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1. Introduction

Polymer physics offers many problems of interest to applied probabilists
because ofthe essentially statistical basis ofmany ofthe characteristic phenomena
associated with polymers. They arise from the fact that the polymer molecules
are long, more or less flexible chains which can have many configurations. In
the early development of the theory it was adequate to regard polymer chains as
three dimensional random walks and to use a simple Gaussian approximation
to the relevant distributions. As the theory became more refined, attention had
to be paid to the effect of the actual structure of the polymer chains on the
distribution. Excellent accounts of the recent state of the theory are given by
Volkenstein [17], Birshtein and Ptitsyn [1], and Flory [7].
Many physical properties are explainable from a knowledge of the moments.

usually the second moment. of the vector length of the chain molecules. and in
such cases the Gaussian approximation or some Edgeworth type expansions
based on it is a suitable description of the distribution. But there are other
properties, such as the elastic behavior of rubber under large strains, which
require the vector length distribution to be known with comparable relative
accuracy over the whole of its range, a much stronger condition which is appro-
priate for "large deviations." It is the latter type of property which motivates
the discussion given here. The first approximation of this kind was given in a
famous paper by Kuhn and Grin [14]-hence, the title of the present paper.

Apart from "stiffness" caused by the interaction of neighboring elements of
the chain, we shall ignore excluded volume effects arising from the space taken
up by the chain. The effect of the selfavoiding nature of the chain on the distri-
bution of vector length is a subject of much current discussion, but the mathe-
matical difficulties are such that only the simplest chain models can be considered.
In contrast, we are concerned with distributions associated with chain models
approximating to real polymer molecules.
Much of the paper is an exposition of the history and background of the

subject for the benefit of applied probabilists wishing to enter the field. However,
the asymptotic result sketched in Section 7 for the behavior of the distribution
in the extreme tail is new and by no means fully worked out. Also, the integral
equation approach is offered as a practical way of validating and generalizing
the method of calculation currently in favor, which is based on the so called
rotational isomeric approximation.
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2. Physical background

As an example of the kind of physical problem motivating the paper we give
a short account of the theory underlying the mechanical properties of rubber
like substances. The kinetic theory of rubber elasticity, as originated and
developed by W. Kuhn, Guth and Mark, and others (see, for example, Volken-
stein [17]), assumes in its simplest form that the mechanical properties of rubber
and similar polymers, like those of an ideal gas, depend only on the entropy of
the system, which is a function of the distribution of configurations of the
constituent chain molecules. Each molecule is made up of a long sequence of
repeating units with a fair amount of freedom of independent movement
between them. In the simplest version of the theory, the units are considered to
be completely free to rotate in any direction relative to each other. Real chain
molecules have considerable restrictions on the relative rotation imposed by
fixed valence angles and steric hindrance, but they may often be conveniently
regarded as "equivalent" to a smaller number of freely jointed links.

In the rubber like state, the chain molecules are connected by a relatively
sparse system of cross links into a loose three dimensional network. The
dimensional characteristics of such a network are determined to a large extent
by the distances between the cross links, and hence by the end to end distances
of the chains connecting them. The entropy of each chain is proportional to the
logarithm of the total number of possible configurations for which the end
separation has a specified value.

If a single random polymer chain has one end at the origin and is free to
rotate about it, the distribution of the position r of the free end is spherically
symmetrical. The probability density function of' r is p(r), where r = Irl and
that of r is P(r) = 4nr2p(r). The first of these is proportional to the required
number of configurations, and the entropy S of a single chain is

(2.1) S = constant + K log p (r),

where K is Boltzmann's constant. The average tension in a single chain held at
length r is then given by

(2.2) F = -T-dSdr'
where T is the absolute temperature.

Stress-strain relationships for the whole network have been developed, with
extra assumptions, by James and Guth, and many others (see Volkenstein [17]),
though a completely satisfactory theory is not yet available, particularly for
the treatment of large strains.

3. Freely jointed chain: the Kuhn-Grun approximation

The simplest model for a chain molecule is one of n freely jointed bonds each
of length a. This is the classical problem of "random flights"; the usual
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Gaussian approximation for the distribution of r leads to

(3.1) = constant - (22)

and the average tension F of a single chain of length r is, from (2.2),

(3.2) F 3KTr
na

which is proportional to r. However, since the calculation of tension is based on
log p(r) and not on p(r), the approximation will break down as r approaches its
maximum value na because the relative error of the Gaussian approximation to
p(r) cannot be uniformly bounded over the whole range of r.
Kuhn and Grun [14] were the first to provide an approximation to log p(r)

which maintains its accuracy reasonably well over the whole range of r. They
used a method familiar in statistical mechanics which we now outline. The
following version corrects an error in the original demonstration pointed out
by Jernigan and Flory [9]. No attempt is made to formulate the argument
precisely.
The projection in the x direction of a completely free bond of length a is

uniformly distributed over the interval (-a, a). Consider a chain of n bonds
where n is large. Let -a = 1 < 42 < . . . < (k < (k+1 = a be a set of points
subdividing (-a, a) such that b'j = -j+1 -j are small. Let nj of the n bonds
have projections in (j, 'j+ 4), where E nj = n and n is assumed large enough
for each nj to be large. If the chain is unconstrained, the probability of the nj is

(3.3) P(nj, n* * k) = n1!n2! **k! [ (2aj
Suppose now that the total projection of the chain is constrained to have a

value x. This adds the further condition EnjXj = x, and if (3.3) is summed over

all values of nj consistent with the two constraints, the result will be proportional
to the probability density f(x) of the projection x of the unconstrained chain.
In the usual way, the summation over P is avoided by taking P = P at the most
probable values iij of nj subject to the two constraints. Using a crude form of
Stirling's approximation, one maximizes

(3.4)

log P + y , nj + K y nj~j

constant + Y nj log(2a)- nj log nj + , nj + V nj + K1 nj<j,

and obtains

(3.5) = ± exp {y + K~j} bcj.2a
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From the two constraints, we then have

(3.6) n - eX exp {K4} d= si

and

d ~sinh Ka
(3.7) x - e 2 exp {K4} dX = e K

The probability density f(x) is approximately proportional to P. Using these
results. one eventually obtains

C( sinh Kca
(3.8) f(x) a() exp {-KX}.

where K is the unique real root of

1 X X
(3.9) Y(Ka) = coth Ka

Ka na a

9(- ) is the so called Langevin function. (3.8) is usually called the Langevin
approximation! C is a dimensionless normalizing constant, and x- is the mean
projection of a bond.
Kuhn and Grin assumed (3.8) to approximate to the probability density

function (p.d.f.) p(r) of r. Jernigan and Flory [9] used the relation

(3.10) 2nrp(r) { d(x) x = r

in the manner of Treloar [16] to obtain the more correct approximation,

A K (sinh Ka \
(3.11) p(r) = exp {-Kr}.

ra Ka

where A is a normalizing constant and

(3.12) Y((Ka) = -= -.
na a

The effect of using either (3.8) or (3.11) is to replace the tension-extension
relation (3.2) by a formula with the reasonable property that F -o o as r - na.

4. The saddle point approximation

The form of (3.8) or (3.11) immediately suggests its connection with the
saddle point approximation p(r) to the transform of the moment generating
function (or partition function) for the radial distribution. It is surprising that
this fact has not been fully exploited. Dobrushin [5] mentioned that (3.8)
could be derived by the essentially equivalent Cramer extension of the central
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limit theorem, and Kubo [11] used the saddle point method in an important
study of more general chains which we refer to later. But the accuracy of the
saddle point approximation is not fully appreciated. In the present case. (4.7) is
more accurate than (3.11) and is applicable to quite short chains. Under con-
ditions which are satisfied in the present application it has been shown (Daniels
[4]) that the error in log p(r) is uniformly 0 (n - 1) over the whole range of r. In
fact, when normalized, it is even more accurate than would be expected from
this result.

For any general spherically symmetrical distribution with radial p.d.f. P(r),
we have

(4.1) = ( sin rp P(r) dr.
rp

(4.2) P(r) =- rp sin rp(D(p) dp.

These are easilydeduced from the polar form ofthe three dimensional characteristic
function for r. Since (D( -p) = 4(p), (4.2) can be written as

(4.3) P(r) = - X rp exp {-irp} (D(p) dp.
-0

On putting K = ip and (D(p) = Mc(K), (4.1) and (4.2) become

C~sinh rK
(4.4) M(K) = J

r

P(r) dr.

and

1 Oc+it
(4.5) P(r) = . M(K) exp{t-K} IK dK.

76

where c is real and M (K) is the spherical moment generating function in an
obvious sense.
For a freely jointed chain of n units, M(K) has the form exp {nji(K)} with

M(K) = log (sinh Ka/Ka) and the method of steepest descents can be applied to
(4.5). Choosing c to be the real root K of

(4.6) 8U'(K) = a (Ka) = =
n

which is a saddle point of the integrand. we obtain as an approximation to
p(r) = P(r)/4nr2.

(4.7) p(r) zKexp {n(3 (K) - Kr)}(4.7)~ ~ ~~(r) - ~r(27tn)3/2{M`"(K)}"2
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FIGURE 1
Distribution of vector length of freely jointed chain.

Comparison of approximations.
n = 4

a: log10P(r) (Kuhn-Grin); b: log10p(r) (exact); c: log10 Cpj(r) (saddle point).

This differs from P(r) of (3.11) in having the extra factor {p"(K)}'12 where

(4.8) p" (K) = csech2 K + - = 1 - -_

Its accuracy can be further improved by normalizing it to Cp(r) so that
Cfo 4irr2p (r) dr = 1.
Some idea of the accuracy of (4.7) can be got by comparing it with the exact

values ofp (r),
n

(4.9) p(r) 2 rn(n-2)' E (-) (S){(n - r - 28)+}n-2,

where (x)+ = max {x, O} (Treloar [16]). In Figure 1, log10 p(r) is compared
with log10 P(r) and log10 Cp(r) for a chain of n = 4 units. Apart from the
value at r = 0, the normalized saddle point approximation is surprisingly good
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FIGURE 2
Distribution of vector length of freely jointed chain.

Comparison of approximations.
n = 6

a: loglop(r) (Kuhn-Grin); b: log1op(r) (exact); c: log10 Cp(r) (saddle point).

and has the advantage of maintaining its accuracy as F approaches its maximum,
whereas log10 jP(r) becomes progressively worse. In the case of n = 6 shown in
Figure 2, log10 Cp(r) is practically indistinguishable from log10 p(r), but
log,0 jP(r) differs substantially from it, particularly as r increases.
For chains of more than about 20 units the extra factors in P(r) and P(r)

have little effect. The original Langevin approximation (3.8) (with r for x) is
then quite adequate and has the merit of simplicity. The entropy takes the form

/sinh Ka\
(4.10) 8 = constant + nK log K)-

and the average force on a chain of length r is

(4.11) F = KTK = KTY-1



540 SIXTH BERKELEY SYMPOSIUM: DANIELS

At large extensions, 1 - r/a is small and

(4.12) 8'(K) = a - (Ka) a - .
K

Then F - KT(I - r/a)- 1as r approaches its maximum value. We refer to this
result later when discussing more general chains.

5. More realistic chain models

The simple model of a freely jointed chain of equal units is not adequate to
describe the behavior of real chains except in the most general terms. The next
most simple model is one where each unit is of fixed length, but free to rotate
in a cone of fixed angle whose axis is the previous unit. This might be thought
a suitable model for a simple molecule such as polymethylene. However, in
reality the rotation is not completely free, but is restricted by the interactions
between the groups of atoms making up each unit of the molecular chain. There
is a nonuniform probability distribution of angular position, related by the
Boltzmann formula to the nonuniform potential energy of angular position.
The model assuming complete rotational freedom on the cone might be
approached at high temperature.
A method of simplifying the general situation which has been extensively

and fruitfully developed by Volkenstein, Flory, and their coworkers is to use the
"rotational isomeric" approximation. In this approach, which originated in the
work of Montroll [15] and was independently introduced by Kubo [12], the
continuous distribution of angular position is replaced by a discrete set of
angular states at the minima of the potential energy function, with suitable
probabilities attached to them. The direction of the nth unit has a distribution
governed by a Markov chain with these transition probabilities, each unit being
referred to axes relative to the direction of the previous unit. (One is essentially
considering a random walk on a sphere.) For a long chain, the dominant role
of the principal eigenvalue is exploited.
The moments of the vector length distribution can be calculated by the methods

of Flory [7], and used to approximate to the distribution by an Edgeworth
expansion. But for approximations of Kuhn-Grin type the evaluation of the
moment generating function itself, as described by Montroll [15], is necessary.
Although essentially equivalent to Montroll's analysis. it is simpler to approach
the problem directly in terms of the chain vector itself. Three similar attacks on
the problem from this point of view were made independently by Kubo [11],
Hermans and Ullman [8], and myself [3]. The first two specify the chain vector
in terms of fixed axes, in which case in order to preserve the Markov property
the vector of the final unit has also to be included in the specification of the system.
My own treatment of the problem, like Montroll's, avoids this complication by
the use of moving axes, and a brief account of the method now follows.
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Suppose we have a chain of n bonds of fixed length a. It is convenient to
choose the origin of the axes at the end point of the chain, and to let r be the
vector of the initial point, relative to this origin, of the chain. The z axis is taken
to lie along the nth bond, and the (z, x) plane contains the (n - 1 )th unit also.
If r' is the corresponding vector for a chain of n - 1 bonds, then the coordinates
of r and r' are related by

xl cos a cos cos a sin -sin oa x'
(5.1) Y = [ + -sin/3 cos 0 yI.

z [a] sina cos sina sin cos a Lz'

where a is the bond angle and P3 the rotational angle. It will be assumed that aC
has a fixed value and /3 has p.d.f. g(fl) (though both a and ac could also be random
variables). We have a Markov chain with successive probability distribution
functions fn(x, y, z) connected by

(5.2) f.+ 1 (X, yz ) g(fl) d/3fi(xy'. z').

The characteristic function

(5.3) (D,,1(c, .) = E exp {i(x4 + yq + z4)}
satisfies

(5.4) 4n+I(. 1 4) exp {ia;} (D,, p' c')

where

cos a cos /3 cos a sin /3 -sin a

(5.5) [q, C = [, .1 '] -sin /3 cos P3 0 .
sin a cos /3 sin a sin /3 cos a

The polar form of these relations is required. With 4 = p sin 4 cos co, i =
p sin 4 sin co, 4 = p cos 4'. and n(e (. ) = )n(P, 4. co))! (5.4) is

(5.6) (Dn+ (p, By(4 ) = exp {iap cos 4'} f_ g(/) d/3$(p, 4', c'),

where

(5.7) cos 4" = cos 4 cos a + sin 4'sin at cos(co - /),

(5.8) sin 4' sin co' = sin 4 sin(co - p).

It is preferable in the present application to work in terms of the moment

generating function. Writing K = ip, Mn(Ki, 4W) = $,n(p. 4', o), (5.6) becomes

(5.9) M.+1( c, 4, CO) = exp {Ka cos 4'} { g(/3) dM.(Kc, 4', at).
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6. Free angular rotation

In the simplest, case fi is assumed to be uniformly distributed on (-x, r).
This represents one extreme, corresponding to very high temperatures; the
other extreme is the rotational isomeric model, where fl can take only discrete
values with certain probabilities, an assumption which should be nearly true
at low temperatures. Both may be regarded as approximations to the true
situation. The first case, which is usually described (rather confusingly) as
"freely rotating" has the simplifying feature that the formulae become axially
symmetric, (5.9) reducing to

(6.1) M.+1(K, 1) = exp {Ka cos } _ 2 M,(K, f') dw,

(6.2) cos f' =cosI coso + sinq sin a cos co,

where co has been replaced by co.
There is a limiting form of this model which produces the "worm like chain"

of Kratky and Porod [13]. It is got by allowing the angle a and the bond length a
to tend to zero in such a way that o2/a remains finite, say 4c, when (6.1) becomes
the differential equation

(6.3) aM M + Ca{(1 U2) AM

with t = na and u = cos I. A detailed discussion of the model is given in [3]
and [8] and we omit it for brevity.
The function M (Kc) to be used in (4.5) for deriving the saddle point approxima-

tion to the radial distribution is, in the present context,

(6.4) M. (K) = 2 M,(K,( /,) sin i do.
o

Since (6.1) has a positive kernel, M, (K, t), and hence M,"(K) will ultimately
become proportional to A' where AO is the unique real positive maximal eigen-
value of (6.1).

There are two ways of calculating M,(K). One is to compute it directly by
numerical integration from (6.1) and (6.4), starting with MO(K, /) = 1. This is
quite practicable and is discussed in Section 8. The other, which was used in [3]
to develop Edgeworth type expansions based on the Gaussian approximation, is
to expand M,(K, i) as a series of Legendre polynomials,

(6.5) M.(K, f) = 1 M.sPs(cos /)'
s=0

where Mno = M,(K). The addition theorem for biaxial harmonics enables
P,(cos f') to be replaced by P,(cos 1k)P, (cos at) the other terms vanishing on
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integration, and we get

(6.6) M+ = (s + 2) os)cssMn,, s = 0,1,2,
t=o

where

(6.7) CS, t exp {Kau} PS(u)Pt(u) du.

The c,,, can be calculated from recurrence formulae. No generality is lost by
assuming a = 1 which we do when convenient.
From this formulation, AO is seen to be also the maximal eigenvalue of the

infinite matrix A with elements

(6.8) a,, = (s + 2)Ps(cos -

The simplest way of computing it was found to be the following one. If
D(A) = IA - All and B(A) is the principal minor of D(A), and if C(A) =
D(A)/B(A), then Ao is the largest real positive zero of C(A), and for large n,

An
(6.9) M.(K) -MO,. )

The saddle point approximation to p(r) is given by a formula similar to (4.7),
with M(K) = log A0, #'(K) = F, except that there is the additional factor l/C'(A0).
The zeros of successively larger truncations of C(A) are computed until they

settle down to a steady value A0, which happens quite rapidly unless K is large.
In the examples computed by this method, the next highest root was sufficiently
far below A0 for (6.9) to be a good approximation for quite small values of n.
However, when K is large (corresponding to high extensions), convergence
becomes slow and direct computation as in Section 8 is preferable.
A useful device, due to Kuhn, for comparing distributions for different chain

models and different parameter values is to adjust the number n of units in each
chain and the unit length a so that the chains have the same maximum length
and the same mean square length. In particular, comparison with the freely
jointed chain gives a reasonable definition of the number and length of
"equivalent" freely jointed units. It is a well-known result that for large n the
mean square length of a freely rotating chain of bond angle a is approximately

(6.10) E(r2) - na2(1 + cos a)
1 - cos a

and its maximum extended length is, for even n, r(max) = na cos 2a, in which
case the bonds have a planar zigzag configuration. For a freely jointed chain of
N bonds of length b, we have E(r2) = Nb2, r(max) = Nb. On equating these
one finds that

(6.11) N = n sin2 2a, b = a(sece - cos 2a).
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FIGURE 3
Kuhn-Grin type approximations for freely rotating chains.

{p (K) - Kr} sin2 2a
a: cos a = 0.9; b: cos a = 3-; c: cos a = 0; d: freely jointed pu(K) - Kr;

e: Gaussian approximation.

(In the limiting worm like chain model of (6.3), 2b tends to the so called
"persistence length" 1/2c of the chain.) When n is large enough for the Kuhn-
Grun approximation to be adequate the distribution is determined by P (K) -
Kr, assuming a = 1, and for varying values of at the quantities to be compared
are {p((K) - K,} sin2 2a at the same value of i/i7(max) = r sec lot.
The results of some calculations by my colleague R. L. Holder are shown in

Figure 3. The function {p (K) - Kr} sin2 a is plotted against {i/r(max)}2 for the
three cases cos a = 0.9, 3 and 0, together with the freely jointed (Langevin)
case for comparison, and the straight line corresponding to the Gaussian
approximation with which they all agree for small r/r(max). The values for
higher r/r(max) were computed by the method of Section 8. It will be seen that
for r/r(max) up to about 0.6 the distributions are not very different and the idea
of "equivalent" freely jointed units is a useful one. Beyond this point the
distributions begin to diverge and the idea is no longer meaningful for highly
extended chains.



POLYMER CHAIN DISTRIBUTIONS 545

7. Asymptotic behavior of the distribution near maximum extension

It is of great interest to know the behavior of log p(r) in the region where r
approaches its maximum value. Since it depends on the behavior of 2A when K
is large and convergence is slow by the methods discussed, we need to find an
alternative asymptotic approach. This is a problem of some difficulty and the
treatment given here is in the nature of a preliminary reconnaissance.
For freely jointed chains, we saw that when K is large and 1 - ria is small,

-r/a 1I - 1iKa. Kubo [11] stated without proof that for quite general chains
a similar formula holds when K iS large, namely.,

(7.1) 1 1
r (max) Ka*

where a* is of the same order of magnitude as the unit length a and is characteristic
of the chain model. 1 have not been able to construct a proof of this result, which
can be stated in the alternative form

(7.2) r = ay'(K) - r(max) -

where v is a dimensionless constant, for the freely jointed chain v = 1. We now
examine the limiting behavior of the integral equation (6.1) when K is large,
using heuristic arguments which strongly suggest that for the freely rotating
model (7.2) holds with v = 8. whatever the bond angle a.
When the chain is highly extended there is a considerable restriction on the

possible configurations it can adopt, and indeed at its full extension it can only
take the form of a planar zigzag with angles ± a between successive bonds.
Because of our particular choice of axes, a chain at full extension but otherwise
free can rotate rigidly about one end bond lying along the z axis. With an even
number n = 2m of bonds, the vector r is uniformly distributed with fixed length
r = na cos 2a on a cone of semiangle 2a; with an odd number n = 2m + 1,
r is greater than na cos 2a and the semiangle of the cone is less than 2a, but the
differences approach zero as n becomes large.

Consider a rod of length t uniformly distributed on a cone of semiangle y
with axis along the z axis. It is easy to show that for this distribution,

(7.3) M(K, ) = exp {Kt cos Ccos y}IO(Kt sin K sin y)

exp {Kt cos (- 7)
sin y(2EKt)112

when K is large. In fact. M (K. i) is appreciable only when f-y is 0 (K - 1/2 ) and
cos (f-y) can be replaced by 1 - -(- y)2 in the exponent. This leads us to
expect that for large values of K corresponding to highly extended chains,
M(i(K, a) will be concentrated near f = -a and negligible elsewhere.

Because chains with odd and even n behave differently, it is best to work with
an equation relating chains with even n only. Assume a = 1 and consider
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(7.4) M2m+2(K, i/)

= exp {K COS i/ { 2X exp {K cos q'} dw| M2m(K, O") dc',

where /, i', co, and Y', /", co' are related by (6.2). Note that

(7.5) cos i + cos ' = 2 cos 2a cos( a) - sin a sin i/(1 - cos cl).

Analogy with (7.3) suggests that (D = r-o should be O(K- 1/2), so from (6.2),

(7.6) V' -(D + 1c2 sin a + O (K -1),

where cc2 must also be O(K-112), and hence

(7.7) (D," = (D + 1(Col'2 -_cc2) sin a + O(K 1).

Writing M,((F) _ M,(K, /) for brevity and using (7.5), we get as an approxima-
tion to (7.4),

(7.8) M2m+2((D)
- exp {2K COS -1C- 2 COS Ka} - exp {- KO2 sin oa sin ja} dco

| 2 M2 ((D + 1(Cc'2 -c2) sin at) dco',

when K is large, the neglected terms being O(KC1/2). If we put U = K COS 2a,
(D = Xa 1/ 2CO sin a = '122C-)*sin ,= (a and M2((D)) Q2(z)
(7.8) reduces to

(7.9) Q2m+2(4) = exp {2or-si }n -12 exp {-qo1/2 tan 'a} ?1-1/2 dti

Q2m(': + -1)4-1/2 dt.

Now cc2 was required to be O(K-1/2) = O( - 1/2) and hence ?1 had to be 0(1).
However, it will be seen from the exponential term in the integral that provided
Q2m is reasonably well behaved the effective range of ?7 is in fact only 0 (a- 112 ).
We may therefore approximate again by ignoring i? in Q2m(' + -1) and
integrating out Q to obtain

(7.10) Q2m+2(') = exp {2a} cos U-3/4 exp r_ 2 Q2m(4 + C)-112 dC.(ir sin OC)3I2 ~ "J

Hence if K is large, we can write

(7.11) Q2m exp {2mK COS jO} K 3m/4 (cos a)r/22 ~~(7r sin OC3m/2 W()
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where W is independent of K and satisfies

(7.12) Wm+.(1) = exp {_42} { W,( +±)Q-1/2 d;.

The conclusion from this discussion is that when K is large enough it will occur
in M,(,,(/,) only within the factor K -3n/8 exp {nK cos 2 a}, and hence that Kubo's
result (7.2) holds with v = 3 whatever the value of xt > 0. The force on a freely
rotating chain at nearly maximum extension is, from (4.11),

(7.13) F - 3KT(a cos 2a-r)-',

and it follows from (4.7) that in the extreme tail of the distribution p(r) becomes
proportional to {1 - F/(a cos 2a)}3n!82.

However, apart from its heuristic nature, the discussion is not complete.
A more detailed examination of the step from (7.9) to (7.10) (see Appendix)
indicates that, relative to the dominant term, the term neglected at this stage
is of order K 1/4. If the further approximation is to be acceptable K- 1/4 must
therefore be small, and this requires K to be very large. If K is not large enough.
it appears that K(a cos a- r) should lie somewhere between 3 and 21, depending
on the value of K. It may be that Kubo's limiting form is appropriate only for
extensions so near the maximum that the assumption of a fixed bond angle is
unrealistic.

There is also the fact that if both m and K are to be large, a double limiting
process is involved. One would like Wm(4) in (7.12) to settle down for large m
to the form cm W(4), where c > 0 is an eigenvalue of the equation

(7.14) W(4) = cexp {-2} fo W(, + )g-112 d;.

Unfortunately, it is known that an equation of this type has no bounded non-
zero solution for any c. One can show that when 4 > 0.

(7.15) Wm(4) = O((m!V114 exp M42}),

and when '1 > 42 > 0.

(7.16) W. (:) = O(exp {m( -2

So on the positive axis Wm(4) is "consumed" progressively from right to left as
m increases, Wm(0) dying away most slowly. Numerical iteration confirms this,
and also suggests that for 4 < 0, Wm(c) dies away even less rapidly (though I
cannot prove it) and for large enough m, Wm(4) will lie almost entirely on 4 < 0.

Nevertheless, whatever the limiting behavior of Wm(4), our conclusions should
hold for any fixed n = 2m provided K is large enough.
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8. Direct computation from the integral equation

The computation of M(c(K. i/) from (6.1) is a simple numerical operation
most expeditiously conducted in terms of u = cos fr so for convenience let us
write M,(u) for M,,(K, lI). Given that M,(u) is known for equally spaced values
of u on (-1, 1), u' = cos Or' is computed from (6.2) for equally spaced values
of co and M,(u') is interpolated. Numerical integration then gives M+,1 (u). and

(8.1) = -M M,,(u) du

is evaluated at each stage. The process is started with M1 (u) = exp {KU}
(assuming a = 1). However, Mn(u) soon becomes unmanageably large as n
increases, and if K is large. Ml,,(u) can take very large values for all values of n.
It is better to modify the procedure by calculating

(8.2) L.+,(u) = exp {K(u - COS 2X)} { 2
u'

dco,

0.3

0,2

0.1 _

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
n

FIGURE 4
Convergence of L, to limiting value as n increases.

cos aO = 3- K = 30; L, against n.
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where

(8.3) 2 L,(u) du.

It is easily verified that

(8.4) = M _exp {-K cos }.

and L, settles down to exp {m(K) - K Cos 2a} as n increases. If n is large, this
may be all that is required. The method of Section 6 produces the factor 1/C' (20)
in the approximation (6.6) to M,. This factor can be recovered by the present
method if n1 Ej= 1 log L - log L, is computed at each stage, since it tends
to -log C'(A0) for large n.
When K is large, Ln(u) becomes concentrated around u = cos 2a and a fine

grid of values of u is needed if the numerical integration is to be accurate.
Provided C'(A0) is not required, it is preferable for such values of K to start the
process with an arbitrary distribution covering the expected range of values
of u, to avoid using an unnecessary amount of computing time in the early stages.

6

4

2

I0 /
---60

.55 .60 .65 .70 75 =COT80 .85 .90 .95 1.00

FIGURE 5
L,, (u) for K = 30 and K = 60, cos oco 30

L,, against u = cos s(n large).
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The typical manner in which L, converges to exp {}1(K) - K cos 1} is shown
in Figure 4 for cos a = 3, K = 30. It exhibits the oscillations to be expected
for large K because a highly extended chain behaves differently for odd and
even n. The limiting forms of L"(u), for cos a = - and K = 30, 60 are also
shown in Figure 5. These are interesting in view of the indication of Section 7
that when K is very large Wm(4) ultimately tends to lie entirely on 4 < 0, which
implies that L"(u) should tend to lie entirely on u > cos lot. Clearly, K = 60 is
not large enough for this to happen, but the proportion of L"(u) for which
u > cos 2a increases from 0.79 when K = 30 to 0.89 when K = 60.

9. Restricted rotation

The assumption of complete freedom of rotation is of course not true for
real chains. The integral equation (5.9), or some generalization of it, can be
used in a similar way when there is restricted rotation, though the abandonment
of axial symmetry complicates the formulae considerably. (At the other extreme,
we have the rotational isomeric model for which matrix methods are available.)
For example, the approach of Section 6 can be used, but in place of (6.5),
M(K, if, CO) is expanded in a series of spherical harmonics,

00 s

(9.1) M.(K, b, c0) = ,,P (cos /) exp {itc)},
s=0 -S

where PI'(u) is the associated Legendre function which has an addition theorem
involving Jacobi polynomials (see, for example, Edmonds [6]). The relation
between the coefficients for n and n + 1 is

(9.2) M.+ 1,s,
sot

= (s + 1 ) E E Mn,t,m(sin la)"-m(cos p )t+mp (t-m t+m)(cos ,)c~, gg,
tO m=-t

where

(9-3) ce~t = (8 + 6)! J exp {KU} Pl(u)Pf(u) du,

(9.4) ge = { exp {-imfl} g(P) df3,

(9.5) p(ijk)(X) - 2-h (h i) (h + k) (x - 1)h (X + 1),

the last being the Jacobi polynomial. K. Kajiwara [10] has arrived at this
formula independently in his studies of light scattering which use the charac-
teristic function rather than the moment generating function (Burchard and
Kajiwara [2]).
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The required coefficient M, 0,0 can be computed by finding 2A and using a
formula like (6.6), but the convergence of the process is slower since the
determinants are larger when truncated at a given value of s. The most practical
approach seems to be to compute 2A directly from the integral equation (5.9)
as in Section 8, though, as double integration is involved, the amount of com-
puting time needed will be quite large. A study of the computational problems
involved in both these methods is currently being carried out at Birmingham.
A theoretical investigation of the asymptotic behavior at high extensions, as

in Section 7, is likely to involve new difficulties. One can imagine chain structures
such that the rotational isomeric model has a different fully extended length
from the real chain to which it approximates, because it rigorously excludes
certain configurations. Then in cases where the rotational isomeric model is a
good approximation one would expect a distinct change in the behavior of the
distribution in the region beyond the maximum rotational isomeric extension.

APPENDIX

The substitutions u = q
± I, v = -It, u lvi cosh t reduce (7.9) to the

form

(A.1) Q2m+2(') = p {2a } v-1/227t2 sin a

exp {4Va112 tan 2a} KO('|VIl112 tan 2a)Q2.(' + v) dv,

where

(A.2) KO(x) = J exp {-x cosh t} dt, x > 0O

is a modified Bessel function of the second kind. When x > 0 is large,
K0(x) - (Xr/2x)112 exp { -x}, and in fact x1/2 exp xKo(x) increases mono-

tonically from 0 to (2X)1/2 as x increases from 0 to oo.
Going from (7.9) to (7.10) is equivalent to ignoring the range a < 0 in (A.1)

and replacing KO by its asymptotic form in the range u _ 0. Let us examine the
effect of this operation. Consider first

(A.3) I,= JO exp {Nv} KO(Nv)Q2m(' + v) dv,

where N = 1U/2 tan 2a is large. Since

(A.4) 0 <
n

-x 1/2 exp xKO (x) < c
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for all x > X(£), we have

(A.5) I, - ( 7c)1/2 i Q2m('1 + v)(Nv)'12 dv

- { {(1r)M1/2 x112 exp x Ko(x)}Q2m(4 + v) (Nv)- 1/2 dv

r±(e)±N

< (27t)"12{X(g)}1/2AN` ± c~ Q + v) (Nv)'-1/2 dv,

where Q2.( ± V) < A. Next consider

(A.6) I2 = f exp {Nv} K0(Nivi)Q2m( ± v) dv

<()If)12 ` exp {-2Ny} (Ny"Q1 ( - y) dy

The dominant part of the integral in (A.1) is therefore of order N- 1/2 and the
neglected part is of order N`~. In terms of K, this means that the dominant part
approximates to the integral to within a factor 1 + O(K-'1/4)

My principal debt is to Mr. R. L. Holder who collaborated with me extensively
on the computational aspects of the work. A detailed account of our joint work
will appear elsewhere. I am also grateful to Dr. D. M. G. Wishart and Professor
G. E. H. Renter for useful discussion, and to Professor M. Gordon for reviving
my interest in the subject.
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