC such that
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Proof. Fix a 1-1 enumeration {Aξ : ξ < K} of A. Let A(ξ, n) = Aξ\n and put
T = ωk. If C G [>]K witnesses 3(1), then B = {Aξ : ξ £ C} satisfies (a). If

DO, . . . , Dk-ι G [κ]h and (n0, . . . , njc-i) € T show that 3(2) holds, then we can
assume that the D7; are pairwise disjoint and if we set BΪ — {Aξ : ξ E Di] then
we have

7; C maxn;.

Remark. In theorem 30 we can not replace (a) with the following (slightly
stronger) condition (a 1 ) :

(a') there is a family B G [Λ] * such that for each B1 G [B] *+1 we have | f| B'\ = ω,

and if k > 2 then (b) can not be replaced by

(b') there are pairwise disjoint subsets XQ, . . . , Xk-ι of ω such that for each i < k
we have {A G A : ,4 C* Xi} ± 0,

because for each k G u; one can construct in ZFC a family A C [cj]ω of size

2^ such that Π-47 is finite for every .4' G [A] but PJ./4' is infinite whenever

A1 G [Λ]*. Indeed, let T = 2<α) be the Cantor tree, and for n < ω let Cn = 2n

be the nth-level of T. For each / G 2ω let

andΛ = {A(/) : / G 2"}. If β; C 2^ and n < ω then Q{^(/) /
0 i f F | { / f n : / G B ' } | < f c . Thus ^4 satisfies our requirements. This example is
due to A. Hajnal and included here with his kind permission.

Next we prove a consequence of theorem 30, but first we give a definition.

Definition 31. Let K be a regular cardinal and A C [ω]ω be an almost disjoint

family. A is called a κ-Luzin gap if \A\ = K and there is no X G [u;] such that
both \{A eA : | - A \ Λ ' | < ω\} = K and \{A G A : \AΓ\X\ < ω}\ = K. A Luzin-gap
is an ωi-Luzin gap.

An cJi-Luzin gap can be constructed in ZFC and simple forcings give models
in which there are 2u'-Luzin gaps while 2ω is as large as you wish. The next
corollary of theorem 30 implies that one can not construct α;2-Luzin gaps from
the assumption 2ω > ω > alone .

Corollary 32. IfC(κ) holds then there is no κ-Luzin gap.

Proof. Assume that A C [ω] is an almost disjoint family of size K. Then we
can not get a even a two element subfamily B C A satisfying 30(a). So applying
theorem 30 for this A and for k — 2 there are subfamilies B C A and Ί) C A of
size /c such that ((Jβ) Π (IJ^) ιs finite. Hence X = (JB witnesses that A is not
a κ-Luzin gap.
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We have one more theorem of this type.

Theorem 33. I f C ( κ ) holds then for each Ac [ω]ω of size K either

(a) there is a centered subfamily B C A of size K,

or

(b) for some k < ω there are subfamilies BQ, . . . , Bk-ι of B of size K such that

Proof. We can argue as in the proof of theorem 30 using T = ω<ω instead of
T = ωk.

For A C P(ω) and * < ω let A(k) = {O47 : A' G [A]*}}.

Put A«ω) = U A*)
k<ω

Theorem 34. If F ( κ ) holds then for each family A C P(u) of size K and for
each natural number k either

(a)

or

(b) there is a subfamily B C A of size K such that \B^}\ < ω.

Proof. Fix a 1-1 enumeration {Aa : α < AC} of A, let T = ωk and consider
the matrix Af — (A(a,n) : α < /c n < ω) G Λ4(κ) defined by the stipulation
A(a,n) = Aa. Apply F ( κ ) . If 8(2) holds, then \A(k)\ = AC. If 5 G [κ]K witnesses
8(1) then subfamily B — {Aa : a G S} satisfies \B(k)\ — ω.

Theorem 35. If F(κ) holds then for each family A C P(<*>) of size K either

(a) there is a natural number k such that \A(k}\ — K

or

(b) there is a subfamily B C A of size AC such that |β(<ω)| < w.

Proof. We can argue as in the proof of theorem 34 using T — ω<ω instead of

T = ωk.

Now we turn to applying our principles to topology. We start with an appli-
cation of the relatively weak principle D(κ).

A. Dow [2] proved that if we add cj2 Cohen reals to a model of GCH then
in the generic extension βω can be embedded into every separable, compact T^
space of size > c = ω^. Here we show that c = ω% = 2ωι together with D(u?2)
suffice to imply this statement.
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First we need a lemma based on the observation that large separable spaces
contain many ''similar'1 points.

Given a topological space X and a point x G X we denote by Vχ(x] the
neighbourhood filter of x in X, that is, Vχ(x) = {U C X : x G mtχ(U)}. If
D is a dense subset of X let Vχ(x) \ D = {U Π D : D G V χ ( x ) } . We omit the
subscript X if it may not cause any confusion.

In section 2 we defined the operation A for A G M(κ). By an abuse of
notation we define A for every family A of subsets of ω as follow:

A={XCω:\AΠP(X)\ = \A\}.

Lemma 36. Assume that X is a separable regular topological space of size > c<c,
where c = 2ω, D G [A']" , D = X. Then there are a point x £ X and a family
A = {Aa, Ba :a <c} C P(D) such that

(1) Λ^Π ~B^ = 0 for each a < c,
(2) Λ C V(x) ί D.

Proof. Fix an enumeration {Dξ : ξ < c} of P(D) and let T>a = {£>ξ : £ < α} for
α < c. For z £ X and α < c let V(x, a) = (V(x) \ D) Π T>a. A point x G X is
called special if there is an α < c such that V(x, a) φ V(t/, a) for each y G X\{x}.
Clearly there are at most c<c special points in X. Since \X\ > c<c we can pick a
point x G X which is not special. Then for each a < c we can find a point xa φ x
in X such that V(#α, α ) = V(x, a). Since X is regular the points x and xa have
neighbourhoods ί/α and Wa, respectively, with Ua Π Wa = 0 Let Aα = t/α Π D
and Ba = Wa Π D.

Now assume that, E G A and pick ξ < c with E = Dξ. We can find a. < c
such that ξ < α and either Aα C E or 5α C E. Hence J5 G V(x, α) U V(xα, α) =
V(x,α). Therefore E G V(x) f D which was to be proved.

Let us now recall the definition of a μ-dyadic system from [5].

Definitions?. If X is a. topological space a family {(A(a, 0), A(α, 1)) : α G μ}
of pairs of closed subsets of X is a μ-dyadic system such that

1. A(α, 0) Π A(α, 1) = 0 for each a < μ,
2. for each e G Fn(μ,2,u;) we have f] A(α,e(α)) / 0.

αedom(e)

Theorem 38. If D(c) holds, X is a separable compact T2 space of size > c<c

then X contains a c-dyadic system, consequently X maps continuously onto
[0, l]c ( and so βω can be embedded into X ).

Proof. Fix a countable dense subset £) of X. By lemma 36 there is a family
.4 = {Aa, Ba : a < c} C P(D) such that A ^ Π ^ " - 0 f o r α < c and A is
centered. Let D(α,0) = Aα, D(α, 1) = Aα and .D(α,n) = D for α < K and
n > 2 and consider the K x ω-matrix D = (D(a, ί) : a < K, ι < α;}. Since A = T>
we can apply D(c) to get a cofinal 5 C c such that the family (Aa, Ba : α < c)
is c-dyadic. Now we can apply theorem [5, 3.18] to get the other consequences.
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A topological space X is called scattered if every subspace of X has an isolated
point. For a scattered space A" denote by X^ the α th Cantor-Bendixon level of
X. The height of A:, ht(JY), is defined as the minimal a with X^ = 0. Following
[14] we call X thin if all levels of X are countable.

Since the cardinality of a locally compact, scattered separable space is at most
2ω by [13], the height of such a space is less then (2ω)+. So under CH there is
no such a space of height ω^.\. Juhasz and W. Weiss, [9, theorem 4], proved in
ZFC that for every a < ω^ there is a locally compact, scattered thin space X
with ht(A r) — α. M. Weese asked whether the existence of such a space of height
ω2 follows from -»CH. This question was answered in the negative by W. Just,
who proved, [10, theorem 2.13 ], that if one adds Cohen reals to a model oίCH
then in the generic extension there are no locally compact scattered thin spaces
of height u>2 On the other hand, J. Baumgartner and S. Shelah, [1], constructed
a ZFC model which contains such a space of height ω%.

The next theorem is a generalization of the above mentioned result of Just.

Theorem 39. If Cs(κ) holds then there is no locally compact, thin scattered
space of height K.

Proof. Assume on the contrary that there is such a space X. We can assume
that X(a) — {a} x ω for a < l i t ( X ) . For each a < ht(X) fix compact open
neighbourhoods U(a,n) of (α, /?) for n £ ω such that U(a,n) C {{α,n}} U

: β < a} and the sets ΓΓ(α, n) for n < ω are pairwise disjoint.
Put A(α, 2n) = Z7(α, n)ΓLY<°> and A(α, 2n+l) = Xm\\J{U(a, m) : m < n}.

Let
T = {t £ u<ω : t(0) is even and t(i) is odd for i > 0 }.

Now apply C*(κ) to the matrix (A(a, n) : a < /c, n < ω) £ M(κ) and T.
Observe that A(β, In] Π f| 4("ή 2n, + 1) = 0 iff

u(β, n) n x^ c U u(a{, HI) n χ(°) iff

U(β,n)C U Ufam).
i<k

Thus if t = (2n, 2n0 + 1, . . . , 2nk-ι + 1> G T and (β, α0, . . . , α f c_ι) G (K)^^1

then A(/?,2n) Π (Ί A(α t ,2ni + 1) = 0 implies β < rnaxα,-. This excludes 3(2).
i<k i<k

So 3(1) holds, that is we have a stationary set S C K such that if
t = (2n, 2n0 + 1, . . . , 2n f c_ι + 1) G Γ and {/?, α0, . . - , α/e-i} E (S)^^1 then

that is

t ^ ( / ? , n ) \ U U U(<*i,j)ϊ9.
i<k j<nt

But U(β,n) is compact and each ί/(α,n) is open so it follows that for every
β E S and n G ω the set

, n) = U(β, n) \ \J{U((a, m) : α E 5 \ {β} Λ m G ω}
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is not empty. For every such β and n let (y(β, n),m(β, π)) E D(β, n).
Since X W is dense in X \ U{^(α) : α < /?} for every /? E /c there is *(/?) E α;

such that {/?,*(/?)) E r'(/?*,0), where /?* = m i n S \ / 3 + 1. Thus {/?,*(/?)} £
D ( β , k ( β ) ) and so 7(/ί,fc(/?)) < /? for each /? E 5. The set 5 is stationary so
there are a stationary set S1 C S, and ordinals 7 < K and k,m < ω such that
fc(/?) = jfe, 7(/?, k) = 7 and ra(/?, fc) - m whenever /? E 5". Thus (7, m) E D(β, k)

for each β E 5', while D(/?,fc) Π £>(/?', fc) = 0 for any {/?,/?'} E [S"]2 by the
construction. This is a contradiction, hence the theorem is proved.

Remark. It is easy to see that the proof of theorem 39 goes through if, instead
of assuming that all levels of the space are countable, we only require that (i)
all levels are of size < />:, (ii) there are stationary many countable levels. This
observation yields that if Cs(κ) holds, then there is no strong pcf structure.

In [10] W. Just also proved that if one adds at least ω-2 Cohen reals to a
model of CH then in the generic extension there is no locally compact, scattered
topological space X such that ht(X) = ωι + 1, X(0) is countable, |χ(α)| < ω\ for
a < ω\ and |Λ"(ω ι)| = ω<>. The next theorem shows how to get a generalization
of this result from our principles.

Theorem40. //cf(λ) > ω± and F(λ+) holds then there is no locally compact,
scattered topological space X such thatht(X) = λ+1, X^ is countable, \X^\ <
λ for alia <λ and |Λ ' ( λ >| = λ+.

Proof. Assume on the contrary that X is such a space.
We can assume that X<°) = ω and that X^ - {λ} x λ+. For each x E X

choose a compact open neighbourhood U(x) of X and let B(x) = U(x) Γ\ω. Put
B = ( B ( x ) : x E Xw}. Let U = CO(X \ X^), i.e. the family of compact open
subsets ofX\ XW = \J{X^ : a < λ}. and T = {U Πα; : U E U}. Since X is

locally compact it follows that for each {x, y} E [X^Λ^] we have U(x)Γ\U(y) E U
and so B ( x ) Π B(y) E T.

Since (^1 < λ, it follows \B(2}\ < λ < λ+. Thus, applying theorem 34 for
k = 2 we can get a cofinal set S C λ+ such that the family

Z={B((\,a))nB((X,β)):{a,β}e[S}2}

is at most countable.
Then there is 7 < λ such that I is contained in CO(|J{^(7/) : i < τ})

Therefore U(y)Γ]U(y/) C \J{X^ : f < 7} for each {y,j/} E [{λ} x S}2 and so

the sets U(x) Γ\X^ for x E {λ} x S are pairwise disjoint and non-empty which
contradicts \X^\ < X.

Following the terminology of [4] a Hausdorff space is called P2 if it does not
contain two uncountable disjoint open sets. Hajnal and Juhasz in [4] constructed
a ZFC example of a first countable, P2 space of size ω\ as well as consistent
examples of size 2ω with 2ω as large as you wish . On the other hand, using a
result of Z. Szentmiklόssy they proved that it is consistent with ZFC that 2ω
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is as large as you wish and there are no first countable PI spaces of size > ω^.
However their method was unable to replace here ω% with ω^ Our next result
does just this because, as is shown in [4], every P^ space is separable.

Theorem 41. If C(κ) holds then every first countable, separable T 2 topological
space X of size K contains two disjoint open sets U and V of cardinality K.

Proof. Let D be a countable dense subset of X. For each x £ X fix a neighbor-
hood base {U(x, n) : n £ u} of x in X. Apply C(κ) to the matrix
< U(x,n) ΠD : x e X,n < ω > and T = ω2. Since X is T2, there is no
S £ [X] satisfying 3(1). So there are SΌ,5ι £ [X]* and n,m £ ω such that
U(x, n) Π U(y, ra) Π D — 0 whenever x £ So and y £ Si. But D is dense in X,
therefore U — \J{U(x,n) : x £ So} and V = Uί^ί^Λ7™) : y £ Si} are disjoint
open sets of size K.

Definition 42. Let X be a topological space and D C X. We say that D is
sequentially dense in X iff for each x £ X there is a sequence Ŝ  from D which
converges to x. A space Y is said to be sequentially separable if it contains a
countable sequentially dense subset.

Definition 43. Given a topological space (X, r) and a subspace Y C X a func-
tion / is called a neighbourhood assignment on Y in X iff / : Y —ϊ τ and

y £ f(y) f°Γ each y £ Y.

Our next result says that under C(κ) if a sequentially separable space X
does not contain a discrete subspace of size K, (i.e. s(X) < K using the notation
of [5]) then X does not contain left or right separated subspaces of size K either.
This can be written as h(X) z(X) < K. Since in [6] a normal, Frechet-Urysohn,
separable (hence sequentially separable) space X is forced such that z(X) <ω\
but h(X) = u>2, this result is not provable in ZFC. First, however, we need a
lemma.

Lemma44. Assume that C(κ) holds. Let X be a sequentially separable space
with Y C X, \Y\ = K. /// is a neighbourhood assignment on Y in X, then either
(a) or (b) below holds:

(a) there is Y' £ [Y]" such thai f(y) Π Y' = {y} for each y £ Y1 (hence Y' is
discrete),

(b) there are YQ, Y\ £ [Y]K such that y £ f(x) whenever x £ YO and y £ Y\.

Proof. We can assume that D — ω is sequentially dense in X. For each y £ Y
choose a sequence Sy C D converging to y. Let A(y, In) = D\/(y), A(y, 2n+l) =
Sy \ n, T — {(2n,2m-h 1} : n, m £ ω] and apply C(κ). Assume first that
Y' £ [Y]K witnesses 3(1) and let x φ y £ Y'. Then for each n £ ω we have
(Sy \ f(x)) \ n ̂  0, i.e. Sy \ /(#) is infinite. But Sy converges to y, so y ^ /(x),
and so Y7 satisfies (a). Assume now that 3(2) holds. Then there are YO, YI £ [ω]
and m £ ω such that (D \ f(x)) Π (Sy \ m) = 0 for each x £ Y0 and y £ YI. But

then Sy \ m C /(x) hence y £ /(#) which was to be proved.
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Theorem45. // C ( κ ) holds, X is a regular, sequentially separable space with

s ( X ) < K thenh(X)z(X) < K.

Proof. Assume on the contrary that Y £ [X]κ and the neighbourhood assign-
ment / : Y —> τx witnesses that Y is left (right) separated. We can assume that
Y = K and Y is left (right) separated under the natural ordering of K. Since X
is regular we can find a neighbourhood assignment g : Y —> τ with g ( y ) C f ( y )
for each y £ Y. Apply lemma 44 to Y and g. Now 44(a) can not hold because
s ( X ) < K, hence there are Yo,Yι G [Y]* satisfying 44(b). Since both YQ and YI
are cofinal in Y = K under the natural ordering of the ordinals, applying left (or
right) separatedness of Y we can pick x £ YQ and y G YI such that y £ /(#)• By
the choice of g this implies y £ g ( x ) which contradicts 44(b).

The Sorgenfrey line L is weakly separated and is of size c with s(L) — ω\.
This shows that theorem 45 does not remain valid if you put weakly separated
subspaces instead of right or left separated ones.

As an easy consequence of 45 we get the following result in which (sequential)
separability is no longer assumed. We also note that under CH the assumption
of X being Frechet-Urysohn is not necessary in this result.

Theorem46. Assume C(ω^). If X is regular, Frechet-Urysohn space and
s ( X ) = ω then \ι(X) <ω^

Proof. If C(u>2) and A' is separable, then by theorem 45 even s ( X ) <ω\ implies
h(X)z(X) < ω\. Now, every uncountable space X which is both right and left
separated contains an uncountable discrete subspace, hence every right separated
subspace of X is (hereditarily) separable. So by the above if Y C X is right
separated then |Y| < ω\, i.e. h(X) < ω\.

In [8] we investigated the following question: What makes a space have weight
larger than its character? To answer this question we introduced the notion of
an irreducible base of a space and proved that any weakly separated space has
such a base, moreover the weight of a space possessing an irreducible base can
not be smaller than its cardinality. We asked [8, Problem 1] whether every first
countable space of uncountable weight contains an uncountable subspace with
an irreducible base? In theorem 50 and corollary 51 we will give a partial positive
answer to this problem, using the principle C(κ). First we recall some definitions
from [8].

Definition47. Let A' be a topological space. A base U of X is called irreducible
if it has an irreducible decomposition U — (J{UX : x E X}, i.e., (ί) and (π) below
hold:

(i) Ux is a neighbourhood base of x in A for each x £ X,
(ii) for each x G X the family U~ — \J Uy is not a base of X (hence U~ does

y*x

not contain a neighbourhood base of x in X).
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Definition 48. Let X be a topological space with Y C X. Similarly as above, an
outer base U of Y in X is called irreducible if it has an irreducible decomposition
U = \J{Uy : y E y}, i.e., (i) and (π) below hold:

(i) Uy is a neighbourhood base of y in X for each y E y ,
(ii) for each t/ E y the family £/~ = (J{% : z E y \ {y}} does not contain a

neighbourhood base of y in X .

Note that in general, a subspace Y having an irreducible outer base in X does
not necessarily possess an irreducible base in itself. However, if y is dense in an
open set and the irreducible outer base of Y consists of regular open sets then
clearly this is the case. Moreover, by our next result, under certain conditions
we can at least find another subspace of the same size as Y that does have an
irreducible base.

Lemma 49. If X is a regular, separable space and Y C X has an irreducible
outer base in X consisting of regular open sets, then there is Z C X with \Z\ =
|y| such that the subspace Z has an irreducible base.

Proof. Let B — \J{By : y E y} be an irreducible outer base of Y in X consisting
of regular open sets and D be a countable dense subset of X. We distinguish
two cases:

Case 1 |(intF)ny| = |y|.

Let Z = (inty) πy. Since Z is dense in the open set int y, by our above remark
Z has an irreducible base.

Case 2 | ( intF)ny| < |y|.

In this case the set Y\ — Y \ int Y is nowhere dense, so D\ — D\Y\ is dense in
X. Let Z = Dl U yx, then \Z\ = \Yι\ = |y|. Write Dl = {dn : n < ω} and for
each dn E D let Bdn be a neighbourhood base of dn in X consisting of regular
open sets, that are disjoint to YI U {dm : m < n}. Then clearly \J{BZ : z E Z}
is an irreducible outer base of Z in X consisting of regular open sets and Z is
dense in X, so again we are clone.

Theorem 50. Assume C(κ). If X is a separable, first countable, regular space
with w(X) > K, then there is subspace Y C X of cardinality K that has an
irreducible base.

Proof. Let D C X be a countable, dense subset of X . For each x E X fix a
neighbourhood base {U(x,n} : n E ω} consisting of regular open sets and set
V(x,n) — U(x,n) Π D. Since the U(x,n) are regular open and D is dense, we
clearly have U(x, n) C U(y, m) iff V ( x , n) C V(y, m).

Since w(X) > AC, by transfmite recursion on β < K we can choose points
{xa : Oί < K} C X such that for any β < K the family {U(xaί n) : a < β, n < ω}
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does not contain a neighbourhood base of Xβ, in other words, there is a natural
number kβ such that for all a < β < AC and n £ ω we have

^(xβ £ U(xa, n) C U(xβ, kβ}). (*)

We can assume that kβ = 0 for each β < K. Let X' - {xa : a < K}. For x E X1

and n < ω put

A(x, 2??.) = [V(x, n) x {0}] U [(D \ V(x, n)) x {!}]

and
A(x, 2m + 1 ) = [(D \ V ( x , 0)) x {0}] U [V(x, m) x {!}] .

Note that A ( z , 2 n ) n / l ( ? / , 2 m + 1) = 0 i f [ V ( y , m ) C ^(z,n) C V(y,0). Apply
C(κ) to {Λ(z, i) : x E X', / < ω) and T = {(2n, 2m + 1) : n, m < ω}. By (*)
(and AT/? = 0) there are no D,E £ [X']κ and n, m £ ω such that

) (t)

whenever x £ D and ΐ/ E £", because (f) fails if x = xa, y = Xβ and a < /?. So
there is y £ [X/]Λ/ such that for all n, m £ ω and x φ y ξ:Y the intersection of
A(#, 2n) and Λ(?/, 2m-f 1) is not empty. This means that ~^(V(y, m) C V(x, n) C
F(?/,0)), i.e. if we set βy = {U(y,n) : n < ω} then it follows that B = \J{By :
y G Y'} is a an irreducible outer base of Y in X consisting of regular open sets.
Now applying lemma 49 we can conclude the proof.

Unfortunately, as C(ωι) is false, the above result is not applicable in the
perhaps most interesting case when w(X) = ω\. The annoying assumption of
separability, however, can be circumvented as follows.

Corollary 51. Assume C(κ). If X is a first countable, regular space with
vf(X) > K, then there is an uncountable subspace Y C X that has an irreducible
base.

Proof. If X is separable, then the previous theorem can be applied. If X is not
separable, then X contains an uncountable left separated subspace Y and again
y has an irreducible base.
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