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1. Introduction

Let X = {X (t); 0 . t . 1 } be a real valued stochastic process with stationary
independent increments and right continuous paths X (0) = 0. The characteristic
function of X(t) then has the form exp {to (u)}, where

(1.1) (u) = iug - 2u2a + f[eiux - - l vv(dx).

The measure v is called the Levy measure of X, and / is called the exponent. It
will be assumed throughout that U2 = 0. The index P (X) of the process X is

(1.2) /(X) = inf{P > 0; xIPv(dx) < cc}
Ixl<l

If fix, < 1 Ix v (dx) < x, then by subtracting a linear term from X one may write
the exponent / as

(1.3) (U)= f [1 - xeix] v(dx):

it will be assumed from now on that the exponent is in this form whenever

fix,<, Ixlv(dx) < oo.
This paper studies the sample function behavior of processes Y = {Y(t);

0 . t . 1}, where Y(t) has the form Y(t) = J' v(s) dX(s) and where v =
{v(s); 0 . s < 1} is a stochastic process of a special type described below.
Section 2 contains a development of the theory of such stochastic integrals,
together with conventions and notations prerequisite for the rest of the paper.
The construction of the stochastic integral is made to depend on an inequality of
L. E. Dubins and J. L. Savage, and has applications to more general theories of
stochastic integration. In Section 3 a local limit theorem is proved. If Iv(s)| . 1
and ifp > ,B(X), then |Y(t)1t-l/P converges to zero a.s. as t J,0. This generalizes
(with different proof) a result known for the case v(s) 1 (see [2]). To state
the results of Section 4, let 7nr 0 = tn, < * < tn kn =1 be a sequence of
partitions of [0, 1] satisfying

(1.4) lim max [t.,k+ 1 - tnk] = 0;
n Bo0 k
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and let

(1.5) V(n, Y, p) = L IY(tnk+i) - Y(tf,k)Ip.
k

If Iv(s)I _ 1, and iff1l1<1 IxIPv(dx) < o., then V((n, Y.p) converges in proba-
bility to YO<si |Iv(s)IP Ij(x, s)IP, where j(X. s) = X(s) -X(s-). This general-
izes and improves (with different proof) the result obtained in [18] under the
additional assumptions p > P/(X) and v(s) _ 1. Moreover, if the Levy measure
is concentrated on a finite interval, convergence is L, for every r < 0C.
Section 5 is devoted to the concept of zero jumps. A zero jump is experienced
by X at time t if either X(t, w) < 0 < X(t-, co) or X(t-. w) < 0 < X(t, wo).
This concept appears to be of some interest in describing the sample function
behavior of X. For example, as shown in Section 5. X may jump over zero
infinitely often as tO0, yet without ever hitting zero itself. Section 5 begins by
establishing a stochastic integral formula analogous to the famous It formula
for the case of Brownian motion. This is eventually made to yield an inequality
relating the zero jumps up to time t to other more tractable quantities. This
development draws on the results established in preceding sections.

2. Stochastic integral

Throughout this paper, the notation X = {X(t): 0 t _ 1} will always
denote a process with stationary independent increments, as in Section 1. Let
Xa(t) be the sum up to time t of all the jumps of X having absolute magnitude
greater than a. Define Xa(t) = X(t) - Xa(t). Then Xa and Xa are independent
processes with independent increments. The process Xa has moments of all
orders, its Levy measure is concentrated on (-a. a), and {Xa(t) - ct; t _ 0}
is a martingale if c = EXa(l). The exponent of Xa is

(2.1) a(U) = F [eiux - I]v(dx),
JI xl >a

and that of Xa 's Vaa(U) = 0(u))- 0aa(U). In the interval [0, 1], the path X(.. co),
for each co, will experience only a finite number of jumps exceeding a. Hence,
if a is large, X(t) = Xa(t), 0 _ t _ 1, for all co in a set £a, where "aT 1 as
a -- c. For this reason we can (and will) often replace the process X in argu-
ments below with the truncated process Xa. (See also [18], where this point of
view is further explained.) Let us proceed now with the development of the
stochastic integral.

Let {F(t): t _ 0} denote the family of sigma fields given by F(t) =
F{X(s): s _ t}. All processes are henceforth automatically assumed to be
adapted to the family F(t). Let G be the sigma field on [0. o-) x £2 generated
by all the processes with left continuous paths. A process v = {v(t): t _ 0}
is "previsible" if it is measurable when regarded as a map of ([0, f([) X .2.)C,)
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(o, oc), B). Here B denotes the Borel sigma field. A previsible process v is
a step function if

(2.2) V(t) = E Itktk+ ](t)Vk, 0 . t1 . ... . t_ <
1 .k n

and Vk is an F(tk) measurable random variable. (For any set A, IA will always
denote the indicator function of A.) If v is a step function, then the stochastic
integral of v with respect to X is the right continuous process Y = {Y(t);
0 . t . 1} defined by

(2.3) Y(t) = v(s) dX(s) = V1[X(t2) - X(t1)] + + Vk(t)[X(t) - X(tk(t))],

where k (t) = max {k: tk < t}.
The problem now is to extend this definition to more general processes v.

There are several ways of doing this. The following approach, which is
applicable in much wider contexts (see the remark following the proof of
Theorem 2.2), extends the version by H. McKean. Jr. [13] of It6's original
approach to Brownian motion through the use of different martingale inequali-
ties. For the present paper, it was desirable to have the integral defined in a
canonical manner as an a.s. limit uniformly in t, 0 . t . 1. For other methods,
consult P. A. Meyer [15]. The present method yields in a natural way a larger
class of v that may serve as integrands than do the methods of [15].

Let us begin with an inequality of Dubins and Savage [10]. Let {F,; n > 0}
be an increasing family of sigma fields; let {dk; k _ 1} be a sequence of
martingale differences, and let {wn; n _ 1} be a sequence of random variables
such that Wk is Fk - 1 measurable. Finally, let h,, = E (d2|E -1). Then, assuming
dk is Fk measurable for k _ 1,

n n

(2.4) P{ dk _ a E hk + b for some n} . (1 + ab)1.
(k= 1 k= 1

This bound is known to be sharp, and implies that

(2.5) P{ dk _ a hk + b;forsome n _ 2(1 + ab)}
k=l k= 1

It then follows that

(2.6) P { Wkdk _ a E W2hk +ib for some n} 2(1 + ab).
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Hence, if v is any step function, and X is any integrable process with stationary
independent increments, then

(2.7) P{ v(s)d[X (s) - cs] > al v(s)2rds + b;forsomet,0 < t < 1}

. 2(1 + ab)-',
where c = EX(1) and r = Var X(1); or

(2.8) {f v(s) dX(s) > ar | V(s)2 ds + Ici { Iv(s)Ids + b; for some t}
< 2(1 + ab)1.

The following theorem gives the existence of the stochastic integral.
THEOREM 2.1. Let v, be a sequence of stepfunctions, and let v be a measurable

process, not necessarily previsible, such that

(2.9) p [v(s) - v.(s)]2ds _ 2 `;ntco} = 1.

Then the sequence of step function integrals Jto v"(s) dX(s) converges for every co,
uniformly in t, 0 < t _ 1. Any process v satisfying

(2.10) p [V(s)] 2ds < o} = 1

may be represented as a limit of step functions as in (2.9).
Of course, one defines

(2.11) Y(t) = v(s) dX(s) = lim v,s(s) dX(s),
fO nx- o

and so the existence of Y(t) is established as an a.s. limit for all t e [0, 1],
simultaneously. By virtue of the uniform convergence, one automatically has the
following corollary.
COROLLARY 2.1. The process {Y(t) : t _ 0} is right continuous.
PROOF OF THEOREM 2.1. Because of the facts stated at the beginning of this

section, there will be no loss in generality in assuming the Levy measure of X
concentrated on a finite interval [-a, a] (If

(2.12) £1. = {(U: X(t) = Xa(t); 0 _ t < 1},
then Qa T Q as a t co; the step function integrals relative to X and to X. are then
exactly the same for each co Ec Qa.) Let c = EX(1) and r = Var X(1). Suppose
first that v, is a sequence of step functions such that

(2.13) p [v'(s)]2 ds _ 2 `;nToo} = 1.
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Then from (2.8);

(2.14) sup v,V(s) dX(s) < 2-n/3; n soc = 1.
~O_t _1 J0

For, let an = [2 n4]112 and bn = 2-n/2, so that (1 + anbn)-(1 + n2)-1 is
the general term of a convergent series. Then from the Borel-Cantelli lemma,

(2.15) p{ Vn(s) dX(s) _ an f [vn(8)]2 ds + jCf | Vn(S)| ds + bn;

for some t, nT co} = 0.

But lo v2(s) ds _ fo vn2(s) ds . 2-n for all but a finite number of n, and so alsoZt-rl _ ~~~~~~1/2
(2.16) f vn(s)jds_ [f v (s) ds]2-

for all but a finite number of n, implying that

(2.17) Pt sup Vn (s) dX(s) _ 2-,2(n2r +±ci + 1); nT cc = O.

Therefore, (2.14) holds.
Next, let {v,,} be a sequence of step functions satisfying (2.9). By (2.14),

supo0 t1 if' (vn+ 1 - v.) dX goes to zero geometrically fast, so that f' vn(s) dX(s)
converges uniformly in t for almost every co. This completes the proof of the
existence of lo v(s) dX(s). The last statement of the theorem is proved as in
McKean's book [13].
REMARK 2.1. Let {X(t), t _ 0} be an L2 martingale, and A(t) the natural

increasing process associated with it. These concepts are defined in [14]. The
analogue of (2.7) then becomes, if v is a step function,

(2.18) P{ v(s)dX(s) _ a v2(,s)dA(s) + b;forsomet}. 2(1 + ab)'.

Using the argument of Theorem 2. 1, one can obtain the existence of S' v (s) dX (s)
as an a.s. limit, uniformly in t, whenever there exist step functions v,, such that

(2.19) p [v(s) - Vn()]2dA(s) < 2- nt a} = 1.
In particular, one can see directly that this is possible whenever

(2.20) P{ v2(s) dA(s) < c} = 1

and A has continuous paths (that is, X is quasileft continuous), and so estab-
lishes the existence of S' v(s) dX(s) for all v satisfying (2.20). This seems to be
an improvement on P. Courrege's approach to this problem [7].
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The process Y(t) = Jo v(s) dX(s) is now defined for any process v satisfying
(2.9). One can then enquire of the existence of the stochastic integral
Jto w(s) dY(s). If w is a step function, then

(2.21) f w(s) dY(s) = WkI(k,tk+ l][Y(k+l ) Y(tk)]

= Wktktk+11 J v(s) dX(s) = w(s)v(s) dX(s).

Using the development of Theorem 2.1, one checks that ifP{f0 w2(s) ds < < } =
1. then there are step functions w,, such that

(2.22) P{J' [w(s) - W((s)]2 ds < 2-f:n Tcc = 1,

and Jo wn(s) dY(s) converges to It w(s)v(s) dX(s) for each co, uniformly in
t, 0 . t. 1.

Several properties of the process Y(t) = f0 v(s) dX(s) will now be recorded
for future reference.
PROPERTY 2.1. Suppose X - X1 + X2, where the Xi are processes with

independent increments. Then

(2.23) J£ v(s)dX(s) = f v(s)dX1(s) + J'v(s)dX2(s), 0 . t _ 1.

PROPERTY 2.2. Let the Levy measure ofX be concentrated on a finite interval.
There is a constant K depending only on EX (1) and Var X (1) such that

(2.24) E[{ v(s) dX(s) < KE v2 (s) ds.

(2.25) EL sup f (s) dX.(s)< KE v2(s) ds.
O<t<I

This follows upon observing that the following hold for step functions v:

(2.26) E v(s) d [X (s) - cs] = rE v2 (s) ds.

and
2

(2.27) E sup v(s) d[X(s) - cs] < 2rE v2(s) ds.
O~t_ 1

These, of course are well-known martingale results. Here, as usual. c = EX (1)
and r = Var X(1).
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PROPERTY 2.3. If the Levy measure of X is concentrated on a finite interval
and (2.9) holds. then

(2.28) P V(s) dX(s) > ar v2(s) ds + cl iv(s)l ds + b; for some t}

< 2(1 + ab)-'.

PROPERTY 2.4. If the Levy measure of X is concentrated on a finite interval,
if c = EX(1). and iflv(t) _ 1, 0 < t < 1, then for p _ 1.

(2.29) E, sup v(s) dX(s) < c ElX(t)lP + cpctP.OS~t JO

Here cp is a constant depending on p only.
If p > 1, Theorem 9 of D. Burkholder [5] (see also [16]) implies that

(2.30) E sup v(s) d[X(s) - cs] < cp|E X(t) - ct P
O<s<t 0

whenever v is a step function. That (2.30) holds for p = 1 follows from
Theorem 1.1 of [17]. Property 2.4 is a consequence of (2.30).
PROPERTY 2.5. Suppose that the Levy measure of X is concentrated on

[-a, a] and that (2.9) holds. If

iuxl
(2.31) f(U) = iug eLUX - 1- 21 v(dx),

let X' be the process with exponent

(2.32) iug + L eiii_ i
e u2x v(dx).

Let Yn be the process

(2.33) Y (t) = { v(s) dX'(s).

Choose s8 so that

(2.34) {; 1X12v(dx) < 2-n.

Then for each co, Y'(t) -- Y(t). uniformly for 0 . t . 1.
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PROOF. The process X(t) - X'(t) has stationary independent increments.
According to Property 2.3, if c,, = E[X(1) - X'(1)] and rn = Var [X(1) -

X" (1)1, then for constants an, bn,

(2.35) P sup j v(s) dX(s) - v(s) dXn(s)

> anrn v2(s) ds + Cn| f Iv(s)l ds + bn}

. 2(1 + anb)-'.
Since the exponent of the process X(t) - X"(t) is

(2.36) J0<1 v(eiux1j dx),
r _ 2 `andcn 2-n/2. Set an = n3 and bn = n 1, and conclude Property 2.5
from the Borel-Cantelli theorem.
PROPERTY 2.6. Suppose almost all paths of X are of bounded variation.

(A necessary and sufficient condition for this is fix,<1 IxIv(dx) < cc.) Let v be
previsible and satisfy (2.10). Let L -t v(s) dX(s) be the ordinary Lebesgue-
Stieltjes integral (calculated for each o), and f' v(s) dX(s) the stochastic integral.
Then

(2.37) Jfv(s) dX(s) = L -o v(s) dX(s) a.s., 0 . t _ 1,

(the exceptional set does not depend on t).
PROOF. Suppose without any loss that the Levy measure of X is on a finite

interval. Let C be the class of bounded step functions and H the class of bounded
previsible processes for which (2.37) holds. Then C is a vector space closed under
A, and H is a vector space of real functions on Q x [0, 1] containing C. Let
Vn e H, 0 < Vn < M, and vn Tv. From Property 2.2,

(2.38) lim v,n(8) dX(s) = {v(s) dX(s)

in L2 and from monotone convergence,

(2.39) lim L- v,v(s) dX(s) = L v(s) dX(s)
n so fo fO

a.e. and in L2. Hence, there is a null set A such that if a) 0 A, then

(2.40) fo v(s) dX(s) = L - f v(s) dX(s)

for every rational t. Since both sides are right continuous, equality holds for
all t, and co 0 A; it follows that H is closed under monotone limits. Therefore,
H contains all bounded previsible v by T20 of Meyer [14], or rather the remark
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following it. Next. let v be nonnegative, previsible. There then exist bounded
previsible v,, such that vT v, and we can choose v,, so that

(2.41) p (v - V")2ds < 2', ntoo} = 1.

Arguing with Property 2.3 in a manner now familiar, one sees that for almost
all cl, J0 vn(s) dX(s) converges to 1' v(s) dX(s), uniformly in t. Since

(2.42) { v,,(s) dX(s) = L - fo v,(s) dX(s)

by what has already been proved, it need be proved only that

(2.43) lim L - vv(s) dX(s) = L- { v(s) dX(s) a.e.
n-co fO O

Write X = X - X2, where X1, X2 are independent processes with stationary
independent increments, each with increasing paths. Since 0 . Vn T v, clearly,

(2.44) lim L- vn(s) dXi(s) = L-{ v(s) dXi(s) < i = 1, 2,
n-'cX0 0of

for every c, so it is necessary only to show that L v(s) dXi(s) < oc. But by
what has already been proved,

(2.45) X > lim Vvn(s) dXi(s) = lim L - { v.(s) dXi(s),
nero O fO

since Xi is a process with stationary independent increments. For general
previsible v satisfying (2.9), write v = v+ - v-.
REMARK 2.2. A theorem of this nature has already been proved for L2

martingales by Meyer and C. Dolans-Dade; the first half of the present proof
follows theirs [8].
The following property is a convenient technicality.
PROPERTY 2.7. Let v be a (measurable) process satisfying (2.10). and let v,, be

a sequence of step functions satisfying (2.9). Then there is a previsible process v
such that

(2.46) p [(s) - V,(s)]2 ds < 2fl ntcc} = 1.

In particular, the stochastic integrals S' v(s) dX(s) and J v(s) dX(s) will be the
same.

It follows from Property 2.7 that in discussion of stochastic integrals, there
is no loss in generality in assuming v previsible. Accordingly, this assumption
will be in effect throughout the remainder of the paper.
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3. Local limit theorems

The goal of this section is to prove the following theorem.
THEOREM 3.1. Let X = {X(t) ; ( _ t} be a process with stationary. inde-

pendent increments and index P/(X). Let v = {v(t): 0 _ t} be a stochastic process
with sUPo<t<l iv(t)l _ 1. Let Y = {Y(t); 0 . t} be the process Y(t) = fI v(s)
dX (s). If p > ,8(X), then as t1 0.

Y(t)
(3.1) i/p ) 0 a.s.

This theorem is known for the case v(s) _ 1. The first proof was given by
R. M. Blumenthal and R. K. Getoor [2]: in [18]. a second proof is obtained
as a consequence of a more general theorem. The method of proof below is
new, even for the case v _ 1; since stochastic integration destroys stationarity
and independence of increments, the methods used up to now had to be replaced
in order to obtain the present theorem. A standard truncation argument shows
that the hypothesis iv(t)l < 1, all t, can be replaced by the hypothesis that almost
all paths of v be bounded on finite intervals.

Before proceeding. it will be convenient to record as lemmas two results
proved in [18] (Theorems 3.1 and 2.1, respectively).
LEMMA 3.1. If JI,,<, Ix|Pv(dx) < o . then

(3.2) E j(X. s)P < cr a.s.
S _< 1

Here, j(X, s) = X(s) - X(s-), as usual.
LEMMA 3.2. Let v be concentrated on afinite interval and f1xl < 1xjPv(dx) < cc.

Then if 0 < p < 2,

(3.3) E|X(t)|P < Ct 0 < t < 1.

The constant

(3.4) C _ 2P { IxIPv(dx) + etP-1

if p > 1 and e = EX(1); if p _ 1. then C . 2 f jx1Pv(dx).
PROOF OF THEOREM 3.1. The proof falls into several parts.
(a) Suppose that 1 < p < 2. Without loss of generality suppose the Levy

measure is concentrated on [-a. a]. Moreover, there is also no loss in assuming
that X is a martingale. For, if X is not a martingale and if c = EX(1), then
X(t) - ct and Y(t) - c 1o v(s) ds are martingales: and, since p > 1.

(3.5) J~ v(s) dsl < ~t(P-l )0 s
as.5) 0 < t(P 1)10ti/O.

as t --- 0.
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Next, pick p' subject to /B(X) < p' < p.p' > 1. Then if £ > 0,

(3.6) P{ Y(2 )| > £2 -np} < E|Y(2 ")IP £ P 2P' /P
< C5E|X(2 -n)| £ nP2 P/
< 2-P'2n 1-(p'/p)]

using (2.29) and (3.3). Hence,

(3.7) Y P{JY(2 n)| > £2 /nP} < zoe.
n

so that

(3.8) lim Y(2 )12n/P = 0 a.s.
n-o

by the Borel-Cantelli theorem. Moreover,

(3.9) sup JY(t) - Y(2-n21)12 /P 0 a.s.

as n - cc. This is verified as follows. Since {Y(t) - Y(2-n-1), t > 2-n-} is a

martingale, Doob s submartingale maximal inequality applied to the sub-
martingale {|Y(t) - Y(2-n-1) P' t _ 2-n-1} yields

(3.10) P{ sup IY(t) - Y(2 -n-1)| > e2-nlp}
t:2-n- t < t <2 - n

-P sup |Y(t) - Y(2 -n-)1P > £P2- nplp}
t: 2 -- 1 <t< 2 -n-

< E Y(2 n) - Y(2 fnl)P P2nPfP.

By inequality (2.29) (Property 2.4) and Lemma 3.2, the last expression does not
exceed

(3.11) C[2 - 2 1]2/" C2 l

The Borel-Cantelli theorem then yields (3.9).
Finally, one deduces that limn.o |Y(t)It'lP = 0 a.s. for the case 1 < p < 2

by means of the following calculation. If t is given, then there exists an integer
n(n = n(t)) such that 2 < t _ 2 `. Then

(3.12) Y(t)lt- l/P
- )p+- n+11

< IY(2--1)12(n+ )/p + sup IY(t) - Y(2-)12(n+1)/p

By (3.8) and (3.9) the right side goes to zero as t -+ 0 (n oc).
(b) Next suppose ,B(X) = 2. Using the same inequalities of (a), one sees that

(3.13) P{JY(2 )| > £n2 n/2} < Cn -2
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implying by the Borel-Cantelli lemma that Y(2`)12 /2n-1 - 0 a.s. Hence, if
p > 2, Y(2`) 2'/P -+ 0 a.s. Similarly, it is easy to see that

(3.14) sup IY(t) - Y(2-n ')2n1P -- 0 a.s.
t:2-n-1 t<2-n

as n oo, and the argument is completed as in (a).
(c) Suppose p . 1. According to the conventions of Section 1, the exponent

of X is of the form | [eiux- l]v(dx). This implies that X(t) = T(t) -(t),
where T and S are independent processes, each with increasing paths. It is then
enough to prove the result for X(t) = T(t). But in this case, f1to v(s) dX(s)I _
IX(t)J, so the result follows from the known fact for X.
REMARK 3.1. A modification of the argument of Millar [18] shows that if

we assume only

(3.15) Jix]< I1x1Pv(dx) < x, Iv(1)I < 1 for all t,

then jf v(s) dX(s)1t-1P 0 in probability. Condition (3.15) is slightly weaker
than p > /3(X), and it is known that under condition (3.15) one cannot assert
a.s. convergence in general.
REMARK 3.2. If v(t, co)I > 3 all (t, co), and ifp < /3(X). then

(3.16) lim sup v(s) dX(s) t 11P = + o a.s.

The proof is similar to the proof of the case v _ 1 in [18], and is omitted.

4. Variation of sample functions

Throughout this section, {Ir; n _ 1} will be a sequence of partitions of
[0, 1] with r,: ° = t,,, << < tnkn = 1, and will satisfy
(4.1) lim max [tflk+1 - tf,k] = 0.

n-xo k

The partition nr + 1 is not necessarily a refinement of 7E,. If Y = { Y( t); 0 . t . 1 }
is a stochastic process, define

(4.2) V(7rn, Y.p) = V.(Y,p) = yY(tlk+1) Y(tnk)P.
k

THEOREM 4.1. Let v = {v(t); t _ 0} satisfy supt Iv(t)| . 1. Let X =
{X(t); t _ 0} be a process with stationary independent increments such that
fix,< 1 1xPv(dx) < oo. Let Y(t) = J5o v(s) dX(s). Then V(7r,, Y, p) converges in
probability to E0<,.1 |v(s)IPlj(X, s)1P < ~o, where j(X, s) = X(s) - X(s-).

This theorem constitutes an improvement of Theorem 3.2 of [18], which
asserts the convergence in probability under the hypothesis v 1 and the
somewhat stronger assumption that p > ,B(X). The present proof is different
and rather simpler than the proof of [18]. It will reveal that in the case p . 1,
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almost everywhere convergence of V,(Y, p) holds, even if Fn 1 is not a refine-
ment of Eni; this is a further improvement of the results of [18].

PROOF. (a) The case p . 1. Since v is previsible and p . 1, J0t v(s) dX(s) is
an ordinary Lebesgue-Stieltjes integral for each co (Property 6, Section 2), so
that in fact

(4.3) J'v(s) dX(s) vv(s)[X(s) - X(s-)]

(According to the conventions ofSection 1, X will have no "linear part" ifp < 1.)
It is clear that

(4.4) lim inf V,, > 1 |v(s)lplj(X, 8)|P.
n 5OsS 1

However, since
Vtnk+ 1 P

(4.5) n(Y,p)=V(s) dX(s)
k Jtn.k

and since
tn, k + 1 P

(4.6) v(s) dX(s) = | Z v(s)j(X, s)IP
k tn,kS tn k+ 1

< [ E v(s)1jj(X, s)1]p
tnk.Stn, k+ 1

< E_ lv(s)~pij(X, s)1p
t.,kSS 21t.,k+ I

(because p _ 1), it follows that

(4.7) Vn (Y,P) _- E |V(S)Ipij(X, s)|p
OsS 1

for all n. This proves (a), since Iv(s)I . 1 and XOEsjl jj(X, 8)1P is finite a.s. by
Lemma 3.1.

(b) Consider the casep > 1. Suppose without loss of generality that the Levy
measure of X concentrates on [- 1, 1]. If the exponent of X is of the form

(4.8) */(U) = iug + [eiu- 1-eiux/(1 + x2)]v(dx),

then write X = Xn + Xn, where Xn = {X"(t); t > 0} is the process with
stationary independent increments having exponent

(4.9) iug + I[eiu - 1- j_ 2v(dx).
J12Ixi2 (1/n) 1+ x .

Then

(4.10) Y(t) = fo v(s) dX(s) =o v(s) dX (8) + ,f v(s) dXn(s) = Y"(t) + Yn(t),
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and also

(4.11) i |v(s) Ppj(X, s)|P = v(s)|Pj(Xn, s)1p + Z IV(s) P~j(X s)|P
os_1 os_1 os_1

= Jn + Jn.

Then

(4.12) El Vj(Y, p) - V(Yn, p)

E Z IYn(tj,k+ 1) - Yn(tj,k) + {Yn(tjk+ 1) - Yn(tj k)} JP
k

- Z IYn(tjk+l) - Y (tj,k)IP
k

_ pE Y (tJk+ 1 ) - Yl(tj,k)|I Yn(tj, k+ 1 - Yn (tj,k)l
k

+ pEVj(Yn2,P)
< p I E(P 1)p yY (tjk+ 1) - Y (tj,k)I EIPI Yn(tj,k+l) - Yn(tj,k)P

k

+pEVj(Yyn1 P).
In the calculation (4.12), we have used the following elementary inequality where
1 <p . 2 and 0 < s < 1,

(4.13) lx + Y1P - Ix1P = plx + sylp- ly
= P(IXIP` + IYIP- 1)lYl
= pIxP llyl + PlY P.

Next. observe that if en = EXn(l) then by (2.29)

(4.14) ElYn(t) - Yn(s)IP < cpEIXn(t) - Xn(s)lP + cplenlplt - Sip
< KU' 1x1Pv(dx) + IenPit- sIP-1j (t -),

Ixi <(l/In)

using Lemma 3.2, and where K is an absolute constant. Similarly, if en = EX'(1),
then

(4.15) ElYn(t) - Ynf(,)jP < K~J 1xlPv(dx) + IenIPit- 8 (t-s).
. if! t -~ ~ ~ ~ ~ lp (t- )1 1n) _1xl< 1

< Mit - si
where M is a finite constant independent of n. Let

(4.16) nrj|I = max Itj,k+1 - tj,kI' b = sup {Ienlp} < x0;k n
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and let

(4.17) C.(j) K 1x) 1Pv(dx) + b117j11P-1lxi < (1 In)

Then. using (4.14) and (4.15) in (4.12). we have

(4.18) EJ V(Y, p) - IQ(Yn. p)|
E M(P-11(tjk+ 1 tjk)(P- 1)1[Cn(ji)]Ilp(tj k+ 1 - jk)/P
k

. const Cn(j) /P = ('c(J)l/P

Since p > 1, it is obvious that

(4.19) Vj (y, p) -,Jn a.s.

as j -- o, because X" is piecewise linear with a finite number of jumps in any
interval. Let £ > 0. Then

(4.20) P{1Vj(Y) - Jj > 4}
< p {| I,(Yn) - jn > 3£} + P{jJ',(Y) - lj(Yn)| > 3p} + P{jn > 44.

As n --
,the third term above goes to zero. The middle term is dominated by

C51<Iln |xIPv(dx) + COljIIP-"1, because of (4.18) and Chebyshev's inequality.
Therefore, if b is given, one may choose n so large that

(4.21 ) P{I Vj(Y) - j| > V} _ P{| IJ(Yn) - J > 3V ij||E + 6

Lettingj -c o and applying (4.19), now completes the proof that Vj(Y) converges
to J in probability.
THEOREM 4.2. If the Lvy measure of X concentrates on a finite interval, and

if1S,<, Ix1Pv(dx) < cc. then Vn(Y,p)convergesinLrnormforeveryr, 1 < r < oo.
(The process Y satisfies the hypotheses of Theorem, 4.1. )

In order to prove this, it will be convenient to establish the following lemma.
Let {dk; k _ 1} be a sequence of martingale differences, with Eidkip < o., and
letfA = Sk=, dk.
LEMMA 4.1. There are positive constants C, c depending on p only such that

for every n _ 1:
(i) if 1 _ p _ 2. then EIfn P < C En=1 EIdkI :
(ii) ifp _ 2. thenElf-1p > c Xk=1 Eldkip.
PROOF. Part (i) is known (see C. G. Esseen and B. von Bahr [11]). Part (ii)

is established by a simple modification of S. D. Chatteiji's proof [6] of the
Esseen-von Bahr result. Since

(4.22) inf {(l
+

I 1P P)} = c > O.
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it follows that

(4.23) |A + BIP > |AIP + cpIBIP - sgn [A]JAIP`B,
so that

(4.24) Elf.+1JP = Elf, + d.+uIP > Elf.1P +cpEld± +JP.
The result now follows by induction.
LEMMA 4.2. If the Levy measure of X is concentrated on a finite interval, if

f1|x< 1 xJPv(dx) < so for some p, 0 < p . 2 and if sup, Iv(t)I < 1, then

(4.25) E{ V(u) dX(u) F(s)} < cp(t - s). 0 < t-s < 1.

PROOF. Let {dk; k _ 1} be as in Lemma 4.1; let {Vk; k _ 1} be a sequence
of bounded random variables, |Vk . 1 and vk measurable with respect to
Fk- 1 = F(d1, * , dk- 1 ). Results of Burkholder [5] then imply if p > 1 that
E|I=,1 Vkdk cEp k1 P. Let m be given and A e F,, Then

n p np n p

(4.26) d C d
JA Vkk m (VkIA)dk = p m1km+l m+l m+l

implying that
n p ~)( n p(4.27) E{E Vkdk F. < C E dk P4.

tm+i C m+1

If X is a martingale, and if v is a step function, it now follows that
p ~

(4.28) E{ f v(u) dX(u) PF(s)1 c_ E{IX(t) - X(s) PIF(s)} < cp(t -s),

using Lemma 3.2. Conclusion (4.25) now follows for all bounded v by passage
to the limit. To handle the case when X is not a martingale, consider X(t) -
tEX (1). The case p . 1 is easy.
PROOF OF THEOREM 4.2. To show convergence in Lr 1 < r < 2, it suffices

to show supjE[Vj(Y,p)]2 < o. The case 1 < p . 2 will be discussed first.
Here there is no loss in generality in assuming that X is a martingale (subtract off
a multiple of t if necessary). Then, in obvious notation,

(4.29) E[Vj(Y,p)]2 = EL IY(tjk+l) - Y(tjk)J']

= E [ |Aki]
= E E LkIp + E E Iok| il -

k i#k

But E E .k12p< CElY(1)12p < cX, from Lemma 4.1(ii). Also, suppressing the
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j in tj~k, if i< k,

(4.30) ElAk PlAJP = E|Y(ti+j) - Y(ti)|PE{ Y(tk+l) - Y(tk)WI [F(ti+1)}
and

(4.31) E{IY(tk+ 1) - Y(tk)IPIF(ti+ 1 )} S C(tk+ 1 tk),
using Lemma 4.2. Therefore,

(4.32) E E I|ki'lilP < C E (ti+l - ti)(tk+l - tk) . c.
i*k i~k

It follows that supjE[Vj(Y, p)]2 < co, proving convergence in L_ 1 < r < 2.
One proves convergence in Lr, 1 _ p < 2n by showing in a similar manner
that supj E[ Vj(Y, p)]2 < CC.

If p . 1, then from the proof of part (a) of Theorem 4.1, Vj(Y, p) .
10s.1 jj(X, s)|P. The Levy measure of the latter random variable is concen-
trated on a finite interval (see [18]), so it has moments of all orders.

Let us conclude this section with a few remarks about the a.s. convergence of
Vj(Y, p). The case where v _ 1 was discussed in [18], where some open problems
were listed. For general v, we give only the following rather limited results
(compare with [4] and [21]).
THEOREM 4.3. Assume supt |v(t)l . 1 and Y(t) = Jo v(s) dX(s). If

X,1 [Xk (tn,k+ 1 - t k)2]1/2 < Xc, then Vj(Y, 2) converges a.s.

PROOF. Assume without loss of generality that the Levy measure concen-
trates on a finite interval. Then if c = EX(1), X(t) - ct and Y'(t) = Y(t) -

c 01 v(s) ds are martingales. Moreover,

(4.33) E [y(tnk+l ) Y(tnk)]2
k

= Z [Y'(tn, k+1) - Y'(t.,k)]2
k

't,,k + I 2

+ c2 v(s) ds
k ktn,k

rt, k+ 1

+ 2c [Y'(t.,k+l) - Y'(t.,k)] v(s) ds.
k .tnk

Since the second term on the right obviously converges to zero a.s. as n -x CC,
and since the expectation of the third term is less than

(4.34) E 1/21Y'(tn,k+) - Y'(tn, k)2 /2 (tn k+ 1 - tn, k)
k k

< const 1 1/2 (tn,k+ 1 - tn k)
k

(by Lemma 3.2), it follows from the Borel-Cantelli theorem that there is no loss in
generality in assuming that X and Y are martingales.
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In Section 5, the following formula will be established:

E435 [ ( )]2 j(X, s)]2 = J v(s) dX(s) - 2 v(s)Y(s) dX(s).

Assuming (4.35) and using in the third equality that X is a martingale,
2

(4.36) E V,(Y. 2) - E [v(s)]2[j(X, S)]2

= E E [ v (s) dX (s)' - E [V(s)]2[j (X, )] 2
k tn,k t.,k _`S -t. k+ I

tn,k+1 2

= 4E , v(s)[Y(s) - Y(tnk)] dX(s)
k ,Jnk

('tn k+ 1 2

= 4 E E v(s)[Y(s) - Y(t.,k)] dX(s)
k Jtn,k

tn, k +1

= 4c Z | Ev2(s)[Y(s) - Y(tf k)]2 ds
k Jtn,k

. const Y (tn,k+ 1 tn.k)2.
k

The result now follows from the Borel-Cantelli theorem. It is clear from
the proof that if X is known to be a martingale, or if every truncation of X
is a martingale (which happens if X is symmetric), then one needs only
En Yk (tn,k+ 1 - tn, k) < °.

5. Zero jumps

In this section, some of the preceding ideas will be used to study certain
sample function properties of X itself, in particular the zero jumps (defined
below) of the process X. Before doing this. however, it is necessary to have an
analogue of 1t6's formula for processes Y(t) = Jt v(s) dX(s).
THEOREM 5.1. Suppose f1x1<lxIPv(dx) < oc, and sup, Iv(s)| _ 1. Let F be

a realfunction such that (i) F' exists and is continuous; (ii) for every neighborhood
N of 0 there is a constant M (depending on N perhaps) such that

(5.1) IF(x + h) - F(x) - F'(x)hI < MhP, xe-Nx + he-N.
Then

(5.2) F(Y(t)) = J F'[Y(s-)] dY(s)

+ E {F[Y(s)] - F[Y(s-)]-F'[Y(s-)]j(Y. s)}.
0 _St

Theorems of this type have been established in great generality for quasi-
martingales (of which Y is an example) by Meyer [15], but under more
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restrictive hypotheses on F (F is assumed twice continuously differentiable).
The special nature of the process Y and the theory of sample variation in
Section 4 permit the stronger conclusion here. Theorem 5.1 yields., for example,
the following conclusion.
COROLLARY 5.1. Let Y satisfy the hypotheses of Theorem 5.1. and assume in

addition that p > 1. Then IY(t)JP is a quasimartingale.
Also, choosing F(x) = X2 yieldsformula (4.35), required in thepreceding section.
PROOF. As usual, one may suppose that the Levy measure of X is on

[-1. 11. Let X', Yn be defined as in the proof of Theorem 4.1, part (b). Then
Y1(t) = f' v(s) dX"(s) is an ordinary Lebesgue-Stieltjes integral for each co.
Let 80 0, and 8, < S2 < ... be an enumeration of the jumps of If" (since
X" has only a finite number of jumps in any finite interval, the same is true of
YI). If t is fixed, let Tk = min {Sk, t}. Then

(5.3) F[Y"(t)]

= E {F[Yn(Tk+l-)1 -F[Yn(Tk)1} + ZF[Yn(Tk)] - F[Y"(Tk-)1
k k

{F[Yn(Tk+l-)1 -F[Yn(Tk)]} + ZF'[Yn(Tk-)]j(yn, Tk)
k k

+ E {F[Y"(Tk)] - F[Yn(Tk-)] - F'[Y"(Tk-)]j(Yn, Tk)}
k

= fX F'[y"(s)] dY"(s) + ZF'[Y"(Tk_)]j(yn, Tk)
kS(kTk+ ) k

+ E {F[Y"(s)] - F[Yn(s-)] -'[Yn(s-)]j(yn, s)}
0 .s~t

=XF'[y"(,-)] dY"(s)

+ E {F[Yn(s)] - F[Yn(s-)] -F'[Yn(s- )]j(yn, s)}

using the fact that f" is continuous on (Tk. Tk+ 1). By choosing a subsequence
if necessary, we may suppose that for each co the paths of y" converge uniformly
for 0 . t . 1 to the paths of Y (see Property 2.5). For each co, the paths of Y are
bounded on [0, 1]. Therefore, there exists M(co) such that

(5.4) |F[Yn(s)] - F[Yn(s-)] -F'[Yn(s- )]j(Y" s)I
_ M(c0)1j(yn, *s)|p < M(c0)1j(X s)1p.

Since o0.s.l lj(X, s)IP < oc (Lemma 3.1), it follows that

(5.5) E F[yn(s)] - F[yn(s-)] -F'[Yn(s-)]j(Y.ys)

converges for the given a) to

(5.6) E F[Y(s)] -F[Y(s-)] -YF'[Y(s-)]j(Y, s),
0 _s _t



326 SIXTH BERKELEY SYMPOSIUM: MILLAR

a process having paths of bounded variation. Finally, one checks that for
each cw, f' Y[Y'(s-)] dY'(s) converges to ' F'[Y(s-)] dY(s); by taking a
further subsequence if necessary, one can ensure that for each co the convergence
is uniform in t, 0 < t < 1.
REMARK 5.1. The proof shows that if the Levy measure of X is concentrated

on a set bounded away from zero, then the conclusion of Theorem 5.1 holds
with no further hypotheses other than the existence and continuity of F'.

DEFINITION 5.1. A process X is said to have a zero jump at s if either
X(s) < 0 < X(s-) or X(s) > 0 . X(s-). The notation Z(t) = E~ss<t IX(s)I
will denote the sum of all X (s) |, s _ t, over only those s at which a zerojump occurs.
The rest of this section will be devoted to a study of the process Z(t). The

asymmetry in the definition of zero jump was introduced in order to keep the
statement of Theorem 5.2 simple. In all cases of real interest (specifically when
v(R) = ac), the definition can be replaced by the condition that either X(s) <
0 < X(s-) or X(s-) < 0 < X(s), as shown in the proof of Theorem 5.2.
Of course if may happen that the process Z is rather trivial, for example when

X is a subordinator. On the other hand, many examples exist of processes X
which experience infinitely many zero jumps as t varies in any interval of the
form [0, £], c > 0. For example, if the Levy measure of X is concentrated on
(0, ce),thenXhasonlyupwardjumps;however,if', [1 + Re f(x)]-1 dx < cc
for all positive 2, then it is known that inf {t > 0; X(t) = 0} = 0 a.e. (Blumen-
thal and Getoor, [3], p. 64). It is easy to see that this implies that X has
infinitely many zero jumps. In such cases, it is not even clear a priori that the
process Z(t) is finite-this will be the conclusion of Theorem 5.2, where a
stochastic upper bound for Z is derived.

It is interesting to notice also that as t[0, a process may jump over zero
infinitely often, but without hitting 0 itself infinitely often. Here is an example.
Let X be the symmetric Cauchy process. It is then known that 0 is not regular
for {0}; that is, the process does not pass through 0 infinitely often as t 10 (see
Port [19]). However, it is also known (see Blumenthal and Getoor [2], or
Millar [18]) that

(5.7) lim sup IX(t)lt-12 =
t-0

implying by symmetry and the zero-one law that

(5.8) lim sup X(t)t-1/2 = +
t-o

and

(5.9) lim inf X (t)t-12 =
two

In particular. X must pass from above to below zero infinitely often as t 0.
Since the process does not hit zero while doing this, it therefore must jump over
0 infinitely often.
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THEOREM 5.2. The process sum ofjumps Z(t) satisfies the relation

(5.10) Z(t) . X(t)+ - fI(O, .)[X(s )- dX(s).

PROOF. Suppose without loss of generality that the Levy measure concen-
trates on [-1, 1].

(a) Suppose that the exponent of X is of the form

(5.11) O(u) = iug + J [ei"X- l]v(dx),
where v(R) < oc. Then the paths of X are piecewise linear (see, for example,
[12], p. 274). Let £ > 0 and F(x) = J1 (£ A y)+ dy. By Theorem 5.1 (or rather,
Remark 5.1),

(5.12) F[X(t)] = J' F'[X(s-)] dX(s)
+ i F[X(s)] -F[X(s-)] -F'[X(s-)]j(X,s),

where the sum on the right is only a finite sum for each cw, and the integral on
the right is an ordinary Lebesgue-Stieltjes integral (Property 2.6). Divide (5.2)
by £, and let 410. Then

(5.13) £1F[X(t)] = £' Jo (£ A y) dy.

so that

(5.14) lim e F[X(t)] = 0, if X(t) _ 0
£-O

1im[f-1 Jdd±+-1 dy = X (t),

if X(t) > 0. That is, lim£,0 8 'F[X(t)] = X(t)+. Since JYF'[X(s-)] dX(s) =

It [£ A X(s-)]+ dX(s) is a Lebesgue-Stieltjes integral, and since 0 < (£ A

0~ ~ ~ 4

(5.15) lim £'[£ A X(S-)] = I(O,OO)[X(S )],

we may apply the dominated convergence theorem to obtain

(5.16) lim YF'[X(s-)] dX(s) = { I(O,,o)[X(s-)] dX(s).
e40 0of

Finally, to evaluate the remaining term, it suffices to evaluate only

(5.17) lim (£ A y)+ dy - [8 A X(s- )]+j(X, )

for each s, since there is involved only a finite sum. There are several cases. If
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X(s) > 0 _ X(s-),and ifE < X(s), then

-x(S)1
(5.18) l J (£ A y) dy - [E A X(S-)] j(X. s)]

± TX)(S)= [ y dy + E dy X(s).

Similarly, if X(s) . 0 < X(s-). then the resulting limit is -X(s). If either
X(s), X(s-) > 0. or X(s), X(s-) < 0. then the resulting limit is 0. Hence. con-
sidering all cases, one finds that

(5.19) lim [jl ( A y) dy - [E A X(8S-)] j(X. S)= jX(s)
e10 UJx(S-)_

if there is a zero jump at s, and the limit is zero if not. This establishes the
theorem for the special case. Note that in this case, the theorem is true with
equality.

(b) The process X is said to have a strict zero jump at 8 if either X (s-) < 0 <

X(s) or X(s) < 0 < X(s-). Suppose that v(R) = xc. Then for almost every W,
all the zero jumps of the path X(t) are strict. Here is the proof of this fact. Let
{Tk. k _ 1} be a sequence of stopping times that enumerates all the jumps of X.
For example. let

(5.20) T.,1 = inf {t > 0; |X(t) - X(t-)I Ln I 1)}.
and

(5.21) Tflk+l = inf{t > Tflk; IX(t) - X(t-)I e -I)}.
Then {Tflk: n > 1, k > 1} enumerates the jumps.
The desired assertion will follow if we show that X(Tk) and X(Tk-) are

nonatomic. Let E > 0. The process Y(t) = X(t + E) - X(E) is independent of
X(E), and Y - X. Let {S8; n > 1} be an enumeration of the jumps of {Y(t)}.
Then

(5.22) P{c < Tk, X(Tk) = 0}

= EP{e < Tk, Tk = 8j + X(£) + [X(Sj + e) - X(£)] = 0}

= E P{e < Tk, Tk = Sj + £,X(c) + Y(Sj) =0}.

But P{e < Tk, Tk = Sj + c, X(£) + Y(Sj) = o} _ P{X(c) + Y(Sj) = 0}. and
X(£) is independent of Y(Sj). Also, since v(R) = x. X(£) is nonatomic

(A. Wintner and P. Hartman [20]; see also J. R. Blum and M. Rosenblatt [1]).
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Since it is well known that the convolution of two measures is nonatomic if at
least one of them is. P{X(c) + Y(S1) = 0} = 0. and so P{e < T, X(Tk) =

0} = 0. Let i410 to get the result. since P{Tk > 0} = 1 (see the construction of
Tk above). The case of X(Tk-) is treated similarly.

(c) Theorem .5.2 will now be verified under the assumption v(R) = oc, and
this will complete the proof'. By part (b), one need consider only strict zero jumps.
Let X' be the process defined in the proof of Theorem 4.1. part (b). By choosing
a subsequence if necessary, one may assume that for each co the paths of X" on
[0, 1] converge uniformly to those of X (see Property 2.5). By part (a) of the
present proof.,

(5.23) A' |Xn(s)j = Xn(t)+- I(o .)[Xn(s-)] dX'(s).

Now let n -- c (through the subsequence, if necessary).
Then for every c), Xn(t)1+- X(t)+.0 < t . 1. Also. for each t.

(5.24) f{ I(OO)[Xn(s-)1 dXn(s) -j{I(oX)[X(.s-)] dX(s)

in L2. For,

(5.25) II(o,,)[Xn(V-)] dXn(s) - { I(O° [Xy ,j dX(s)

i I(O, c0)[X(.s -)] dXn(s) - XI(o .)[X'(.s-)] dX(s)

+ {I(o, ) [Xn ()] -I(O0) [X(s-)]} dX(s)

=1 + S2.

By Property 2.2, S2 . KfoE{I(0 )[Xx(s-)] -I(0 OO)[X(s )]} dt. More-
over., for each w., I(O,c) [Xn ( s-)]-+ I(OO)[X(s-)] for every fixed s (recall, for
every c), Xn(s) XX(s) uniformly for 0 < s < 1), except possibly those s at
which X(s-) = 0. But if v(R) = oc, these s have Lebesgue measure 0. so

I(o ))[X(s-)] for almost all (co, s)(dP x ds). Therefore, by
dominated convergence, S2 0. Also

7 ~ ~ f(OcA.)[Xn( [n)1ntJ.26) 81 = [X(d X()] . [X"(t) - X(s) 12 0

as n m. In fact, by using the stronger inequality given in Property 2.2, it is
easy to see that we have the stronger result:

(5.27) sup I(O )[Xn (s-)] dXn (s) - I(o )[X(s)] dX(s) 0
0_t.1 0 0
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in L2, so by choosing a further subsequence if necessary one obtains for each co

(5.28) I(o, )[X`(s-)] dXn() -J I(o )[X(s-)] dX(s),

uniformly in t, 0 < t . 1. Assume from now on that n - ocr through this
subsequence.

Finally, consider limp , 0 _X(s)| . Let

(5.29) T, l = inf{t > 0; X has a zero jump at t. and Ij(X, t) 1 E-

(5.30) Tk+ = inf{t > Tn,k; X has a zero jump at t and j(X, t)E-, 1)}

Then {Tnk; n _ I, k _ 1} enumerates all the zero jumps of X; let {Tk; k _ 1}
be a list of the {Tn k}. By part (b), either X(Tk) < 0 < X(Tk-) or X(Tk-) <
0 < X(Tk) (for a specified a). It therefore follows from the uniform convergence
that if Tk is the time of a zero jump for X, then Tk is also the time of a (strict) zero
jump for Xn, for all sufficiently large n (how large will depend on wo). Therefore,
for eachwo, if Tk(co) < t, then

(5.31) X(Tk)| < lim inf ' IXn(s)I _ X(t)+ - f I(O,O)[X(s-)] dX(s).

This clearly continues to hold if we replace the left side by any finite sum
k1 IX(Tk)I. The limit on the right is taken through a subsequence for which

the limit will exist for every wo and uniformly in t. 0 . t . 1. The formula of
Theorem 5.2 therefore holds for almost all a), and all t. 0 . t . 1, the excep-
tional co set not depending on t. This completes the proof.
REMARK 5.2. Presumably the inequality of Theorem 5.2 may be replaced

by equality, but I have not been able to show this. Notice that the case
v(R) = oo could not be treated by taking a limit in the formula (5.2) directly,
since the function F(x) = 1' (c A y)+ dy does not satisfy the hypothesis of
Theorem 5.1. The formula of Theorem 5.2 should be compared to the formula
attributed to Tanaka (see McKean [13]) for the local time of Brownian motion.
The process Z(t) is not local time (Z does not have continuous paths).

However, it is natural to wonder whether. if Z(t) were smoothed out appro-
priately, the result would be similar to local time (whenever local time exists).

Note added in proof. Equality in Theorem 5.2 can be established by using the
theory of Levy systems developed by S. Watanabe ("On discontinuous additive
functionals and Levy measures of a Markov process," Japan J. Math., Vol. 34
(1964), pp. 53-70). Connections between the process Z and local time are
contained in recent work of Getoor and Millar ("Some limit theorems for local
time," to appear in Compositio Math.).
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