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1. Introduction
The equality presented in this paper is extremely simple, but has proven

useful on a number of occasions in deriving certain transition probabilities where
other approaches such as the Laplace transform or the generating function be-
come untidy (see, for example, [7]). The equality is not completely unknown;
it has appeared, in a slightly different form, in a two dimensional process ([2],
p. 102); and it is obvious for the simple Poisson process. The purpose of this
paper is to state it in a general form and to demonstrate its validity and useful-
ness with a number of examples.

2. The equality
Let {X(t); t E T} be a time dependent Markov process defined over the in-

terval T: [0, o0). For each t e T, the random variable X(t) assumes nonnegative
integer values with the transition probability
(1) P,k(to, t) = Pr{X(t) = kIX(to) = i},

0 _ to t <oo, i< k; i, k =0, 1,*.
Our discussion is related only to nondecreasing processes where the value of X(t)
is increased by the occurrence of an event (for example, the pure birth process),
or the nonincreasing processes (for example, the pure death process). The equal-
ity will be presented only for the former cases. However, an example of the pure
death process will be given in Section 3.
For each i, we assume the existence of a continuous function xi(r) such that

[Xs(.r) forj = i + 1,
(2) dPi(r, t)| = --Xi(T) forj = i,

Lo otherwise.
It follows that the transition probabilities in (1) satisfy the forward differential
equations

d-Pii(to, t) = -XiWtpii(to' t),
(3) atd

d- Pik(to, t) = -Xk(t)Pik(tO, t) + Xk-1(t)Pi.k-1(tO, t),dt
i < k; i, k = 0, 1, .
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The first equation in (3) has the solution

(4) Pii(to, t) = gi(to, t)

where gi(to, t) denotes exp {- | Xi(t) dl}, while the second equations give the
recursive relationship

(5) Pik(to, t) = f Pi,k-l(tO, tk-1)Xk-1(tk-1)Pkk(tk-1, t) dtk1-.
The probability Pi.k_1(t, tk-1) may be written in the form of (5):

(6) Pi,k-l(tO, tk-1) = ft- Pi,k 2(to, tk-2)Xk-2(tk-2)Pk-1,k-1(tk-2, tk.1) dtk-2.

Substituting (6) in (5) yields

(7) Pi,k(tO, t) = f| Pi.k-2(t, tk-2) III Xe(tj)Pe+i,e+i(te, tj+1) dti,ft. to t=k-2

or, upon integration with respect to tk.1,

(8) Pi,k(tO, t) = f| Pi,k.2(to, tk-2)Xk-2(tk-2)Pk.1,k(tk..2, t) dtk_2.

Equation (8) indicates a sequence of transitions taking place in the interval
(to, t):i -k-2 in (to, tk.2),k-2- k- in (tk.2, tk.2 + dtk.2),andk - 1 -+k
in (tk.2 + dtk-2, t), for to _ tk-2 _ t.
Equation (7) can be extended by repeated substitutions of (5) in (7) beginning

with k = k - 2. Consequently, we arrive at a formula,
't ftr r h4 pi(o k-1i(jP+'+(j(9) Pik(to, t) = It It... It P1(to, ti) II Xv(tz)P+,e+i(te, tt+1) dtt,

which shows the occurrence of each transition from t to 4 + 1 in (ti, te + dti).
Now the transitions can be regrouped in any meaningful way one wishes by
integrating the right side of (9). When a particular transition, j --j + 1, is of
concern, we integrate the right side of (9) with respect to ti, for i _ t < j and
j < t < k to obtain the equality. Letj be an arbitrary butfixed integer, for i _ j < k,
then

(10) Pik(tD, t) = It Pij(to, r)Xj(r)P3+j, k(7, t) dr.

Clearly, (5) is a special case of the equality (10).
An equality for the continuous case also can be derived, where we will be

dealing with the density function f,2(to, t) instead of the probability PON(t0, t).
A similarity between the present equality and the Chapman-Kolmogorov

equation should be noted. The transition probability in (1) involves the param-
eter t and the values of the random variable X(t) (or the states of the system).
The Chapman-Kolmogorov equation,

(11) Pik(to, t) = E Pij(to, T)Pjk(T, t),
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is related to a fixed but arbitrary time T and varying states j at r; whereas in
equality (10) a state j is fixed and the integral is taken over the values of T. This,
however, is the extent of the similarity. In equality (10), we require a transition
from j to j + 1 to take place in (T,r + dT) for which a probability Xj(T) dT is
included, while in the Chapman-Kolmogorov equation there is no such require-
ment. This additional factor nullifies a complete analogy between the two
equalities.

3. Examples

3.1. The Poisson process. In the nonhomogeneous case, the intensity Xj(r) =
X(T) is a function of time; the transition probability is given by

exp {-| A(t) d }[ft X() d{]ki
(12) Pik(tO, t) = (-i) i < k.(k -i)! ,ik

According to equality (10), we should have

f13)[(tu(t) (| () dk)

we L(t:,t)d X(| ) d& ] () [(k -j- 1)!
d dr.

where g{(to, t) denotes exp tX() d(} and g(r, t) denotes exp f-| t)d{}-
To verify (13), we introduce a function

(14) @ T)= t X) d( d(r) = fX(r) dTfo(t) d
and rewrite the right side of (13) as

(15) - g(to, t) (f
ki

d{ f [(r)]iji[l -(r)]k do(r)

__g(to,_t) X)dki
(k -i) ! 1,())

and recover the left side of (13).
When X(r) = X, and to = 0, (13) becomes

(16) t)kf'dr.(16) e-Xt(Xi)-i 1 e-XT(XT)3- X e-X(t-)[X(t -r]--d
(k- )!j ii)! (k-j-1T!

3.2. The Yule process. When the intensity X,(r) = iA(r), the differential
equations in (3) define the Yule process,

(17) Pi,(to, t) = (k-i 1)! (g(to, t))i(l-g(to, t))k-i.
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To verify equality (10), we need to show that

(18) (k - 1)! ((to, t))(l - g(to, t))k-i
= f (-i)!

U(j- i)!(i - 1)! (g(to, T))t(l - g(to, T))'-j/X(T)

(k-j-1)!j! (g(r, t))i+1(l- g(r, t))+i-' dr,
where g(to, r) denotes exp {f- A(t) d{}- Let

(19) (r) 1-g(r, t),
so that ~~~~~~~1- 9(to, t)

so that

(20) dO(r) = -g(T', t)X(rT) dr and 1 -() = g(& t) - g(to, t)g(to, t) 1- 9(t0, t)
Substituting (19) and (20) in the right side of (18) and simplifying yields

(21) (k -i)! (0(, t))i(l-g(to, t))A-i
1 [1 - O(T)]i-i[O(T)]k1 dO(r)

= (k-i i1)! (9(t oXt)lg(to, 0))*i(k-i)!i, )
which is equal to the left side of (18), proving (18).

3.3. The pure birth process. To verify equality (10) for the present case, we
need the following lemma.
LEMMA 1. Whatever may be distinct real numbers, Xl, X2, . . *X..n,

(22) 1 + + = 0.
II (X1 -X) II (Xn -X)
y=2 v=1

Several proofs of the lemma are given in Chiang [2], p. 126; we do not present
the details here.
The pure birth process is a different form from the Yule process in that the

intensity function Xi(r) = Xi is a function of i, but is assumed to be independent
of time r. When Xi are distinct for different i, then the differential equation (3)
has the solution (see Feller [5], p. 449, and [2], p. 51),

(23) Pik(tO, t) .(.l)*iX.X,+*... E exp{k A(t - to)}
ai 1I (X - Xy)

Similarly,
(24) Pi,(to, 7) = (- X)iXi+1 * * exp { Xa(T - to)}

a=i X( - X7)
Y-ie, pfa
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and

(25) P+,.k(r, t) ( l)k-i-Xj+l)Xj+2 ... Xk-4 exp {k(t - T)}

5=j+l,6vdlP

When (24) and (25) are substituted in (10), we find on the right side of (10),

(26) L Pij(to, T)XjPj+l,k(T, t) dT

j k | exp {-Xa(7 - to)} exp {-Xp(t - r)} dr
=(1)k i lXiXi+l ... Xk-1 E F, to ka=t ,1=i+1 II (X - X) II ( Xa)

t=i,Ha d~=,+l,8#,U
where

(27) L exp {-Xa(T- to)} exp {-Xp(t - r)} dr

_ [exp {-a(tj-to)} + exp {-X,(t- to)}]
L ka-p X-i

Therefore, (26) may be rewritten
(28)

(~)-l) X X,ti+1 * k exp {-Xa(t - to)}+1k ~ 4.'k
(Xa - XP) Il (Xa - Xy) II (Xp -Xp )

(+ j k exp {-Xo(t - to)}
a=J1(,p - 'X) ]El Ok\a - X-) I:[ (Ap-X)

y=i,-y0a 8+,i,

In the first term inside the brackets, for each a, we compute the sum
-k 1I exp {-X.(t- to)}

(29) (1ia ;kf) II (X1 -s) II (X. XI)
5=j+1,800 -=i,ap6

exp (t-to)} _ exp {-X.(t - to)}
= I(X: - X) II (Xa - ) II (Xa - X

since, according to Lemma 1, for any distinct numbers X1, Xj+l, Xj+2- Xk,

(30) + + k-
(X, Xj+l) II (xj+l - y) (X. Xk) II (Xk Xy)

7=3+2 73+ I

1
XI)II (Xa-X)

7'3+1
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Similarly, in the second term inside the brackets of (28) we find for each ,
(31)

I exp {-X(t - to)} = exp {-X(t - to)}
k k

{(IfIAII) I(Xa -AX) (A -AX) I
t~~~~'r=i,<a 8=j+1160f 5=i,80ft

Substituting (29) and (31) in (28) yields

(32) (-1)k-iXi+l - * * Xk-1 e k -
a= i II (X- X)

-Y= i,^y Oa

which is equal to (23), as was to be shown.
3.4. The P6lya process. The P6lya process is determined by the differential

equation (3) with the intensity function

(33) lXk(t) =
X + Xak

X() 1 + kat'
where both X and a are nonnegative constants. Solving (3) for Pik(to, t), we have

r(k + 1/a) 1 + Xato i+1/a 1 +Xato k-i
(34) Pik(to, t) = (k -i)!r(i + 1/a) (1 + Xat) (I 1 +Xat)
Using this general formula for the probabilities Pi,(to, T) and Pj+i,k(r, t) in (10),
we obtain

(35) f Pij(to, r)Xj()Pj+l,k(T, t) dr

r(j + 1/a) r(k + 1/a) t1 + Xato\i+l/a
(-i)!r(i+ 1/a) (k -j - 1)!r(j + 1 + 1/a) Jto\1 + XaT)
( 1 + Xato,i-i X a+ Xaj,l + Xa1\i+1+1/a 1 + a. k-i-I dT,
\1 1 + MrT) Q1 + Xar)ki + Xat) 1 + Xat) ,

where the integral is simply
(36)

(1 + Xato)i+'/a(1 + Xat)-(k+lIa)(Xa)k-i-1(X + Xaj) f (T - t0)i-i(t - r)k-i-1 dT

= (1 + Xato)i+lIa(1 + Xat)-(k+l/a)(Xa)k-i-1

(X+ Xaj)(t-to)k-i (i i)!(k-ij1)!

(_ + Xatoyi+lo ( _ Xat0 \k-i( 1\ (j-i)!(k -j-1)!.
= Xa.i i+Xato \ + a)\1 + Xat)J 1+ X-at) aJ (k -i)!

When the last expression in (36) is substituted for the integral in (35), the right
side member of (35) becomes identical to that in (34), proving equality (10) for
the P6lya process.
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3.5. The pure death process. The pure death process is different from all the
preceding processes; in this case the population size is decreasing instead of
increasing with time t. The transition probability Pik(to, t) holds for k _ i and
satisfies the differential equation

(37) d Pik(tO, t) = -kp(t)Pik(to, t) + (k + 1);4(t)Pj,k+l(to, t),
k =O, 1, *..,i,

where the intensity function ,(t) is also known as the force of mortality. The
solution of (37) is

(38) Pik(to, t) = k!(i i- k)! (h(to, t))(1 -h(to, t))i-k,

where h(to, t) denotes exp -J (t) dt - The equality for the death process as-

sumes a form slightly different from (10);

(39) Pik(to, t) = ij(to, )jI.L(T)Pj-l,k(T, t) dT, 0 _ k < j < i

Verification of (39) is straightforward. Using (37) we can write

(40) L Pij(t0, T)jp(T)P;-2,k(T, t) dr

= Ei j (h(to, r))i(l - h(to, 7T))i- ij(7T)
Ai - (-i)

k!(j =1-)! (h(7, t))k(l - h(r, t))i-l-k dr,

where h(T, t) denotes exp {- ,p(t) dt} and h(to, r) denotes exp {-f (t)d)

Now let

(41) 0(r) = 1- h (to, dO(,) = (t, 7) ((r)tdr
Then (40) may be rewritten as
(42)

(i -j)!k!(j -10-dk)! (h(to(t))k(l-h(to, t)) | (r(r))i-(j-(7))i-1-k dO(r)

k!i-! (h(to, t))k(l - h(to, t))i-k

= Pik (to, t),
which proves the equality in (39).
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4.- An application

Theoretical significance of equality (10) is yet to be assessed, depending to a
great extent on its relevance in developing stochastic processes. The following
example illustrates its usefulness as a means of deriving certain transition
probabilities.
The example in question is the so-called "simple stochastic epidemic," which

has been extensively studied by N. T. J. Bailey [1]. According to this model, a
population consists of two groups of individuals: infectives and susceptibles. At
the initial time to, there are one infective and N susceptibles. For each t, for
t E [to, Xo), there are X(t) infectives and N + 1 - X(t) susceptibles. The proba-
bility distribution of the random variable X(t) satisfies the system of differential
equations

(43) d-t Plk(k t) = -ak#(t)P1k(tO, t) + ak.18(t)P1,kl.(to, t),
k = ,* ,N + 1,

where
(44) ak = k(N + 1-k) k = 1, **,N; aO =aN+l = 0,
with the initial condition Pnl(to, to) = 1, and the constant f3(t) is known as the
infection rate. The Laplace transform and the probability generating function
have been used to solve the differential equations (43). Because the coefficient
ak is a quadratic function of k, for each k, the computations involved are quite
complex. The partial differential equation for the probability generating func-
tion, for example, is of the second order. However, when equality (10) is used,
one can write down the solution almost immediately. The complete solution and
the detailed discussion on related points have been given in [7], and will not be
repeated here.

5. The equalities in a two dimensional process

Equality (10) can be extended to multidimensional processes, where the ran-
dom variables concerned are the number of transitions rather than population
sizes. To be specific, we use a two dimensional process for illustration. In the
birth, death and other processes discussed in Section 3, there is only one transient
state for each individual: the state of "living." In a two dimensional process,
each individual may be in either one of two transient states, Si and S2. State Si
may be interpreted as the healthy state, and S2 the illness state. In addition,
there is an absorbing state R, the death state. A person is in state Si if he is
well, in 82 if he is ill. A transition from SI to S2 means the occurrence of an
illness or a relapse, while a transition from 82 to SI means recovery. When a
person dies, he enters the death state R from either SI or S2 depending upon
whether he is in state Si or S2 at the time of death. Fix and Neyman have dis-
cussed extensively this model in their study of the probabilities of relapse, re-
covery, and death for cancer patients [6] (see also Du Pasquier [4]).
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During a time interval (to, t) an individual may leave one transient state for
another. We are interested in the number of transitions that he makes between
the two transient states and the corresponding probabilities, which are defined
as follows:
(45) Pa) (to, t) = Pr {an individual in state S. at time to will leave S. m times

during (to, t) and will be in Sp at time t}
= Pr{Map(to) t) = m}, a,, = 1, 2; m = O, 1,

The random variable M.p(to, t), corresponding to the probability PZ)(to, t), is
thus the number of times the individual leaves S. for Sp before he reaches Sp at
time t. The sums

E P.sf (to, t) = Pcc(to, t),
(46) m=O

E P$'(to, t) = P.0(to, t), a 5 i3; a, j3 = 1, 2,
m=l

are the probabilities that the individual will be at time t in S. and Sp, respectively,
regardless of the number of transitions he makes between to and t. We assume
that, for each r, for to . rx t, the derivatives

(47) iPaa(TP t) = Vcgg dPap(T, t)j =ap
exist and are independent of time 7, so that v.. is a negative constant and vp a
positive constant. Explicit formulas of the probabilities Pa )(to, t) have been
derived in terms of vP.. and vP. (see [2], Chapter 5).

Corresponding to equality (10) there are four equalities in the two dimensional
process. They are

(48) Pas (to, t) = 1Paa(to, T)apP#p J(T, t) dr,

(49) P.")(to, t) = |Pa,Bjs(tO, 7)Pp.Pae8-°(7 t) dr,

(50) P") (to, t) = f P-'(to, 7)vp.P n (7, t) dr,

and

(51) P()(to, t) = J Pn(to T)v.PP)(,t P(7, t) dr,

for any fixed but arbitrary j, for j between 0 and m. Equality (48), for example,
holds forj = 0, *, m - 1; while (49) holds for j = 1, *, m - 1. These four
equalities can be verified in a similar manner as equality (10). For the verifica-
tion of the equality in (48), consider that an individual in state S. at time t,
will leave S., m times and be in S, at time t, and let j be a fixed number with
0 . j < m. Let the (j + 1)th exit transition from S., to Sp take place in
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(Tr T + dT), so that at r he is in state S,, the remaining m - j - 1 transitions
from Sp occurring during (T, t); the probability of this sequence of events is

(52) P'aja'(to 7-)[vap d7-]P,'' (TX t)-
Integrating (52) from T = to to T = t gives the equality in (48).

It has been shown in [2], pp. 102 to 104, that the multiple transition proba-
bilities Pa') (to, t) and Pam) (to, t) satisfy the equalities (48) through (51) for every
m. Two simple cases are given below.

It is obvious that for m = 0,

(53) P.20 (to, t) = exp {vp.(t - to)}, P49 (to, t) = exp {vp(t - to)}.

For m = 1, P,(,pl (to, t) is the probability that exactly one transition from Sa to S9
occurs in (to, t), and P 1) (t0, t) is the first return probability to the original state
Sa at t after having left Sa once. The first passage probability is given by

(54) Pa (to, t) = _"Po (exp {paa(t - to)} - exp {vIo(t - to)}), a0c 3.

According to equality (48), we have

(55) Pa8 (to, t) = Paa (to, T)pa.8pl (T, t) dr,

or, substituting (53) and (54) in (55),

(56) Pap (exp {vaa(t - to)} - exp {iio(t - to)}
Paa -Vo rt

= l exp {i'aa(r - to)} Pas exp {vd(t - T)} dr,
J to

which is easily shown to be true.
Equalities (48) and (50) (or (49) and (51)) can also be used to derive the gen-

eral formulas for the probabilities P,(^)(to, t) and P,(s')(to, t). The probability
Pa )(to, t), if it is unknown, can be obtained from (55). Using the known proba-
bility Pan'(to, t), we can derive the first return probability P,(a)(to, t) from equality
(50) for m = 1, j = 1,

(57) Pal(to, t) = APa (to, T)Pv#aP,a (T, t) IT.

Substituting (56) for Paj,)(to, T) and (53) for P.') (r, t) in (57) and integrating the
resulting expression yields

(58) Paa (to, t) = (V 2[(-aa - v,##)(t - to) exp {v1a(t - to)}

- (exp {vl.(t - to)} - exp {rPs(t -tofl].
Now using equalities (48) and (50) successively for m = 2, we obtain the second
passage probability
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(59)

Paj2 (to, t) = ,P - Jp)(t - to)(exp {vaa(t - to)} + exp {Vp(t -
-2(exp {laa,(t - to)} - exp {vp(t -tofl]

and the second return probability

(60) P~(to, t) = -^ ) [A(^aa vv)2(t - to)2 exp {laa(t - to)}

- (Paa - vpp)(t - to)(2 exp {vaa(t - to)} + exp {vl(t - to)})
+ 3(exp {vf,(t - to)} - exp {v(.(t - to)})].

The probabilities Pm (to, t) and P.()(to, t) can all be successively derived in the
same manner beginning with m = 3. It is interesting to note that, using this
approach, the multiple transition probabilities can be derived even when the
intensity functions vaa(t) and va.(t) are functions of time.
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