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1. Summary and introduction

Efficiencies of one sided and two sided procedures are considered from the
standpoint of risk. It is shown that the two sided Kolmogorov-Smirnov (K-S)
and Kuiper procedures, which were shown in [4] to be asymptotically equi-
efficient with the median for translation alternatives for symmetric unimodal
distributions, have efficiencies for sample sizes in a wide range in the general
vicinity of that of the median; but even if certain standard asymptotic approxi-
mations can be made, the efficiencies are not too close to that of the median, and
in many cases the dominant asymptotic correction term does not even yield the
sign of the deviation for samples of size 1020.
A procedure briefly discussed in [1], for which the Pitman efficiency is zero,

has good Bayes risk efficiency for translation alternatives for any distribution
and merits further work for two sided testing.

In the one sided case, the one sided K-S procedure appears to be somewhat
worse to much worse than a procedure introduced by the author in [3]. Also,
the K-S procedure involves a choice of significance level which is highly distri-
bution dependent.
We shall consider the "moderately large sample" efficiencies of certain well

known and not sufficiently well known nonparametric procedures from a decision
theoretic standpoint. By "moderately large sample" we shall mean that central
limit type theorems yield adequate approximations to the distributions involved,
but that the further asymptotic approximations of the type in [4] are not neces-
sarily very good. We shall also assume that the samples under consideration are
sufficiently large that the large sample form of the risk can be used.

That is, we shall carry out our computations as if the observations can be
considered as a stochastic process on [0, 1] such that

(1.1) X(t) = Oh(t) + Y(t),
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where Y is a separable Gaussian process with mean 0 and covariance function

(1.2) E (t, u) = 4[min (t, u) - tu],
and h(t) is a multiple offF-1(t), chosen so that h(0.5) = 1. The choice of these
normalizing factors is for computational convenience; the median corresponds
to - X(0.5) in standard units. For simulation purposes, we have chosen five
distributions:

normal, with

(1.3) hN(t) = exp {-0.5 {[N(O, 1) (t)] -1}2};

logistic, with

(1.4) hL(t) = 4t(1-t);

double exponential, with

hD J)=2t, 1 < 0.5
(1.5) hD(t) = {2(1 - t), t > 0.5;

Cauchy, with

(1.6) hc(t) = sin2 itt;

and a distribution with density C(1 + Tlx - 0j)-10/9, in which case

(1.7) hT(t) = {(21) - )]10 t > 0.5,
[2(I tj t > 0.5.

The loss structure was taken to be 2101dO for a wrong decision in the one sided
testing problem [2]-it can be strongly argued that for "reasonably large"
samples no other loss function is reasonable for this problem. For the two sided
problem the weight function was taken, as in [4], to be 1 if a type I error is made,
and 101k dO/!/i2r Mk for a type II error, where piik is the kth absolute moment of
the normal distribution. The choice of multiplicative constants was chosen so
that if Z is N(0, a2), then it will never pay to accept the null hypothesis if a > 1,
but for Z sufficiently small it will pay if a < 1.

In the two sided case these normalizations correspond to establishing a base
for the sample size. In the one sided case, if the value of the translation parameter
at which there is indifference is 0*, the risk is E(0*2).
The procedures we have evaluated by Monte Carlo are, for the two sided

problem, Kolmogorov-Smirnov and Kuiper; and we have compared them to the
median, for which it is known [4] that they are asymptotically equiefficient. For
the one sided case, the Kolmogorov-Smirnov statistic has been compared with
a symmetrized version introduced by the author in [3].
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2. Two sided tests: asymptotic treatment

The procedures that we shall consider are the median, Kolmogorov-Smirnov,
and Kuiper. We shall also consider a test, suggested in [2]. for which the Pitman
efficiency is 0. but whose Bayes risk efficiency is that of the best order statistic.
For the median (in our approximation: X(0.5) + Oh(0.5)) the probability of ex-
ceeding C under the null hypothesis is

2 'IC 2
(2.1) PM = _ I e _212 dt e-c2

,/2 Jc o/ 7t c

For the K-S statistic (sup JX(t) + Oh(t)|) the corresponding probability is

(2.2) PK-S e2(-1)n 1e-c2n2/2 e-c2/2

and for the Kuiper statistic, the probability is

(2.3) PK = 21(n2c2 _ 1)e-C2n2l2 2c2e,c22.

(Note that there is a scale factor of 2 in the expressions for PK and PK-S)*
Now let us examine what happens under the alternative. Let X + (0) =

sup (X(t) + Oh(t)).For0reasonablylarge.ifh(t) -1 - |jt- 2Y .y > 2X+(O)
is approximately 0 + -1/'O 1'Y,, - Z. where Z is normal (0, 1) and YY is a
positive random variable whose distribution is not known except for y = 1.
Hence that 0 for which X + (0) = c is approximately

(2.4) oc = c + Z - -1,c-1/yY;.I
Therefore

(2.5) EKS(0k) Ck + () ck2 - kK,ck l/'/.

For the Kuiper statistic we also need X-(0) = inf(X(t) + Oh(t)). Here if 0 is
reasonably large and h(t) - pt/3,, > 1- X-(0) - -p-1#00- lWfl, and

(2.6) EK(0k) _ ± (2)ck2 - kKyckI-/, - kH,Ck-I- I/#.

For the distributions we are considering, the values of y and ,B are shown in
Table I. (For the normal, the tail behavior is slightly more complicated, but

TABLE I

VALUES OF Y AND ,B

Y /

normal 2 1
logistic 2 1
double exponential 1 1
Cauchy 2 2
long tailed 1 10
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since for the Kuiper statistic the larger of ,B and y is what counts, this is not a
problem.)

Incidentally, in the case of the median,

(2.7) Em (k) _ Ck + (k)Ck-2.

Note that for the K-S and the Kuiper statistic, E(ok) is smaller than for the
median. However, the c required to obtain a given type I error is somewhat
larger.
Now let us investigate what happens for mth power loss for samples of size

n if the cut off point is c. We obtain for the type II risk

2 1 m+
(2.8) R2 E

27/Inl(+)/2 \m + 1

Hence our combined risk is

~~+ -c -1 c-1 m+1/(2.9) R = PI(c) + I
+ 2 + -

where P1(c) Ac + e-C2/2. Now a lengthy calculation shows that the dominant
correction term to the asymptotic expression

(2.10) R - B(m + I)(M_1)/2 lognm
has the relative value

(2.11) C=(q_ + 1-m) log log n

2 [(in + 1) log n]1/2

which of course increases with q. Thus, for extremely large n, the median is better
than the K-S test, which is better than the Kuiper test.

However, extremely large depends on log log n. Since log log 1020 < 4, for
practical purposes the next term (which depends on A) comes into effect, and
the -Rcm-i/V term may actually be dominant.

3. Two sided tests: moderately large sample and empirical results

A computation based on the likelihood ratio shows that for small n the K-S
and Kuiper statistics are approximately equivalent to the best procedure. (This
requires the probability of type I error to be nearly 1.) Apparently this efficiency
drops off rapidly. Let us look at the results of Monte Carlo computations
(Table II).
The values are independent for the different distributions, but dependent

within any one distribution. The standard deviations (estimated from 1000
sample processes) of these efficiencies are 1 to 2 per cent for samples of size 10
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TABL,E 11

EFFICIENCY (PER CENT)

Kolmogorov-Smirnov Ktiiper
conistant absolute squared1 constant absolute squared

loss error error loss error error

Normal 1 127 123 123
2 129 126 119 70 72 72
5 122 118 119 65 (68 71
10 119 11 ) 118 (is 70 73
102 115 116 114 74 76 80
l(3 117 114 113 75 81 85
105 114 112 110 80 87 91
1010 112 109 107 88 93 96

2o 108 106 105 93 97 98

Logistic I 111 114 116
2 117 117 111 73 75 76
5 114 112 113 69 72 74
10 111 113 113 72 73 75
102 110 112 111 75 78 81
103 1 111 11(0 77 82 86
l, (110 109 108 82 88 91
1010 109 107 106 89 93 96
1020 107 105 104 94 97 98

Double I -- _ _ _
exponential 2 79 79 80 64 63 67

5 78 80 82 60 61 62
10 79 82 83 61 63 66
102 82 86 87 64 68 72
103 85 88 9( 67 72 76

, ##88 91 93 72 78 82
1010 92 94 96 79 85 88
1O20 94 96 97 86 9( 92

Cauchy 1 - - _
2 87 90 92 85 87 89
5 88 91 91 80 84 87
10 89 93 94 81 85 87
102 93 97 98 84 89 92
103 97 99 10( 89 93 95
lo, 9A8 101 101 92 96 98
1010 103 102 102 97 99 101
1020 102 102 102 99 101 102

Long tailed I - - - 100 + 105 112
2 70 73 77 90 96 102
5 66 65 65 78 86 91
10 57 61 64 81 86 94
102 61 68 73 81 93 100
103 66 74 79 88 98 104
lo 74 82 86 94 103 107
1010 83 89 92 103 107 109
1020 93 94 95 106 108 1(8
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and, with very few exceptions, 0.1 to 0.2 per cent for samples of size 1020. Thus,
while individual figures for small sample sizes are not too reliable, the general
picture is clear: for the Kolmogorov-Smirnov test, the flatness at the median
determines the efficiency, and for samples of size 1020 relative to the base, the
dominant asymptotic error has yet to make its presence felt.
The results are also similar for the Kuiper statistic. Several cases also clearly

show the dip for small samples in the efficiencies. These results also agree with
the exact calculations for K-S with 0th power loss for the double exponential in
[3]. The optimal significance levels also are not much affected by the test.
A test occasionally considered (see, for example [1]) is to use Tn =
n supI(F. - F)/[F(1 - F)]"12. The statistic Tn is more sensitive to deviations

in the tails than the K-S statistic. Now examination of

(3.1) T.(x) = F() - F(x)12[F(x)(I - ()
by the usual methods shows that

(3.2) T, - (2 log log n)'72.

A further examination shows that the statistic cannot be very sensitive to
Pitman alternatives since that x for which Tn = T, (x) is likely to be near 0 to 1.
Of course. (2 log log 1020)1/2 < 2.15 (2 log log 10)1/2. so that even this argu-
ment mnay not be too serious for reasonable sample sizes. But we note that
for kth power loss, for the K-S test the critical deviation is approximately
2[(k + 1) log n] 2. which grows much more rapidly. However, if we break
the ordered observations below the median into groups of size 1, 2, 4. 8. and
examine the distribution of Tn(x) in the corresponding intervals, we find that

(3.3) P(Tn > c) < Klog (n + 1)ec2/2.

This shows that from the Bayes risk standpoint, this statistic bears much the
same relationship to the best order statistic as the K-S or Kuiper statistic does
to the median ! This test consequently merits investigation.

4. One sided tests

If the weight function is 2 1 01 dO for a wrong decision, and if the structural model
is such that the observation Y = 4 (0. X), and for 0 < 0(x) the decision is made
that 0 < 0, the risk is E[(O(x))2]. This calculation can be applied in our model
to the one sided K-S tests and also to the symmetric test given by the author in
[3]. The symmetric test has similar properties to the median for all symmetric
unimodal distributions; its reciprocal efficiency relative to the median is between
2 -62 = 0.355 and a number bounded by (3 ir/ + 1)2 7.9.
The one sided K-S test does not fare so well. From equation (1.1), note that

if 0 is large the maximum of X(t) will be large with large probability since
X(4) = 0 + Y( ), but the minimum may still be quite negative if 0 is not very
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large, especially if h is small some distance away from 0. This is indeed borne out
by the empirical results. Unfortunately, it was not anticipated just how bad
things would get, and hence it is necessary to crudely estimate some numbers.
The results are given in Table III with standard errors in parentheses.

TABLE III

VARIANCE OF INDIFFERENCE POINT

Double
Normal Logistic exponential Cauchy Long tail

Symmetric .735(.033) .796(.034) 1.405(.061) 1.386(.062) 6.13(.19)
K-8. one sided .851(.027) .942(.029 1.737(.057) 1.902(.073) - 11(. 3)
K-S, one sided .852(.017) .950(.029) 1.931(.07) - 4.5 - 160

50 per cent
Optimal level .49 .47 .39 .28 .008

Again, the values for the one sided K-S at optimal level for the double exponen-
tial and the optimal level agree very well with the theoretical values of 14 -2 =

1.74166 and ev'0.875 = 0.39244, respectively. Note that for not too bad distri-
butions, the one sided K-S test is fairly good if used at the optimal level, which
varies considerably with the distribution. If the 50 per cent level were used, as is
optimal for any symmetric test statistic, the tail of the Cauchy is already bad
enough to cause problems. It was not anticipated in the empirical procedure
that when 0 was chosen to make the maximum of X(0) greater than 12.8 (or the
minimum less than -12.8), which is beyond the 10-33 level for the Kuiper
statistic that there would be any significant problems with the minimum (maxi-
mum). A few values for the Cauchy distribution were far enough out to give
questionable accuracy at the 50th percentile; for the long tailed distribution the
figures given are probably slightly conservative.

0 0 0 0 0
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