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1. Introduction

Recent work on limit theorems in probability is marked by two tendencies.
The old limit theorems are being supplemented and sharpened by a variety of
so-called local limit theorems (which sometimes take the form of asymptotic
expansions). Even more striking is the increasing role played by functions of
regular variation. They made their debut in W. Doblin's pioneer work of 1940
where he gave a complete description of the domains of attraction of the
nonnormal stable distributions. A long series of investigations started by
E. B. Dynkin and continued by J. Lamperti, S. Port, and others have shown
that essential limit theorems connected with renewal theory depend on regular
variation. The same is true of the asymptotic behavior of the maximal term of
a sequence of independent random variables and of D. A. Darling's theorems
concerning the ratio of this term to the corresponding partial sum.

It seems that each of these problems still stands under the influence of its
own history and that, therefore, a great variety of methods is used. Actually a
considerable unification and simplification of the whole theory could be achieved
by a systematic exploitation of two powerful tools: J. Karamata's beautiful
theory of regular variation and the method of estimation introduced by
A. C. Berry in his well-known investigation of the error term in the central
limit theorem.

[It seems that proofs of Karamata's theorems can be found only in his paper
of 1930 in the Rumanian journal Mathematica (Vol. 4), which is not easily
accessible. For purposes of probability theory, one requires a generalization from
Lebesgue to Stieltjes integrals. A streamlined version is contained in the forth-
coming second volume of my Introduction to Probability Theory, but this book
does not contain the inequalities derived in the sequel.]

Berry's method is of wide applicability and not limited to the normal distribu-
tion. It leads to an estimate for the discrepancy between distributions in terms
of the discrepancy between the corresponding characteristic functions. In the
case of the normal distribution, the latter discrepancy can be estimated in terms
of the moments, and the theory of regular variation leads readily to similar
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estimates, in the case of convergence to other stable distributions. For example,
the asymptotic expansions connected with the central limit theorem have their
natural aialogues in this general setting.

[See H. Cramer, "On the approximation to a stable probability distribution,"
pp. 70-76 in Stutdics in MIathematical Analysis and Related Topics, Stanford
University Press, 1962, and "On asymptotic expansions for sums of independent
ranidom variables with a limiting stable distribution," Sankhya, Vol. 25 (196:3),
pp. 13-24. The basic relations for regularly varying functionis make it possible
to avoid Cramer's severe restrictions simplifying at the same time the
calculations.] Indeed, we shall see that expansions and error estimates of this
sort are more general than the basic limit theorems in the selnse that they may
apply even when the leading terms do not converge. A typical exaample is treated
in section 9.
We proceed to a brief sketch of the basic propelties of regular variation aild

of its connection with limit theorems. Part of the material of sections 2-7 will
be contained in the second volume of my book on probability, but encumbered
by details and spread over many places. For a better understanding of the whole
theory we shall in this address generalize the notion of regular variation by
considering inequalities instead of equalities (section 7). In probabilistic terms,
we shall replace the condition that a sequence of distributions Fn converges to
a limit by the requirement that it be compact in the sense of the followiilng.

DEFINITION 1. A family -F,' of probability distributions is stochastically com-
pact if every sequence {Fnk} contains a further subsequence converging to a probability
distribution not concentrated at one point.

It is essential that the limit be nondegenerate. We shall see that compactness
is related to our one-sided regular variation much in the same way as convergence
is to regular variation. Furthermore, the typical local limit theorems and error
estimates depend oln compactness rather than actual convergenice, and they can
be formulated in this more general setting.

2. The basic property of regular variation

A positive finite valued function l defined on (0, oc) is said to vary regularly
at x if for each x

(2.1) U(tx) xP, t ->
U(t)

where p is a constant. If this exponent is 0, onie says that U varies slowly at z*
In other words, for a slowly varying function one has

(2.2) £(t)) 1 t

and U varies regularly iff it is of the form

(2.3) U(a) =- x(x).
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1egular vaiiation at 0 is defiuled in. like manniier, that is, U varies regulatrly at 0
iff U(l/x) varies regularly at o . [Since regular variationl at x is not affected by
the behavior of U in a finite interval, it suffices to assume that U is defined and
positive in some interval (a, oc). By the same token, regular variation at 0 is a
local property.]

At first sight the conditioni (2.1) appears rather artificial, but it may be
replaced by the more natural condition that

(2.4) ((tx) 6 (x).U(t)
Indeed, if such a limit exists and does not vanislh identically, theln it is either
nonimeasurable or of the form 4'(x) = xP. We prove this assertion together with
a variant streamlined for applications to probabilistic limit theorems. It refers
to convergence of monotoine functions and, as usual, it is understood that
convergenice need take place onily at point of continuity of the limit.
LEMMA 1. (a) Let U be positive and monotone, and SUPPOS( that there cxists a

sequence of numbers an cc such that

(2.5) nlU(a,,x) -* 4P(j) > 0.

T'hen 4'(x) = (Cx and U varies regularly at oc.
(b) T'he same conclusion holds if Ul and e' arc assutmed continuous. (It suffices

that 4' is finite valued and positive in some interval. T'he co4Jfficicnts n may be replaced
by arbitrary XA > 0 such that X,1+X, -- 1.)

PROOF. If 4' is monotone there is no loss of genierality in assuminlg that 1 is
a point of continuity and 4'(1) = 1. For fixed t determinie n as the last index
such that an < t. Theni U(t) lies betweeii Z'(a,,) and U(a,1). Since n'(a,) -- 1,
it follows easily that (2.4) holds. But then the relation

-2.6) ,I (txy) (U(txy) U(ty)
(u(t) U'(ty) U(t)

iml)lies that 41(xy) = 4'(x)4'(y). This e(uation differs onily notatiolnally from the
famous Hamel equation, and its uni(lue measurable solution is given by
41(x) = xa. Part (b) is proved in like manner.
The most usual applications in probability theory refer to the trunicated second

moment

(2.7) U(X) = y2F dyd, rx > 0

of a p)robability distributioni F, or to the tail sum11

(2.8) T(x) = I - F(x) + F(-x-).

Generally speaking, a distribution with a regularly varyinig tail sumii 7' is wvell-
behaved, except if T is slowly varying. This exceptional role is illustrated by the
following example which shows that distributions with slowly varying tails can
exhibit severe pathologies.
EXAMPLE. Let F be a distribution concenitrated on (0, x ) (that is, let
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F(0) = 0) and denote its characteristic function by , = u + iv. If F has a
finite expectation ,u then v'(0) = 1M, and hence v(¢) > 0 for all sufficiently small
positive values of r. This is not so if u = oo. Indeed, we shall exhibit an arith-
metic distribution F with slowly varying tail 1- F such that so has infinitely many
zeros accumulating to 0. Furthermore,

(2.9) lim sup (0 = GC, lin infV(0 = -OC.
r-O+ v ro- v

In other words, the values of (p oscillate wildly, and the curious nature of these
oscillations becomes clear if one reflects that the integral of v over any positive
interval (0, a) is strictly positive. The set at which v(P)/I is strongly negative
is therefore rather sparse.
To obtain the desired example choose an integer of the form a = 4v + 1, and

let F attribute weight 1/(n(n + 1)) to the point an, (n = 1, 2, * ). Then

1
(2.10) so(r) = E n(n ± 1) exp (ia,v).

If = 37r/2, then an is congruent (3/2)7r modulo 27r, and hence for every
positive integer r,

(2.11) so (a-r Fr) =E (n+ 1) eXI) (iar 27r)ilr
Since |sin tI < itI, it is obvious that as r x ,

(2.12) v(arr) = r2

which proves the second relation in (2.9). The first onie is evein easier to verify.

3. Applications

(a) Distribution of maxima. Let XI, X2, * be indepenidenlt randomii vari-
ables with a common distribution function F such that F(x) < 1 for all x. Let
AIn = max [X1, . .. , X,,]. We inquire whether there exist constants a. -X-
such that the randomii variables Mn/an have a nondegenerate limit distribu-
tion 9, that is,
(:,.1) F"(a,,x) -9(x)
at poinits of conitinuity. By assumptioni there exist values x > 0 for wvhicl
0 < 9(x) < 1, and at such poinits (3.1) is equivalent to

(3.2) n[l - F(anx)] - log 9(x).
By lemma 1, therefore, the possible limits are of the form

(3.3) 9(x) = e cx, x > 0,
-0, x <0.

A limit distribution exists iff 1- F varies regularly. Indeed, the lemma asserts
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the necessity of regular variation, and the sufficiency is obvious on choosing an
such that n[1 - F(an)] - 1. What first appeared to be a relatively deep theorem
thus becomes a simple corollary to a simple lemma.

(b) Stable distributions and their domains of attraction. Let X1, X2, * be
independent random variables, with the common distribution F and character-
istic function sp = u + iv. Put Sn = X1 + * * * + Xn. The variables Xj are said
to belong to the domain of attraction of a nondegenerate distribution g iff there
exist real constants an > 0 and bn such that the distributions of an1Sn-bn
tend to 9. If F is symmetric one can put bn = 0. Then s is real, and convergence
takes place iff
(3.4)

a,

where y is a continuous function. It is obvious that an -* oo, and so (3.4) refers
to the behavior of so near the origin. Otherwise there is no essential difference
between (3.4) and (3.1), and we see again that for v > 0, the limit -y is neces-
sarily of the form y(r) = exp (-Cta) where C and a are positive constants.
This solves the problem as far as symmetric distributions are concerned: only
stable characteristic functions have a domain of attraction, and for real sp a rela-
tion (3.4) holds if 1 - p varies regularly at the origin.

In the case of asymmetric distributions, the same argument still applies to
the real parts of sp and log y. Now it is well known that for ¢ > 0 a stable charac-
teristic function is not necessarily of the form log -y(v) = -(a + ib)Pa, but may
be also of the form

(3.5) log y(¢) = -at + i(bt -+ cD log h.

The appearance of the logarithm on the right would seem to preclude the
application of lemma 1, but this is not so. We proceed to show that a minor
modification of lemma 1 explains the general form of stable characteristic func-
tions. If the random variables an'S. - bn have a limit distribution 9 with
characteristic function y, then

(3.6) nv (a- -ib.t -*

where 4,t is the imaginary part of log y. (It is easily seen that -y can have no
zeros). We now prove the following lemma.
LEMMA 2. Suppose that (3.6) holds for two real continuous functions v and 4',

and that a. - o and a,+,/a, -- 1. Then for r> 0,
(3.7) #(r) = c;a or A(v) = cl + c2v10g.
PROOF. Choose A> 0 arbitrarily and put

(3.8) w( )= v(XW) - v(r)
Then

(3.9) nw(t8{X)_+¢
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It follows easily that w varics regiuarly at t1e origin, and hence

(3.10) ( - = CP, v> 0

where("C anid p ar'e constants. In principle, p cotild depend onl N, but firom hlle
fact that the iioililig constanits a,, are independeiit of X, one concltides easily
that p is an absolute conistant. Put.j(¢) = ( -(L)/P)-1. Without loss of genei-al-
ily, one may suppose that 4'(1) = 1. Then (C = f(X) and (3.10) takes oil the
form f(X)) f J'(,\)ff . Interchanging the roles of X and A, we conclude that

(3.11) f(¶)[1 - XP] = f(A) [1-I c]
Thus f() = (C[I - i]unless p = 1, in which case (3.10) reduces to f()¢) =
f(X) + f(v). Since J(l) = 0, the only continiuous solution of the last, eqIuation
is giveni by f(v) = log A, and this concludes the proof of the lemma.
The proof is admittedly iiot as simple as the proof of lemma 1, but it is never-

theless remarkable that so elementary an argument leads to the general form
of the stable characteristic functions and gives at the same time the precise
conditions under which a giv'en7 characteristic function p belongs to a domain of
attr-action1.

4. Karamata's relations
In this section we deiiote by U an arbitrary nondecreasing function witlh

U'(0) = 0. We arc initerested only in the asymptotic behavior of U at infinity,
and so there is no loss of generality in assuming that U vanishes identically in
some neighborhood of 0. Together with U we consider the one-parametric family
of truincated moments

(4.1) Up(x) = fo + yPU(dy), x > 0,

for all values of p for which the integral diverges (at infinity). When considering
UP it is always understood that U,(cc) = cc. For other values we change the
notationi and consider the tails

(4.2) Vx,(x)= | y-U'(dy), x > 0.

In probabilistic applications U will be identified with the truncated second
moment (2.7) of a probability distribution F. Then V2 coincides with the tail
sum T defined in (2.8), and U,p is the truncated momenit of order 2 + p, provided
it diverges. The slightly greater generality will contribute to the understanding
of the various phenomenla of attraction. The following propositions generalize
Karamata's basic relations from Lebesgue to Stielt,jes integrals. (Only the limit-
ing cases p = 0, p = -p, and q = p present new features.) We shall later replace
the asymptotic relations by asymp)totic ine(qualities, and the new proof apl)lies
also to the following propositions.
The first proposition states that if U is of regtular variation, namely

4.3U(X) xrz .(x) .1. 0
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tlheti the initegrals U, and Vq are related to U as would be the case if £ werc a
constanit. (The sign indicates that the ratio of the two sides tends to 1.) Note
that v 2 0, for otherxwise U could not increase.

PROI'OSITION 1. If U is of the form (4.3) with 2 slowly varying, then

(4.4) U (x) + x'+P2(x), p > -p,

(4.5) V (x) PXP-q2(X), q > P.

The trouble with these relationls is that they break down in the initerestin,g
limit cases p = -p and q = p. However, they may be rewritten in the forli

(4.6) U(Z) P
xpu(x) p + p,

(4.7) Vq(x) p
l.(1') q1 - p

anid in this formi they remlaini valid for all admissible combinat ions of the parani-
eters p, q, p (with the obvious interpretation when a denominiator vaniishes.
U'nder any circumstances p > -p, q > p, and p > 0).

PlROI'OSITION 2. The relation (4.3) implies (4.6) and (4.7).
The most interestiilg point is thiat the conditions (4.6) anid (4.7) are niot only

necessary, but also sufficient for the regulai variationi of U-, except in the limitinig
cases p = -p anid q = p if they arise.
PROPOSITION 3. If elither (4.6) or (4.7) hold with a nonzero (lenominator, then

U varies regularly.
If (4.6) holds with p = -p # 0, we may interchanlge the role of U and U

to conclude that U, varies reguilarly. lIn otlher words, if either U' or U', varies
regularly, then

(4.8) xP(X)A <

where X = pl(p + p). Conversely, if (4.8) holds with 0 < X < - then both U and
IT, vary regularly. Finally, (4.8) with X = 0 or x implies regular variation of U
and LT,, respectively. A similar remark applies to the Vq.

5. Compactness and convergence criteria for triangular arrays

In order to explainI the application of the precedinig propositionIs and to moti-
vate the prol)osed generalization of the notioni of regular variation, we recall
a basic fact concerninig triaiiguilar arrays of ramidoiii variables. For each n we
consider n mutually indepenidenit ranidom variables X1,,,, - - - , X,,, with a com-
mon distribution F_. As usual, we put S,, = XI,, + *- * + Xn.. The familiar
convergenice theorems for trianigular arrays imply the following.

CRITERION. (i) In order thtat every sequence {S,,k} contains a subsequence whose
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distributions converge to a probability distribution, it is necessary and sufficient
that for each t > 0,

(5.1) lim sup nf y2F.(dy) <00,
n-- -t

(5.2) lim sup n yFn(dy)| <o ,

and that for given e > 0 there exists a r > 0 such that

(5.3) n[1 - Fn(r) + Fn(-T)] <6e

for all n.
(ii) If none of the limit distributions is concentrated at a single point, then

(5.4) lim inf n f y2Fn(dy) > 0

for some T > 0.
(iii) The distributions of Sn converge to a probability distribution iff

(5.5) lim n 1 y2Fn{dy} = 46(s, t) < oo

exists for almost all positive s and t, and

(5.6) lim n f yFn(dy)
n--+ - f t

exists for somne (and therefore almost all) t > 0.

6. Domains of attraction
We shall now show that Karamata's relations enable us to derive from the

preceding criterion not only Doblin's original characterization of the nonnormal
stable domains of attraction, but also the analogue for the normal distribution
as well as certain variants which were derived by various authors at the expense
of cumbersome calculations.
We return to a sequence {Xn} of independent random variables with a

common distribution F and partial sums Sn. We seek conditions for the exist-
ence of a limit distribution of Sn/an with appropriately chosen an > 0. For that
purpose we apply the criterion to the triangular array defined by Xk.n = Xk/an
with distribution Fn(x) = F(anx). If U denotes the truncated second moment
(2.7), then condition (5.5) specialized to s = t requires the existence of a limit
of nan; U(ant) for almost all t. This implies regular variation of U, and hence
we can write
(6.1) U(t) = t2-

with S slowly varying at oo.
[The same consideration applies to the variables a; Sn - bn. The variables of

the triangular array are then an 1(Xk -jB) where bn = np3,,/a,,, and since obvi-
ously /3n = o(an) it is easily seen that ntff, y2F(an dy + n,,) behaves essentially
as the integral in (6.2).]
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From the definition of U it is clear that 0 < a < 2. Now the function V2
introduced in (4.2) coincides with the tail sum T (defined in (2.8)), and for it
the relation (4.7) holds with p = 2 - a and q = 2. When ox = 0 it follows that
either nT(anr) -- axor else nan2 U(a.r) -O 0, which excludes convergence.
We have thus found that condition (6.1) with 0 < a < 2 is necessary. Assume

nlow that it is satisfied. Since U is right continuous we can choose an such that
nan2U(an) = 1, in which case

(6.2) n f y2F.(dy) U(a,,t) t2-

The condition (5.3) is automatically satisfied, since in consequence of (4.7),

(6.3a) T(x) -2 ax-a0Q(x) if a < 2

(6.3b) T(x) = o(42(x)) if a = 2.

When a > 1 the distribution F has an expectation u, and we may supp)ose u = 0.
Using (4.7) (with p = 2 - a and q = 1) when a > 1 and (4.6) (with p = 2 - a
and p = 1) when a < 1, one sees that the condition (5.6) is an immediate
consequence of (6.2). We skip over the case a = 1 in which (5.6) is not neces-
sarily satisfied and centering constants may be essential to achieve convergence.
To assure the proper convergence of our distributions it remains to establish

the convergence in (5.5) when s P' t. Now when a = 2 the left si:l in (6.2)
tends to the constant 1, and this trivially implies that 41(s, t) = 1 for all s, t.
Thus (6.1) with a = 2 represents the necessary and sufficient condition for
convergence to the normal distribution.
When a < 2 the existence of the limit 46(s, t) is equivalent to the existence of

the limits

(6.4) lim X2li-F(X)], im x2F(-x)

and this requires a certain balance between the right and left tails. UJnder any
circumstances F belongs to a domain of attraction iff (6.1) holds with 0 < a < 2
and the limits in (6.4) exist. They are always finite, and they vanish when a = 2.
In this formulation the only difference between the normal and other stable
distributions is that the subsidiary condition relating to (6.4) is automatically
satisfied when a = 2.
When a < 2 the tail sum T varies regularly at oo, but this is not necessarily

true when a = 2. However, regularly varying tails play a noticeable role eveni
if F possesses a variance or finite higher order moments. This is not visible in
the usual formulation of the central limit theorem because (as we have seen)
the norming constants an are such as to emphasize the central part of F and to
obliterate the extreme tails. An entirely different picture is presented if one
introduces norming constants which emphasize the tails. In fact, suppose that
the tail sum T varies regularly, say
(6.5) T(x) = x-PA(x), x > 0
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where A varies slowly at infinity. Then F has finite absolute momlients of order
<p, but none of order > p. Whatever p > 0, the tail sum for S,, varies regularly
and is nx-PA(x). With the standard norming constants an, this is noticeable
only when p < 2, that is, when F does not belong to the normal domain of
attraction, but the assertion remains true wlhen the cenitral limit theorem applies.
To see the probabilistic consequences, note that otur assertion implies that as
t -

,

(6.6) P-I1X11 > t S2I > t' 2

whenever (6.5) holds. (This observation is due to B. MIandelbrot.) Because of
the symmetry between XI and X2 this may be expressed thus: if the tail sunm
varies regularly then a large observed value of IX1 + X21 is likely to be due entirely
to one of the two components. By contrast, if F is the exponential distribution
with density e-x, the left side in (6.6) e(luals (1 + t)-1 and tends to 0. It is thus
apparent that as far as the extreme tails are concernled, regular variatioli plays
the same role within the domain of attraction of the normiial distribution as it
does for other stable distributions.

In conclusion let us remark that the Karameata relations enable us to refor-
mulate the conditions for domains of attraction in termis of truncated nmomenits
of arbit rary orders.

7. Local limit theorems

We IIow show that the regular variation of U enables us to use uniformly for
all domains of attraction the methods originally developed for distributions with
a variance (or, higher order moments). We shall be satisfied to give a typical
examl)le which, however, is of special interest.
Denote by Ii,, the open interval of length 2h centered at the point x. We

assume that
(7.1) P{S, - b, < a,t, -, (t)

where g is a (necessarily stable) distribution with density g and characteristic
function y. To avoid trivialities we assume F to be nonarithmetic. (A systematic
reduction of arithmetic distributions to nonarithmetic ones will be described ill
chapter XVI of my second volume.) We are initerested in the probability
(7.2) pn(Izx,,) = J) tS- b, cIG,,= FI*(x + h + b17) - F"*(x- h + b,,)
(at points of continuiity). The following theorem states that in the limit, p,, be-
comes independent of x; it could be sharpened by variotus estimates.
THEOREM. As n x

,

(7.3 9))a,,lp,, (I, IhE) 9g(O) 2h1

PROOF. Let , (leniote th-e density definied by

(7.4) 21-
7r TX
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whose characteristic function vanishes for |¢j > T and is given by 1- I|Ii
when 1P| < r.
The starting observatioin is that (112h)p,,(IZ,,h) is the value at the p)oint x + bn

of the convolutioni of F1,* and the uniform distribution with characteristic func-
tion sini hl/hD- If ftl were in 22, we could apply the Fourier inversion formula
directly, but to cover the miiost geiieial case we take a further convolutioni with 6,.
By the Fourier iniversioni formu-tila,

(7 ;5) a,, p.(Ix_,, ,)6,(y) dy =
a f e i ((x+b() (1 T ) d.

A relationi of this formii was the startinig point of Berry's investigation, and
the same techni(lue is of much wider applicability than is generally realized.
We proceed to estimate the two sides in (7.5).

(a) Proof that the right side tends to g(O). With thc obvious change of var-
iables the right side becomes

(7.6) 1 f eiV(x+b.)/anSo7(i) sh.// (1 ) d¢.

Fromi the assumption (7.1) it follows that for each fixed ¢ the integranld tenlds
to -y(P). By the Fourier inversion formula the formal limit of (7.6) equals g(O),
anid to prove the assertioni it suffices to show that the contribution of the inter-
vals 1s1 > A is negligible when A is sufficiently large. More precisely, we show
that given e there exists an A such that

(7.7) I/¢. < ra |s (a,,) |d
Sinice F is nonarithmetic, so(v) is bounded away from 0 ill every closed intelval
excluding the origin. There exists, therefore, a number q < 1 such that the
conitribution of na,, < 1¢1 < Ta,, to (7.7) is bounided by Ta,,q", wlhich tends to 0.
The only difficulty conisists in proving that there exist numbers A and 71 sutch that

(7.8) J {( ) Id¢<<<r <na. a,,

Sinice wve can pass from ,o to the characteristic function 1012, there is no loss in
generality in assuming (p to be real and positive. Using the inequality 1- t < e-t
it is seen that it suffices to prove that for n sufficiently large and to sufficielntly
small,

(7.9) - > cP for 0 < P < 11a,,

where a is the clharacteristic exponment of the stable distribution g and c a positive
constant independent of -q. Obviously

(7.10) n [1 > n f 1-cos L-) F(dx) >3 t2 u(f)-
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We know that

(7.11) lim-l U(a,,) = co

exists, and so the first inequality in (7.9) will hold with c = co/6 if

(7.12) U(a.) < 2¢2-x.

But U varies regularly and so (7.12) will hold for all n sufficiently large provided
only that r > 1 and an/t is sufficiently large.

(b) The left side in (7.5). We now describe Berry's method of estimation,
which is by no means restricted to our special problem. Put r = 2E2. The
density 5, attributes mass <E to IYI > f. For yIY < f the interval I,-y,h contains
the interval Is,h-,, and so the integral on the left side is > (1 -E)pn(Is,_,)
Replacing h by h + E we have thus obtained an upper estimate of the form

(7.13) a, P .'(I.,h)< (1 + E)Y(O) + e

for all n sufficiently large. Using this we get an upper bound for the contribution
of Iyj > E to the integral on the left in (7.5). For IY! < E we have pn(lx-,h) <
Pn(Ix,h±+), and we get thus a lower bound for pn(Iz.x&) similar to (7.13).

[For distributions with variance (and therefore belonging to the domain of
attraction of the normal distribution), the theorem was proved by L. A. Shepp
using different methods: "A local limit theorem," Ann. Math. Statist., Vol. 35
(1964), pp. 419-423. After presenting this address, I noticed that our version
of the theorem is contained in more general results recently obtained by Charles
Stone in "A local limit theorem for non-lattice multi-dimensional distributed
functions," Ann. Math. Statist., Vol. 36 (1965), pp. 546-551. (See also section 9.)]

8. Dominated variation
We proceed to investigate how much of the theory of regular variation remains

if the requirement that a unique limit exists is replaced by a compactness condi-
tion. For definiteness we focus our attention on measures.

DEFINITION. A positive monotone function on (0, oo) varies domninatedly at oo
if every sequence {tk} converging to oo contains a sub)scqtence {tk} such that

(8.1) U(tkX) (X) <X

for almost all x.
An equivalent requirement is the existence of numbers an -+ xo such that every

subsequence of {nU(anx)} contains a convergent subsequence.
We now show the close relationship between dominated and regular variation.
THEOREM 1. A nondecreasing function U varies dominatedly at oo if there exist

positive constants such that
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(8.2) U(tx) < cxp for t > r, x > 1.U(t)
PROOF. The condition is sufficient by virtue of Helly's selection theorem.

If U varies dominatedly, it is possible to choose p > 0 such that

(8.3) U(2t) < 2P for t >T-U(t)
Then

(8.4) U(2-t) < 2-P,U(t)
and if 2n-' < x < 2n, this implies (8.2) with C = 2P. This condition is therefore
necessary.
We now preserve the notations and conventions introduced in (4.1) and (4.2),

and proceed to prove the counterpart to the basic relation (4.7). Also (4.6) has
a similar counterpart, but the proof is slightly more delicate.
THEOREM 2. If q > p, then (8.2) implies

(8.5) lim sup Xqv,(z) <

with

(8.6) y = -1 + C q

Conversely, (8.5) implies (8.2) with

(8.7) C=1 + Y, P q.

PROOF. (i) Assume (8.2) and choose X > 1. Then

(8.8) Vq(t) = Z [V,(Xn-'t) - Vq(X"t)] < E' (X--qt)-[U(Xnt) - U(Xn-'t)]
n=1 n=1

= -t-qU(t) + (Xq- 1)t-q X -qU(Xnt)
n=1

therefore, for t > T and arbitrary X > 1

tqVq(t) I+ c Xq - 1
(8.9) UV(t)< Xq - 1

Letting X -÷ 1, one gets (8.6).
(ii) Assume that for y > r,

(8.10) YV() <

An integration by parts shows that

(8.11) U(y) = -yql7Iq(y) + q f" sql-Vq(s) (1S.

P'uttiiig for- abblreviation
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(8.12) Joj s-1Vj(s) ds = Wjy),
we see, therefore, fromi (8.10) that for y > 7,

(8.13) YqVq(Y) < ly
-

1 1
IVq(y) -- +1I y y

Integratiiig between t anid tx one gets for r > 1 and t > r

(8.14) 11 q(tx) <

lteferrinig again to (8.11) we have, therefore,
(8.15) U(tx) < qWll(tx) < qxpIV(x) = XP[( (X) + X"l"q(x)] < xpU(x)[1 + y]
and so (8.2) holds with the constants, given in (8.7).

Note. The occurrence of the factor C in (8.2) anid (8.5) introduces a lack of
reciprocity between the constanits occurriing in (8.2) and (8.5). In fact, starting
from the relations (8.5)-(8.6), one does not get (8.2) with the original exponent p,
but the new exponent is

I C-i 1(8.16) p = C 2q - p

Thus p' = p only if C = 1. In the theory of regularly varying functions one
could choose C arbitrarily close to 1, and this establishes a complete symmetry
between (8.2) and (8.5). It is therefore natural to ask whether our inequalities
can be improved to obtaini more syimmetric relations. The following examples
show that our inequalities are, in a sense, the best. In both examples F is a
probability distribution and U its second truncated momi1enit (2.7). We take
q = 2 so that V, coinicides with the tail sum T.
EXAMPLES. (a) Let a > 1 be fixed, and let F attribute mass (a - I)a-'" to

the point a, (here n = 1, 2, * .). For all < t < al+' one has U(t) = all'- a
and V2(t) = T(t) = a-,,. The left side in (8.5) therefore equals a. Now for evely
x > 1,

(8.17) lim sup U() > a.U(t) > a

Whatever the exponienit p, the constant C in (8.2) is therefore at least a, wlhereas
(8.7) leads to the estimate (a + 1). Since a can be chosen arbitrarily large, the
estimate (8.7) is essentially the best.

(b) Let F attribute mass e-1/n! to the point X_ = (92tn!)112. For X,n < t < X,A+,
clearly U(t) = e-1(2? - 1) and V2(t) = T(t) -e/(n + 1)!. For every E and t
sufficiently large the iiie(wuality (8.2) holds wit.h C = 2 + e anid p = e, while
(8.5) is true witlh -y = 1.

9. Stochastic compactness
If a sequence of probability distributions is stochastically compact in the

sense of the defiilitioni in section 1, the same is true of the se(luence of distribu-
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tions obtainied by symmlietrization. For our purposes it suffices, therefore, to
consider symmetric distributions. This is not essential, but it simplifies the
exposit ioni.

THlEORtEM. Let F be symmetric. In order that there exist constants an > 0 sutch
that the famnily of distributions Fn*(a,,x) is stochastically comipact, each of the follow-
ing conditions is necessary and sufficient.

(a) 7The followitn. condition holds:

(S).1) limsul) X2((X) < x.

(b) Thereecxist constants a > 0, (7 T such that

(().2)) U(t) < Cx2-a for x > 1, t >U7(t)
One admiissible choice of a,, is such that

(9.3) - TU(a,,) = 1.

PIROOF. Assume that fF??*(a,,x)}- is stochastically compact. As stated in sec-
tion 5, the secluence of numbers nan 2'(anx) is botunded for each x > 0, and
there exist some x for which it is bounlded away fiom 0. Since a scale factor is
iiiessential, we may sup)l)ose that, this is the case for x = 1. Then

(9.4) A-1 < 2 U'(a,,) < A

for some constanit A. Because of the monotoniicity of U this iml)lies

(')..9) 1A- < a+ < A.

Again, because of the right conitiniuity of [ there exist nulmibers an Such that
nan(,2)(a,,) = 1, and obviously the ratios a,/an remain between A-' and A. It
follows that we can rel)lace an by an without affecting the stochastic compact-
ness. This justifies (9.3).
Assume now that (9.1) is false. In consequence of (9.5) there exists then a

se(qieIIce n11, n2, such that as n runs through it,

anF(a,,)

aiidl hence

(9.7) nF(a,,) oo.

13ut by the theory of triangular arrays, nF(a,,x) remnains bounded for every fixed
x > 0, and so the condition (9.1) is necessary. Usinig thleorem 2 of section 8 witl
q = 2, it is seen that the conditions (9.1) and (9.2) imply each other. It remains
to show that (9.2) is sufficient.

Choose an so as to satisfy (9.3). Then na,2lU(a,,x) < (Ij.2-a for all x > 1.
Furthermore, we see from (8.5) that
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(9.8) lim sup nT(anx) < Cy- x-,
and by the criteria of section 5 these relations suffice to guarantee the stochastic
boundedness.
By way of application note that the error estimate in section 7 depended only

oni (9.2) but not on the regular variation of U. To be sure, if F does not belong
to a domain of attraction, then the integral on the right in (7.5) need not con-
verge, but stochastic compactness of {Fn*(anx + bn)} guarantees that it remains
b)ounded away from 0 and x. The argument of section 7 then applies to each
convergent subsequenice, and the theorem may be replaced by the following
more general theorem.
THEOREM 2. A ssune that F is nonarithmetic and that there exist constants a., hn

such that the sequence of distributions Fn*(anx + bn) is stochastically compact.
There exist norming factors an such that

(9.9) anPn(Ix,h) 2h,
and A-1 < a,,/an < A.


