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1. Introduction

This paper has two aims, one fairly concrete and the other more abstract. In
Section 3, bounds are obtained under certain conditions for the departure of
the distribution of the sum of n terms of a stationary random sequence from a
normal distribution. These bounds are derived from a more abstract normal
approximation theorem proved in Section 2. I regret that, in order to complete
this paper in time for publication, I have been forced to submit it with many
defects remaining. In particular the proof of the concrete results of Section 3 is
somewhat incomplete.
A well known theorem of A. Berry [1] and C-G. Esseen [2] asserts that if

X1, X2, . is a sequence of independent identically distributed random variables
with EXi = 0, EXV = 1, and ,B = EIXij3 < oo. then the cumulative distribution
function of (1//;n) Yi=l Xi differs from the unit normal distribution by at most
Kf3/ n where K is a constant, which can be taken to be 2. It seems likely, but
has never been proved and will not be proved here, that a similar result holds
for stationary sequences in which the dependence falls off sufficiently rapidly
and the variance of(1//;n) X1.1 Xi approaches a positive constant. I. Ibragimov
and Yu. Linnik ([3], pp. 423-432) prove that, under these conditions, the limiting
distribution of (1/ /n) E Xi is normal with mean 0 and a certain variance G2
Perhaps the best published results on bounds for the error are those of Phillip
[5]. who shows that if in addition the Xi are bounded, with exponentially de-
creasing dependence, then the discrepancy is roughly of the order of n-114
In Corollary 3.2 of the present paper it is proved that under these conditions the
discrepancy is of the order of n - 1/2(log n)2. Actually the assumption of bounded-
ness is weakened to the finiteness of eighth moments. In Corollary 3.1 it is proved
that if the assumption of exponential decrease of dependence is strengthened
tormdependence, the error in the normal approximation is of the order of n- 1/2
The abstract normal approximation theorem of Section 2 is elementary in the

sense that it uses only the basic properties of conditional expectation and the
elements of analysis, including the solution of a first order linear differential
equation. It is also direct, in the sense that the expectation of a fairly arbitrary
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function of the random variable W in question is approximated directly without
going through the characteristic function. Because of the clumsiness of the tech-
nique used at this point, it is likely that slightly better results could be obtained
by using the basic identity, Lemma 2. 1, to approximate the characteristic function
of W and, by standard procedures, to go from this to an approximation for the
distribution of W. However, I believe that, in the long run, better results will be
obtained by direct methods.

I hope it will be helpful to read the following remarks along with Section 2
and the first part of Section 3. The whole paper is based on the moderately simple
Lemma 2. 1, which is only a recasting ofthe trivial identity (2.10) in order to make
it fairly apparent that the normal approximation applies. The basic idea of this
trivial identity is to apply the defining properties of conditional expectation, to
obtain an identity containing an arbitrary function, in a situation in which one
forgets a random part of the data. Thus we consider three a-algebras of events,
the a-algebra .F determined by the originally given random variables (in Section
3, a sequence X1, * * *, X"), a larger a-algebra a4 allowing one or more other
random variables (in Section 3, a random index I uniformly distributed over
{1, * * *, n}, independent of X1, * - *, X.), and a sub a-algebra W in which a
random part of the data is forgotten. In Section 3, roughly speaking, W is the
a-algebra determined by I and the {Xj} for Ij - > m, where m is an appro-
priately chosen positive number. Lemma 2.1 is obtained by expressing the
arbitrary function f occurring in formula (2.10) in terms of another arbitrary
function h by formula (2.9) in such a way as to make the normal approximation
apparent. I hope to publish soon identities making other approximations
apparent. Theorem 2.2 is included only in order to indicate, in detail but without
excessive complications, how Lemma 2.1 leads to a result on the normal approxi-
mation. The idea behind the more complicated derivation of Theorem 2.1 from
Lemma 2.1 is described immediately after the proof of Theorem 2.2.

Note added in proof. It has come to my attention that some results giving
sharp bounds for the order of magnitude of the error in the normal approxi-
mation in similar problems have been obtained by Statulevicius. His method is
entirely different, and in some ways his results go beyond those of this paper,
including results for large deviations. Several of his papers are published in
Lietuvos Matematikos Rinkinys. See also his paper in the Transactions of the
Third Prague Conference on Information Theory, Statistical Decision Functions,
and Random Processes, published in 1964 by the Publishing House of the
Czechoslovak Academy of Sciences.

2. The general problem of normal approximation

The purpose of this section is to derive a bound for the error in the normal
approximation to the distribution of a random variable in a fairly abstract
setting.
THEOREM 2.1. Let (Q, AR, P) be a probability space, and F and W be sub

a-algebras of AR. Let 0 be a A4-measurable random variable such that EG8 < co,
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and let

(2.1) W = E5G.
Let W* be a i'-measurable random variable such that

(2.2) E(W- W*)8 <-

and

(2.3) EG(W - W*) = 1.

Then, for all real a,

(2.4) IP{W < a} - 4D(a)l _ R,
where

(2.5) (D(a) = -l e-212 d

and

(2.6) R = 6{VarE5[O(W - W*)]}11/2 + 3EIG(W W*)31
+ 3{E(IWI + 1)2E[E9FIG(W-W*)21]2-1/2
+ 15(E[G(W W*)]4)1/4 {VarE9F G(W- W*)21

' (E[G,W _- *2)
Var E50G(W - W*)31 3/4

+ (E IG(W- W*)3 1)2 5

+ max {54E|G(W - W*)21, 23E|G(W - W*)31} + 3EIEVG1.
The proof of this theorem is based on a fairly simple identity.

LEMMA 2.1. Under the hypotheses of Theorem 2.1, if h is a bounded measur-
able function, then

(2.7) EEY[G jw h(z) dz]
fw*

= Nh + E Wf(W) -E4G zf(z) dz] (EG)f(W*)

where

(2.8) Nh = h(x) ex2/2 dx,

and

(2.9) f(w) = ew2/2 J [h(x) - Nh] e-X2/2 dX.
-00
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Of course in (2.7), if W* > W, the integral JW h(z) dz is to be interpreted as
- w* h(z) dz, and similarly with h(z) replaced by zf(z). The conditional expect-
ation signs Ef and E' in (2.7) could be dropped, but they help suggest the way
the lemma will be applied.
PROOF OF LEMMA 2.1. Let f (otherwise arbitrary) be a bounded function,

the integral of a bounded measurable function f '. Then

(2.10) E[Wf(W)] = E[(E-5G)f(W)]
= E[Gf(W)]
= E{G[f(W) -f(W*)] + (E(G)f(W*)}.

We can rewrite this in the form

(2.11) E[f'(W) - Wf(W)]
= E{f'(W) - G[f(W) -f(W*)]} + E{G[f(W) -f(W*)] - Wf(W)}
= E{f'(W) - 0[f(W) - f(W*)] - (E6G)f(W*)}.

In order to make conditions for the validity of the normal approximation to
the distribution of W more apparent, we express f in terms of an arbitrary
bounded measurable function h by (2.9). This function f is the unique bounded
solution of the differential equation

(2.12) f'(w) - wf(w) = h(w) - Nh.

Then equation (2.11 ) yields

(2.13) Eh(W) = Nh + E[f'(W) - Wf(W)]
= Nh + E{f'(W) - G[f(W) - f(W*)] -(E G)f(W*)}

= Nh + E{f'(W) - E[G f f(z) dz] - (E G)f(W*)}

= Nh + E{(h(W) -E[G | h(z) dz)

+ (Wf(W) - E4G f zf(z) dz - (EwG)f(W*)}.

If we subtract Eh(W) - E9 [GSw* h(z) dz] from both sides of this equation, we
obtain (2.7). This completes the proof of Lemma 2.1. We observe that we have
not used all of the assumptions of Theorem 2.1 in proving this lemma. All
of the manipulations of expected values are justified if we assume only that

(2.14) E02 < oo, E(W - W*)2 < oo

instead of EG8 < oo and E(W - W*)8 < oo, and we have not used (2.3), al-
though the proposition is of little interest unless (2.3) is approximately true.
The derivation of Theorem 2.1 from Lemma 2.1 will be somewhat tedious.
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In order to indicate the relevance ofLemma 2.1 to questions of normal approxi-
mation without considerable complications, we first prove Theorem 2.2 below.
The inadequacy of the bound obtained in this way helps to provide some moti-
vation for the complications involved in the proof of Theorem 2.1.
THEOREM 2.2. Let (Q), -4, P) be a probability space, and F and W be sub

a-algebras of AR. Let G be a -'-measurable random variable and W* a le-measurable
random variable such that, with

(2.15) W = E5G,

we have

(2.16) EG(W- W*) = 1

and

(2.17) EG2(W W*)4 < 00.

Let h be the indefinite integral of a measurable function h', and suppose that, for
all w,

(2.18) |h'(w)|I K, 0 _ h(w) _ 1,

where K is a positive constant. Then

(2.19) IEh(W) - NhI _ ElE'Gl + 2E|1 - Ey[G(W- W*)]l
+ (E(IWI + K + 1)2E[G2(W -W*)4])1/2
+ IE[1G1.IW - W*13] =

say.
Also, provided

(2.20) EW2 < 4,
we have, for all real a,

(2.21) JP{W _ a} -4>(a)j _ EIE"GO + 2E|1 -E'[G(W- W*)]l
+ 3{E[G2(W - W*)4]}1/2 + 3E[IGI|IW - W*13]
+ (2 1/4(E[02(W - w*)4])1/4(27

Ordinarily this result will be of interest only when E W2 is close to 1, so that
condition (2.20) is very weak.

PROOF. We start with an intermediate form of (2.13):

(2.22) Eh(W) = Nh + E{(f'(W) - E{G { f'(z) dz) - (EwG)f(W*)}.
We shall need some inequalities that are fairly clear intuitively, at least
qualitatively:

(2.23) If(w)I 1, Iwf(w)I 1,
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(2.24) If'(w)I _ 2, if"(w)I < |w| + K + 1.

These follow easily from Lemma 2.5, proved later in this section. Then, with 9
denoting a constant or random variable less than or equal to 1 in absolute value

(2.25) E{f '(W) - E[G {f'(z) dz]}

= E{f'(W) -EF[G (f'(W) + (IzI + K + 1) (z - W)) dz]}

= E{f'(W)(l- E-[G(W-W*)])-

+ SE[(IWI + K + 1) IGI(W - W*)2 + IG|LIW- W*13]
But, by Schwarz's inequality,

(2.26) IE[(IWI + K + l)IGI(W- W*)2]1
_ {E(| WI + K + 1)2E[G2(W_W*)4]-1/2

(2.27) E{f'(W) - E-[G f'(z) dz]} < 2E|1- E5[G(W-W*)]-

+ {E(IWI + K + 1)2E[G2(w- W*)4]}11/2 + IE[IGI|IW- W*13].
Together with (2.22) this yields (2.19).

To prove (2.21), we apply (2.19) with h given by

I1 for w < a,

(2.28) h(w) for a w _ a +,
h 0 w a +,

where

(2.29) A = {(2ir)E[G2(W - W*)4]}l/4.

Thus we obtain

(2.30) P{W _ a} < Eh(W) . Nh + R'

_D(a + +)+ R' _ (D(a) + + R'.
Similarly, 2

(2.31) P{W _ al _ (D(a)- R'.

Here the K in R' can be taken to be 1/A. Then (2.21) follows immediately from
(2.30) and (2.31).
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There is a conspicuous loss of accuracy in going from (2.19) to (2.21), in that
the derivative of h is equal to the large bound 1/ only on a very small interval,
and 0 elsewhere. Thus it is plausible that the bound for IP{ W . a} -(a) in
(2.21) ought to be something like the bound R' in (2.19). In order to use Lemma
2.1 to prove something like this, we proceed as follows.

(i) We choose a positve number) that is roughly of the order of magnitude
of the bound we want to obtain for IP{W . a} -4>(a)|. We then take for h,
in (2.7), one minus the c.d.f. of a random variable with mean a and expected
absolute deviation from a of the order of A, say h = ha, A. By a tedious calculation
we approximate the left side of (2.7) by

*(2.32) Et,h(_W) - R1 . EE4GJG ha_.(Z) dz]

< Eia,K(W) + R1,

where R1 will be part of the bound and ha A and ha ,Aare functions having roughly
the same behavior as ha, shifted by a small multiple of A.

(ii) We obtain a bound for

(2.33) E{Wf(W)-E-E[G zf(z) d

which occurs on the right side of (2.7). Because f is much less abrupt than h this
causes less difficulty than (i).

(iii) We must then go from the upper bound for Eha, A(W) and the lower
bound for Eha.A(W) provided by steps (i) and (ii) to an approximation for
P{W _ a}. The argument for this is similar to the concluding part of the
argument in some versions of the proof of the Berry-Esseen theorem.

In order to carry out this program, we define for real a and (small) A > 0,
lxa

(2.34) ha,A(X) = 9( 1 a

where

t1-2( )2 if y<O,J 2(1 -)
(2.35) g(y) =

l. 2(1 + y)2 if y_O.

We shall need the following.
LEMMA 2.2. For all real Y, and Y2,

(2.36) lg(Y1) - 9(Y2) - (Y1I - Y2)91(Y2)1 < 1 - y2)

and consequently for all real xl and x2,
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'< (i- X2)2(2.37) Iha,A(Xl) - ha,A(X2) - (X1 - X2)h'(X2)1 _ A+ (X2 - a)2'

PROOF OF LEMMA 2.2. For the proof of (2.36) we distinguish three cases.
Case 1. IY21 > 1 and Y1Y2 < 0. Without essential loss of generality, we

suppose Y2 > 1 and y1i 0. Then

(2.38) 0 . 9(Y1I) - 9(Y2) - 1 - Y21+ 1/2
and

(2.39) 0 = 1/2 Yl < (Y/2 1/)2
(2.39) 0 - (1Yi - Y2)9((Y2) 23+ ,
It follows that, in this case, (2.36) holds even with 3 replaced by 2.

Case 2. IY21 _ 1.

(2.40) Ij(Y1) - g(Y2) - (Yl - Y2)g'(Y2)1 = g"(Y)(Y1 - y) dy

- 3 2(y1 - Y2) ' 1 + Y2
1+ Y

since

(2.41) g,( ) - (1 y)4 if y<0

(1+3) if y >0,
l (ly)4

does not exceed 3.
Case 3. Y1lY2 _ 0. Without essential loss of generality, we suppose y1 Y2 _ 0.

Then

(2.42) Ig(Y1) - (Y2) - (Y1i - Y2)9(Y2)1

2(I + yl)2 - (+y2)2 + (Y1 - Y2)(1 + )3

I(Y2 - y1)3[3 - Y2 - 2y1]I < 3 (Y1 - Y12)
2(1 + y1)2(1 + Y2)3 2 1 + Y2

Thus, taking the three cases together, we have proved (2.36). Formula (2.37)
follows from (2.36) by substitution of (xi - a)/A for yi.

Next let us start to approximate the left side of (2.7). By Lemma 2.2,

(2.43) E" {G h(z) dz]

A2 + (W - a)2
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= h(W)E-[G(W - W*)] -2h'(W)E9[G(W -W*)2]

+ 2+ 9
- -G( W*)31.+(W - a)EI(

Here, as in the proof of Theorem 2.2, 9 denotes a number or random variable,
possibly depending on everything, but satisfying 191 < 1. Two occurrences of
9, even in a single formula, need not denote the same number or random
variable. For brevity, we have written h rather than ha,A
Now, with the positive constants B1 and B2 to be chosen later, define the event

(2.44) Q = {E5jIG(W - W*)2._ B1A and E9vjG(W - W*)31 < B2A2}
and let Qc be the complement of Q. Then

(2.45) EE |W{G h(z) dz] = E{(x + XQc)EY[G j h(z) dz]}

= ExQ{h(W)E-5[G(W - W*)] -2h'(W)Eg[G(W- W*)2]

+ A2 + (W- )2E5I G(W - W*)31} + E{xQ E5[G h(z) dz]}

= ExQ{h(W)E5[G(W- W*)] + - h'(W)B1A
2

+2 9B2Wa)2} + EXQE G h(z) dz]

= E h(W)Eg[G(W - W*)] + 2 h'(W)BI + A2 + ( -a)2

+ ExQ {Eg{G { h(z) dz - h(W)EF[G(W - W*)]

'9
+ -h'(W)B A

2

= Eh(W) + '9EIE-[G(W - W*)] -11
+ -B1Eh'(W) + '9B222E 12+ )2

+ EXQC {E [GJ| (h(z) -h(W)) dz] + 2 h'(W)BI}

= E{h(W) + 2B1Ah'(W) + 22 + (W a)2}

+ E{IE`Y[G(W - W*)] - I + xQc[IG(W- W*)I + Bj}
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Then, with h and h defined by

(2.46) h(W) = h(W) + B2 h'(w)- B22
and

(2.47) h(w) = h(w) - 2 h'(w) + 22 +(W-a)2'

formula (2.45) yields

(2.48) Ekh(W) - R1 E[GF h(z) dz < Eh(W) + R1,
where

(2.49) R1 = E{IE9'r[G(W - W*] - 1| + XQ[IG(W- W*)I + B}
In order to use these bounds to derive Theorem 2.1 from (2.7), we need to

obtain bounds for h h, and R1.
LEMMA 2.3. If we take B1 = 1/8 and B2 = 1/16 in the definition (2.44) of

Q, we have

4[2 + (w-a)]2
if w>a(2.50) h(w) _ 3Z22

4[A - (w3- a)]2
and

(2.51) h(w) < J 4[1-(w-a)]2 i a

4[2 + (w- a)]2 i

We shall prove only (2.50) since (2.51) follows by symmetry or a similar proof.
First we observe that, for w _ 0, with g defined by (2.35)

(2.52) g(w) + BIg'(w) B2 1 B1 B2
(+ w2 = 2(1 +w)2 (1 + W)3 1 +_W2

> +1 (1-2BI-4B

and, for w 0,2(1+W) 2 4(1+ W)2
B2

(2.53) g(w) + B1g'(w)-1 + w2

1 B1 B2
2(1 W)2 (_ W)3 1 + w2

> _ (I + 2B + 4B2) 31
3
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Replacing w in (2.52) and (2.53) by (w - a)/2 and using (2.46) and (2.14), we
obtain (2.50).
To take care of R1, defined by (2.49), we observe that, by H6lder's inequality

and the fact that (xQc)4I3 = xQ,

(2.54) E{XQ [IG(W - W*)I + 8]}

< (EXQC)314(E[IG(W - W*)j + 1 ]4)1/4
- o (EXQc )314 {E[ G(W - W*)]4}1/4.

We have also used the fact that, by (2.3), for k > 1

(2.55) EIG(W - W*)Ik > |E[G(W - W*)]Ik = 1,
and also B1 = 1/8 and (65/64)4 < 11/10. By the definition (2.44) of Q

(2.56) EXQc = P(QC)

= P{E'IG(W- W*)21 > Aor EIG(W- W*)31 >
A2

< P{Ef|G(W- W*)21 > A + P{EIG(W -W*)31 >
A2

< Var EF|G(W - W*)21 VarEF5IG(W-W-)31
= ((,/8) - ElG(W - W*)21)2 + ((22/16) - ElG(W -W*)3IF

provided

(2.57) A
> E|G(W- W*)21,

and

(2.58) 2 > E

We summarize these somewhat tedious calculations in
LEMMA 2.4. Let h*, h*, and R2 be defined by

(2.59) h*(w) = J 4[2 + (w-a)]2 if w_ a

t4[ 2- a]2 if w a,

3j 22 if w<a
(2.60) h*(w) = 4[2 + (w- a)]2

~i 4[2-(w-a)]2i
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and
(2.61) R2 = {VarE9'[G(W -W*)]112

+- (E[G(w -W*)4)1/4.- Var ElG(W_W*)2-10 { [(A/8) - ElG(f- W*)2l]2
VarE51CG(W -W*)31 3/4

+ [r(/16) - EIG(W -W)31]2
and suppose A chosen to satisfy (2.57) and (2.58). Then

(2.62) Eh*(W) - R2 _ E [Gf h(z)dz]< Eh*(W) + R2.

Next we turn to the evaluation of the term E{Wf(W) - E[GJw* zf(z) dz]}
occurring on the right side of (2.7). Here f is defined by (2.9) with h = ha A
given by (2.34). However we shall first consider the case of h = X(- 'o for some
real b. Then f, defined by (2.9) is given by

(2.63)2{fi_ eW2I/2D(w)[I -4D(b)] if w < b,
(2.63) f(w) - 2/irew2I2<F(b)[1 -_ @(w)] if w > b.

We first prove
LEMMA 2.5. For f defined by (2.63) we have

(2.64) If(w)I . 1,

(2.65) Iwf(w)I < 1,
and
(2.66) If'(w)I _ 1.

PROOF OF LEMMA 2.5. Without essential loss of generality, we suppose
b _ 0. We need the familiar fact that for w > 0,

(2.67) 1 -@D(w) = 2e /212 dz _ Z e-Z2/2 dz

e-ew2122irW2/2x

and, analogously, for w _ 0,
e -w212

(2.68) 4>(w) - l

To prove (2.66), we consider three cases.
Case 1. w _ 0 < b.
The first half of (2.63) yields (with 0 _ 9 _ 1)

(2.69) If'(w)I = I|[I - D(b)]{ 2,rwew2/2(Dw) + 1}I
= --D(b)]{-9 + 1}|I 1.
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Case 2. 0 _ w _ b.
Again, we use the first half of (2.63).

(2.70) f'(w) = [1 -4(b) + (D(w) 27r wew2/2[1 -D(b)]
< [1- D(b) + 0(b) 27t wew2/2[1 -@D(w)]
_ [1- D(b)] + D(b) < 1,

by (2.67). Since f'(w) is obviously positive, (2.66) follows in this case.
Case 3. 0 _ b < w.
From the second half of (2.63) it follows that

(2.71) f'(w) = 4)(b){-1 + /2iweW212[1l-_(W)]I-
Because of (2.67), this is negative and

(2.72) 0 _ f'(w) > -@D(b) _ - 1.

This completes the proof of (2.66) for h = X(- 'bI, that is, forf given by (2.63).
Since the bound in (2.66) does not depend on b, the resnlt also applies to any
convex combination of the X(- ',b] in particular to h = ha A. A similar remark
will apply to (2.64) and (2.65). The proof of (2.65) follows easily by examination
of (2.69), (2.70), and (2.71). Formula (2.64) can be proved by observing that f
defined by (2.63) is nonnegative and achieves its maximum at b, and

(2.73) f(b) = 27r eb2/24D(b) [1 -(b)]
Examination of tables of the normal distribution shows that this is everywhere
less than one. This completes the proof of Lemma 2.5.

It follows that

(2.74) E{WF(W) -E[GT zf(z) dz1}

= Wf(W) - E[G (f(W) + 9(z - W)) dz]}

= E Wf(W) - E [f(W)G
-

2

+ &G( WI + IW - W*I(W -W*)

= E{Wf(W) - E[f(W)C(W - W*)(W - W W*)
+ 19G(IWI + Iw - W*I(W -W*)

= E{Wf(W)[I - E`G(W - W*)]

+ 9E95[jGI(W - W*)2(IWI + f(2) + IG|-IW-W*13-
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Using Lemma 2.5, we obtain the bound

(2.75) E{Wf(W) -E[G zf(z) dz]}

< Eli - E-[G(W - W*)]l + E[IGI| W - W*13]

+ [E{E5[IGI(W - W*)2]}2E(IWI + 1)2]1/2.
Theorem 2.1 will follow from the lemmas we have proved together with
LEMMA 2.6. Let R3 be a nonnegative number and W, Y, Z independent random

variables uith c.d.f.'s F, G, H respectively, such that for all real a,

(2.76) P{W + Z _ a}-R3 _ ¢(a) _ P{W + Y _ a} + R3.

Then, for all real a,

(2.77) IP{W _ a} - (1)(a)I _ 3(R3 + |_ Iy dG(y) + zdH(z))-

I omit the proof of Lemma 2.6 because, except for the numerical constants it
is essentially an inferior version of part of the usual proof of the theorem of
Berry and Esseen. See for example Loeve ([4], p. 283, Proposition 20.3b).
To prove Theorem 2.1, we need only put all of the preceding together. The

distributions G and H of Lemma 2.6 are defined by

(2.78) G(y) = h*(a - y)

and

(2.79) H(z) = h*(a - z)

with h* and h* given by (2.59) and (2.60). Then

(2.80) IYl dG(y) = ud (- u]2) =

and

(2.81) zdG(z) =-A

Also

(2.82) P{W + Y . a} = G(a - x) dF(x) = EG(a- W) = Eh*(W),

and

(2.83) P{W + Z . a} = Eh*(W).
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But, by (2.7), (2.62), and (2.75), letting

(2.84) R3 = 2{VarE-F[G(W -w*)112
+ EIG(W - W*)31 + {E(IWI + !)2E{E9flG(W-W*)2112112
+"(E[G( -W *)]4)114 { Var EIG(W- W*)21

10 W[(A/8) - EIG(W - W*)21]2
Var EIG(W - W*)31 3/4

+ [3/x16) - EIG(W -

we have

(2.85) P{W + Z _ a} -R3 = Eh*(W) -R3
< ¢D(a) . Eh*(W) + R3 = P{W + Y < a} + R3.

Then Lemma 2.6 and (2.93) and (2.94) imply that

(2.86) |P{W _ a} - 4F(a)l . 3(R3 +-2)

We recall that A must be chosen so as to satisfy (2.57) and (2.58). If we take

(2.87) A = max {12EIG(W - W*)21, 5[E IG(W - W*)311/2}
we obtain (2.4) with R given by (2.6).

3. The sum of a weakly dependent stationary sequence

Let X1, X2, * * * be a stationary sequence of random variables. In formulas
(3.17), (3.24), (3.26), and (3.30) below, combined with Theorem 2.1, we obtain
a bound for the difference between the distribution of I' Xi and a normal distri-
bution under mildly restrictive conditions, including

(3.1) EXi = 0, EXV = 1,

(3.2) = EXV < oo,

and
n

(3.3) 0 < C lim -Var Xi < oo.
n- ,,f 1

In Corollary 3.1 we consider the particular case of an m-dependent sequence,
proving that the difference is bounded by An- 1/2, where A depends on the pro-
perties of the process in a fairly complicated way. In other cases the results
obtained are not as satisfactory. In Corollary 3.2, we see that, in the case where,
roughly speaking, dependence decreases exponentially with time, the difference
is bounded byAn-1/2 (log n)2. It seems likely that the correct order ofmagnitude
of the difference is at worst n112 or perhaps n-2 (log n)112.
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For completeness, we start by recalling the definition of a stationary sequence.
DEFINITION 3.1. A sequence X1, X2, * * * of random variables is said to be

stationary if, for every pair t, j of natural numbers, the sequence X +1, * X,,j
has the same distribution as XI, * * *, Xi.
We consider a stationary sequence X1, X2, * of random variables satisfying

conditions (3.1) and (3.2) above. Let

(3.4) Pi = EX,X,+i,
and let {akk}k = 1, 2, * be a sequence such that, if A and B are any two finite
sets of natural numbers for which

(3.5) inf ji-jl > k.
ieA,jeB

and Y and Z are random variables with finite variance depending only on the
{Xi}ieA and the {Xj}j,B respectively, then

(3.6) ICorr (Y, Z) _ ak

Let m be an arbitrary natural number less than n, which will be chosen appropri-
ately in Corollaries 3.1 and 3.2. Ordinarily m will be much smaller than n. Let
XJ be the a-algebra of events generated by X1, * - *, X,, and a random variable I
uniformly distributed over {1, * , n} independent of X1, * * *, X,. Let .f be
the a-algebra generated by X1,I , X,, and W the smallest a-algebra containing
all events of the form

(3.7) {I = i and for all j such that Ii - iI > m, Xj _ aj},
where the aj are real numbers. Here and in the rest of this section, indices on the
X, such as the j in Xj, are assumed to be restricted to {1, * , n}. Let

(3.8) G= n XI,

where

(3.9) bn = ny1 -Y2,

(3.10) Y1 = I + 2 EPi,
i=l

and
m

(3.11) Y2 = 2 E ipi.
i= 1

Also let
in

(3.12) W= E-9G = E xi,
lSn i=1
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and

(3.13) W* i.
nIi-II>m

Then W* is le-measurable and

(3.14) W- W*= 1 X

To obtain a bound for the difference between the distribution of W and a
unit normal distribution we must evaluate the remainder R given by (2.6) in this
case. The last term in (2.6) is taken care of by observing that

(3.15) EIE"Gl _ otam+1/G2
For, given I = i, th6 random variables G and E"G are determined by X with
indices differing by at least m + 1 so that, by hypothesis (3.6), their correlation
is at most am+ 1 Thus

(3.16) E(EwG)2 = E[G(EwG)] = EEI[G(E'0G)] _ Exm+i[E'G2(EwG)2]1/2
< atm+l[E2E(Ew )2]1/2

Consequently

(3.17) EIE"GI . [E(EwG)2]112 < am+ E/G2 = am+ n

Next we consider the second, third and fifth terms in (2.6). We have

(3.18) EG8 = EX" =4
it

and

(3.19) E(W - W*)8 = E(EXj) _ 4 (2m + 1)8/-

Thus, by Holder's inequality, for 0 < k, t and k + 1' _ 8,

(k + )18
(3.20) EIlIkIW - W*.t< nk(2m + ()-'
In particular,

(3.21) E|G(W - W*)21 _
n

(2m + 1)2fl318,

(3.22) EIG(W - W*)3 l n. (2m + 1)3/1/2,

and

(3.23) E[E'IG(W -W*)22] EG2(W -W*)4 _ a- (2m + 1)4,3/'.63
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The sum of the second, third and fifth terms in (2.6) is then bounded by

(3.24)
3EIG(W- W*)31 + 3{E(IWI + 1)2E[E`jG(W- W*)21]211/2

+ max {54E|G(W - W*)2, 23[E|G(W-w*)31-1/2)
_ 3n (2m + 1)3fl1/2 + 9 n (2m + 1)2#3/8

n n

+ max (2m + 1)233/8,23[ (2m + i)3#1/2
provided we assume that
(3.25) EW2 < 4.

Now let us look at the first term in formula (2.6). We have

(3.26) VarE-[G(W - W*)]

I n

=Var- E Xi E Xi6n i=l ij-il_m

Y!iCov(xi x__
X52 y-(X xj, Xi,

E j,

n ,i,i li-il:rm li -i'l_m

< EZ (Ii-i'-2m) + E[x2+i(+ Xjl)]

< (2m + 1)2 #112n((2m + 1) + ai)

The bounding of the fourth term in (3.26) is similar to this but more tedious.
First we observe that

(3.27) Var E G(W - W*)21
I n

,
)2

=Var 1~/ IXi(
bn i= 1 lj-il_m

= CO (x(X Xj) Xi
E Xj,(n i, V li-il_m iF - i Il_m

in iiIj-il_m Ij -I <m

< (2m + 1) + cia)E [XI(XJ)]

= ![(2m + 1) + oai E[G(W -W*)2]2
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and similarly

(3.28) VarE95IG(W - W*)31 < -[(2m + 1) + oti]E[G(W W- )3]

Also, as a special case of (3.20),

(3.29) (E[G(w -W*)]4)1/4 < (2m + 1)n #/4

Thus we obtain for the fourth term in formula (2.6)

(3-30) (E w-(W-W* )14)1 14 {VarE G(WW Wa)2r1(3.30)(E[G(w - (EI G(W W*)2)2
+ VarE|IG(W_W*)31 3/4

(E |G(WW W* )31)2|
(2m + 1)nfl4[1((2 + 1) 3±4

E[Xt( E Xj)2]2 E[X1( Xj)3]2 3/4
I Ii-II;9m + li-IIm tl(EIX ( E Xj)21)2 (ElXi E Xj)31)21

Bounds for all the terms in (2.6) have now been given in formulas (3.17), (3.24),
(3.26), and (3.30), under the conditions described at the beginning of this
section.

DEFINITION 3.2. A sequence X1, X2, * * of random variables is m-dependent
where m is a nonnegative integer if for any two subsets A, B c {1, 2, * * } for
which (3.5) holds with k = m + 1, the sets of random variables {Xi}c-A and

{Xj}jEB are independent.
An independent sequence is 0-dependent according to this definition.
COROLLARY 3.1. If X1, X2, . is a stationary m-dependent sequence of

random variables satisfying (3.1), (3.2), and (3.3), there exists a constant A
(depending on the distribution of the sequence X1, X2, * but not on n) such that
for all n and all real a

(3.31) P{ < a} - 1(a) < An-'

The proof is easily obtained by examining (3.17), (3.24), (3.26), and (3.30),
observing that Cxk = 0 for k _ m + 1 and that, by (3.9) and assumption (3.3),

6. is of the exact order of n.
COROLLARY 3.2. If X1, X2, * is a stationary sequence of random variables

satisfying (3.1), (3.2), (3.3), and (3.6) and if there exists a positive number A such
that for all sufficiently large k,
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(3.32) ak < e Ak

then there exists a constant A (depending on the distribution of Xl, X2, but
not on n) such that

(3.33) p
I

<a -4>(a) _ An'1/2.P{Var Xi)/ a}
I must admit that I have not written out every detail in the proof of this.

however, in applying the bounds (3.17), (3.24), (3.26), and (3.30), let us take

(3.34) m = [Klogn]

with K an appropriate positive constant. Then, for sufficiently large K, the
bound (3.17) is O(n 1/2) (or any other power of n), (3.24) is O(n - 1/2 log2 n), (3.26)
is O(n'1 log3 n), and (3.30) (except for the final factor) is O(n-314 log2 n). It
seems clear that this final factor cannot be large enough to destroy the bound.
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