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1. Introduction

Recent work on limit theorems in probability is marked by two tendencies.
The old limit theorems are being supplemented and sharpened by a variety of
so-called local limit theorems (which sometimes take the form of asymptotic
expansions). Even more striking is the increasing role played by functions of
regular variation. They made their debut in W. Doblin’s pioneer work of 1940
where he gave a complete description of the domains of attraction of the
nonnormal stable distributions. A Ilong series of investigations started by
E. B. Dynkin and continued by J. Lamperti, S. Port, and others have shown
that essential limit theorems connected with renewal theory depend on regular
variation. The same is true of the asymptotic behavior of the maximal term of
a sequence of independent random variables and of D. A. Darling’s theorems
concerning the ratio of this term to the corresponding partial sum.

It seems that each of these problems still stands under the influence of its
own history and that, therefore, a great variety of methods is used. Actually a
considerable unification and simplification of the whole theory could be achieved
by a systematic exploitation of two powerful tools: J. Karamata’s beautiful
theory of regular variation and the method of estimation introduced by
A. C. Berry in his well-known investigation of the error term in the central
limit theorem.

[It seems that proofs of Karamata’s theorems can be found only in his paper
of 1930 in the Rumanian journal Mathematica (Vol. 4), which is not easily
accessible. For purposes of probability theory, one requires a generalization from
Lebesgue to Stieltjes integrals. A streamlined version is contained in the forth-
coming second volume of my Introduction to Probability Theory, but this book
does not contain the inequalities derived in the sequel.]

Berry’s method is of wide applicability and not limited to the normal distribu-
tion. It leads to an estimate for the discrepancy between distributions in terms
of the discrepancy between the corresponding characteristic functions. In the
case of the normal distribution, the latter discrepancy can be estimated in terms
of the moments, and the theory of regular variation leads readily to similar
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estimates, in the case of convergence to other stable distributions. For example,
the asymptotic expansions connected with the central limit theorem have their
natural analogues in this general setting.

[See H. Cramér, “On the approximation to a stable probability distribution,”
pp. 70-76 in Studics in Mathematical Analysis and Related Topics, Stanford
University Press, 1962, and “On asymptotic expansions for sums of independent
random variables with a limiting stable distribution,” Sankhya, Vol. 25 (1963),
pp. 13-24. The basic relations for regularly varying functions make it possible
to avoid Cramér’s severe restrictions simplifying at the same time the
calculations.] Indeed, we shall see that expansions and error estimates of this
sort are more general than the basic limit theorems in the sense that they may
apply even when the leading terms do not converge. A typical example is treated
in section 9.

We proceed to a brief sketch of the basic properties of regular variation and
of its connection with limit theorems. Part of the material of sections 2-7 will
be contained in the second volume of my book on probability, but encumbered
by details and spread over many places. For a better understanding of the whole
theory we shall in this address generalize the notion of regular variation by
considering inequalities instead of equalities (section 7). In probabilistic terms,
we shall replace the condition that a sequence of distributions F, converges to
a limit by the requirement that it be compact in the sense of the following.

DerintTioN 1. A family {F,) of probability distributions is stochastically com-
pact if every sequence {Fn,} contains a further subsequence converging to a probability
distribution not concentrated at one point.

It is essential that the limit be nondegenerate. We shall see that compactness
is related to our one-sided regular variation much in the same way as convergence
is to regular variation. Furthermore, the typical local limit theorems and error
estimates depend on compactness rather than actual convergence, and they can
be formulated in this more general setting.

2. The basic property of regular variation

A positive finite valued function U defined on (0, =) is said to vary regularly
at « if for each x

U(tx)_”rp [

U(t) ’
where p is a constant. If this exponent is 0, one says that U varies slowly at .
In other words, for a slowly varying function onc has

(2.1)

"e(m)—-)l t—

@.2) PO :

and U varies regularly iff it is of the form

(2.3) Ux) = arL(x).
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Regular variation at 0 is defined in like manner, that is, {7 varies regularly at 0
iff {7(1/x) varies regularly at «. [Since regular variation at « is not affected by
the behavior of U in a finite interval, it suffices to assume that U is defined and
positive in some interval (a, < ). By the same token, regular variation at 0 is a
local property.]

At first sight the condition (2.1) appears rather artificial, but it may be
replaced by the more natural condition that

(2.4) IU(Z‘)) — ¥(x).

Indeed, if such a limit exists and does not vanish identically, then it is either
nonmeasurable or of the form y(x) = x». We prove this assertion together with
a variant streamlined for applications to probabilistic limit theorems. It refers
to convergence of monotone functions and, as usual, it is understood that
convergence need take place only at point of continuity of the limit.

LeEmMma 1. (a) Let U be positive and monotone, and suppose that there exists a
sequence of numbers a, — © such that

2.5) nU(a,x) — g(a) > 0.

Then y(x) = Cx? and U varies reqularly at <.

(b) The same conclusion holds if U and ¢ arc assumed continuous. ([t suffices
that ¢ is finile valued and positive in some interval. The cocfficients n may be replaced
by arbitrary N\, > 0 such that N,y 1/ Ny — 1.)

Proor. If ¢ is monotone there is no loss of generality in assuming that 1 is
a point of continuity and y(1) = 1. For fixed ¢ determine n as the last index
such that a, < t. Then U(t) lies between U(a,) and U(a,,1). Since nl’{(a,) — 1,
it follows easily that (2.4) holds. But then the relation

Ultey)  Ultay) Ulty)

U Uiy U@
implies that ¥ (ry) = ¢ (@)¢(y). This equation differs only notationally from the
famous Hamel equation, and its unique measurable solution is given by
Y(x) = zo Part (b) is proved in like manner.

The most usual applications in probability theory refer to the truncated second
moment

(2.7) U@ = [ pF iy, >0

(2.6)

of a probability distribution F, or to the tail sum
(2.8) T(x) =1— F(x) + F(-a-).

Generally speaking, a distribution with a regularly varying tail sum 7 is well-
behaved, except if T is slowly varying. This exceptional role is illustrated by the
following example which shows that distributions with slowly varying tails can
exhibit severe pathologies.

ExamrLE. Let F be a distribution concentrated on (0, %) (that ix, let
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F(0) = 0) and denote its characteristic function by ¢ = u + . If F has a
finite expectation u then »’(0) = w, and hence »(¢) > 0 for all sufficiently small
positive values of . This is not so if u = . Indeed, we shall exhibit an arith-
metic distribution F with slowly varying tail 1 — F such that ¢ has infinitely many
zeros accumulating to 0. Furthermore,

v(§)

(2.9) lim sup —>* = oo, lim infw = —
—o+ & ¢—0— §
In other words, the values of ¢ oscillate wildly, and the curious nature of these
oscillations becomes clear if one reflects that the integral of v over any positive
interval (0, a) is strictly positive. The set at which v({)/¢ is strongly negative
is therefore rather sparse.
To obtain the desired example choose an integer of the form a = 4» + 1, and

let F attribute weight 1/(n(n + 1)) to the point a*, (n = 1,2, ---). Then

(2.10) o§) = ¥ s exp (i),

n=1

If ¢ = 3x/2, then a*¢ is congruent (3/2)r modulo 27, and hence for every
positive integer 7,

r=1 1 1
—r 3 — - yn—r 2 —_—
(2.11) @ (a '2'1[') n{:l Y T exp <za 21r> -
Since |sin ¢| < ¢, it is obvious that as r — e,
. 1 1
(2.12) v ((l—'r -2111') = _; + 0 <7—_—2>’

which proves the second relation in (2.9). The first one is even easier to verify.

3. Applications

(a) Distribution of maxima. Let X;, Xs, --- be independent random vari-
ables with a common distribution function F such that F(z) < 1 for all z. Let
M, = max [X,, ---, X,]. We inquire whether there exist constants a, — «
such that the random variables M,/a, have a nondegenerate limit distribu-
tion G, that is,

(3.1) Fr(a,x) — G(x)

at points of continuity. By assumption there exist values a > 0 for which
0 < g(x) < 1, and at such points (3.1) is equivalent to
3.2) n[l — Fla.x)] — —log G(x).
By lemma, 1, therefore, the possible limits are of the form
(x) = e—C=™, x>0,
(3.3) §()
= 0, x <0.

A limit distribution exists iff 1 — F varies regularly. Indeed, the lemma asserts
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the necessity of regular variation, and the sufficiency is obvious on choosing a.
such that n[1 — F(a,)] — 1. What first appeared to be a relatively deep theorem
thus becomes a simple corollary to a simple lemma.

(b) Stable distributions and their domains of attraction. Let Xy, X, -+ be
independent random variables, with the common distribution F and character-
istie function ¢ = u + w. Put S, = X; + --- + X,. The variables X; are said
to belong to the domain of attraction of a nondegenerate distribution g iff there
exist real constants a, > 0 and b, such that the distributions of a7 'S, — ba.
tend to G. If F is symmetric one can put b, = 0. Then ¢ is real, and convergence
takes place iff
(3.4 (L) =),

an

where v is a continuous function. It is obvious that a, — «, and so (3.4) refers
to the behavior of ¢ near the origin. Otherwise there is no essential difference
between (3.4) and (3.1), and we see again that for { > 0, the limit v is neces-
sarily of the form v({) = exp (—C¢®) where C and o are positive constants.
This solves the problem as far as symmetric distributions are concerned: only
stable characteristic functions have a domain of attraction, and for real ¢ a rela-
tion (3.4) holds iff 1 — ¢ varies regularly at the origin.

In the case of asymmetric distributions, the same argument still applies to
the real parts of ¢ and log 7. Now it is well known that for ¢ > 0 a stable charac-

teristic function is not necessarily of the form log v(¢) = — (a 4+ #b)¢?, but may
be also of the form
3.5) log v(¢) = —ag + (b + ¢ log §).

The appearance of the logarithm on the right would seem to preclude the
application of lemma 1, but this is not so. We proceed to show that a minor
modification of lemma 1 explains the general form of stable characteristic func-
tions. If the random variables a, 'S, — b, have a limit distribution § with
characteristic function v, then

3.6) nv (ai> — bt = ¥()

where ¢ is the imaginary part of logvy. (It is easily seen that vy can have no
zeros). We now prove the following lemma.

Lemma 2. Suppose that (3.6) holds for two real continuous functions v and ¢,
and that a, — © and a.y1/a, — 1. Then for { > 0,
(3.7) Y@ =t or Y(§) = of + cof log .

Proor. Choose A > 0 arbitrarily and put

(38) w(e) = 120 v9), £ >o0.
Then

n Iy YA (@)
89 @ (a) B
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1t follows easily that w varies regularly at the origin, and hence

(3.10) L(AAS_Q _ @

where (" and p are constants. In principle, p eould depend on A, but from the
fact that the norming constants a, are independent of A\, one concludes eaxsily
that p is an absolute constant. Put f(¢) = (¢)/¢) — 1. Without losx of general-
ity, one may suppose that ¢(1) = 1. Then C = f(\) and (3.10) takes on the
form f(A) — f(¢) = f(\)¢r. Interchanging the roles of X and ¢, we conclude that
(3.11) SO — »] =M1 —¢7].
Thus f(¢) = C[1 — ¢*] unless p = 1, in which case (3.10) reduces to f(\{) =
FON) + f(¢). Since f(1) = 0, the only continuous solution of the last equation
is given by f(¢) = log ¢, and this concludes the proof of the lemma.

The proof is admittedly not as simple as the proof of lemma 1, but it is never-
theless remarkable that so elementary an argument leads to the general form
of the stable characteristic functions and gives at the same time the precise

conditions under which a given characteristic function ¢ belongs to a domain of
attraction.

=C§‘p’ >0

4. Karamata’s relations

In this seetion we denote by U an arbitrary nondecreasing function with
1°(0) = 0. We are interested only in the asymptotic behavior of U at infinity,
and so there is no loss of generality in assuming that U vanishes identically in
come neighborhood of 0. Together with U we consider the one-parametric family
of truncated moments

(+.1) Uya) = [ yrU@y), 2> 0,

for all values of p for which the integral diverges (at infinity). When considering
U, it is always understood that U,() = . For other values we change the
notation and consider the tails

(4.2) V() = [ yeUay), x> 0.

In probabilistic applications U will be identified with the truncated second
moment (2.7) of a probability distribution F. Then V, coincides with the tail
sum T defined in (2.8), and U7, is the truncated moment of order 2 4+ p, provided
it diverges. The slightly greater generality will contribute to the understanding
of the various phenomena of attraction. The following propositions generalize
Karamata’s basic relations from Lebesgue to Stieltjes integrals. (Only the limit-
ing cases p = 0, p = —p, and ¢ = p present new features.) We shall later replace
the asymptotic relations by asymptotic inequalities, and the new proof applies
also to the following propositions.
The first proposition states that if U is of regular variation, namely

(4.3) U(x) ~ atL(x), r—®,
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then the tegrals U, and V, are related to U as would be the case if £ were a
constant. (The sign ~ indicates that the ratio of the two sides tends to 1.) Note
that ¢ > 0, for otherwise U could not increase.

Prorosition 1. If U is of the form (4.3) with £ slowly varying, then

4.4 Uy(a) ~—L— qrtog(x > —
(4.4) »() P Fp (2), P o
(+.5) V(@) ~ q f— p L (x), q > p.
The trouble with these relations is that they break down in the interesting
limit cases p = —p and ¢ = p. However, they may be rewritten in the form

Uy) o
U@ p+e
2V (2)  p

U@ q—»p

(4.6)

4.7)

and in this form they remain valid for all admissible combinations of the param-
eters p, q, p (with the obvious interpretation when a denominator vanishes.
Under any circumstances p > —p, ¢ > p, and p > 0).

Prorosirion 2. The relation (4.3) implies (4.6) and (4.7).

The most interesting point is that the conditions (4.6) and (4.7) are not only
necessary, but also sufficient for the regular variation of U, except in the limiting
cases p = —p and ¢ = p if they arise.

Prorosition 3. If either (4.6) or (4.7) hold with a nonzero denomanator, then
U varies regularly.

If (4.6) holds with p = —p 0, we may interchange the role of / and U,
to conclude that U7, varies regularly. In other words, if either U or U, varies
regularly, then
(4.8) Uplt) _\ <

arlU(x) -
where X\ = p/(p + p). Conversely, if (4.8) holds with 0 < N < = then both U and
U, vary regularly. Finally, (4.8) with X = 0 or «© implics regular variation of U
and U, respectively. A similar remark applies to the V,.

6. Compactness and convergence criteria for triangular arrays

In order to explain the application of the preceding propositions and to moti-
vale the proposed generalization of the notion of regular variation, we recall
a basic fact concerning triangular arrays of random variables. For each n we
consider n mutually independent random variables Xy ,, - -+, X. . with a com-
mon distribution F,. As usual, we put S, = X1, + --- + X . The familiar
convergence theorems for triangular arrays imply the following.

CrITERION. (1) In order that every sequence {S,,} contains a subsequence whose
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distributions converge to a probability distribution, it is necessary and sufficient
that for each t > 0,

5.1) lim sup n f_‘t Y2 F.(dy) < =,
(5.2) lim sup nUt yF,,(dy)l < o,
n—wo -t

and that for given ¢ > O there exisis a > 0 such that

(5.3) n[l — Fo(r) + Fa(—7)] < ¢

for all n.

(ii) If none of the limit distributions is concentraled at a single point, then

(5.4) lim inf n [_’ y2F(dy) > 0

for some r > 0.
(iii) The distributions of S, converge to a probability distribution iff
(5.5) lim 7 f_tayzF,.{dy} = Y(s,t) <

n—r«w

exists for almost all positive s and t, and
(5.6) lim n f_“ yF.(dy)
exists for some (and therefore almost all) t > 0.

6. Domains of attraction

We shall now show that Karamata’s relations enable us to derive from the
preceding criterion not only Doblin’s original characterization of the nonnormal
stable domains of attraction, but also the analogue for the normal distribution
as well as certain variants which were derived by various authors at the expense
of cumbersome calculations.

We return to a sequence {X,} of independent random variables with a
common distribution F and partial sums S,. We seek conditions for the exist-
ence of a limit distribution of S,/a, with appropriately chosen a. > 0. For that
purpose we apply the criterion to the triangular array defined by X » = Xi/an
with distribution F.(z) = F(a.z). If U denotes the truncated second moment
(2.7), then condition (5.5) specialized to s = ¢ requires the existence of a limit
of na;2U(a.t) for almost all £. This implies regular variation of U, and hence
we can write

©.1) U@ = e

with £ slowly varying at .

[The same consideration applies to the variables a, 1S, — b,. The variables of
the triangular array are then a, *(Xi — B8,) where b, = nB./a», and since obvi-
ously 8. = o(as) it is easily seen that n [*, y?F(a, dy -+ 8.) behaves essentially
as the integral in (6.2).]



LOCAL LIMIT THEOREMS 381

From the definition of U it is clear that 0 < « < 2. Now the function V.
introduced in (4.2) coincides with the tail sum 7 (defined in (2.8)), and for it
the relation (4.7) holds with p = 2 — @ and ¢ = 2. When a = 0 it follows that
either nT(a,r) — « or else na, 2U(a,r) — 0, which excludes convergence.

We have thus found that condition (6.1) with 0 < & < 2 is necessary. Assume
now that it is satisfied. Since U is right continuous we can choose a, such that
na, 2U(a,) = 1, in which case

(6.2) n /_‘ y2F . (dy) = (—% Ula,t) — t*=.

The condition (5.3) is automatically satisfied, since in consequence of (4.7),
(6.3a) T(z) ~ =2 geg(x) if a<?
(6.3b) T(z) = o(£(x)) if a=2.

When o > 1 the distribution F has an expectation g, and we may suppose u = 0.
Using (4.7) (withp =2 — aand ¢ = 1) when & > 1 and (4.6) (withp = 2 — «
and p = 1) when a < 1, one sees that the condition (5.6) is an immediate
consequence of (6.2). We skip over the case @ = 1 in which (5.6) is not neces-
sarily satisfied and centering constants may be essential to achieve convergence.

To assure the proper convergence of our distributions it remains to establish
the convergence in (5.5) when s £ {. Now when a = 2 the left side in (6.2)
tends to the constant 1, and this trivially implies that ¢(s, ) = 1 for all s, ¢.
Thus (6.1) with @ = 2 represents the necessary and sufficient condition for
convergence to the normal distribution.

When o < 2 the existence of the limit ¥ (s, f) is equivalent to the existence of
the limits

.2l — F’(a*)] . xF(—2x)
64 lim =7 I 776
and this requires a certain balance between the right and left tails. Under any
circumstances F belongs to a domain of attraction iff (6.1) holds with 0 < a < 2
and the limats in (6.4) exist. They are always finite, and they vanish when « = 2.
In this formulation the only difference between the normal and other stable
distributions is that the subsidiary condition relating to (6.4) is automatically
satisfied when o = 2.

When a < 2 the tail sum 7T varies regularly at «, but this is not necessarily
true when a = 2. However, regularly varying tails play a noticeable role even
if F possesses a variance or finite higher order moments. This is not visible in
the usual formulation of the central limit theorem because (as we have seen)
the norming constants a, are such as to emphasize the central part of F and to
obliterate the extreme tails. An entirely different picture is presented if one
introduces norming constants which emphasize the tails. In fact, suppose that
the tail sum 7 varies regularly, say

(6.5) T(x) = 2—?A(x), x>0

y
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where A varies slowly at infinity. Then F has finite absolute moments of order
<p, but none of order >p. Whatever p > 0, the tail sum for S, varies regularly
and 18 ~ nx~PA(x). With the standard norming constants a,, this is noticeable
only when p < 2, that is, when F does not belong to the normal domain of
altraction, but the assertion remains true when the central limit theorem applies.
To see the probabilistic consequences, note that our assertion implies that as
t— oo,

(6.6) PUXG >t ]S > 6 — 3,

whenever (6.5) holds. (This observation is due to B. Mandelbrot.) Because of
the symmetry between X, and X, this may be expressed thus: if the tail sum
varies regularly then a large observed value of | X1 + X is likely to be due entirely
to one of the two components. By contrast, if F is the exponential distribution
with density e~2, the left side in (6.6) equals (1 4+ t)~' and tends to 0. It is thus
apparent that as far as the extreme tails are concerned, regular variation plays
the same role within the domain of attraction of the normal distribution as it
does for other stable distributions.

In conclusion let us remark that the Karamata relations enable us to refor-
mulate the conditions for domains of attraction in terms of truncated moments
of arbitrary orders.

7. Local limit theorems

We now show that the regular variation of {7 enables us {o use uniformly for
all domains of attraction the methods originally developed for distributions with
a variance (or higher order moments). We shall be satisfied to give a typical
example which, however, is of special interest.

Denote by 1., the open interval of length 2k centered at the point x. We
assume that

(7.1) P{Sn - bn < anl} _).@(t)

where ¢ is a (necessarily stable) distribution with density ¢ and characteristic
function v. To avoid trivialities we assume F to be nonarithmetic. (A systematic
reduction of arithmetic distributions to nonarithmetic ones will be deseribed in
chapter XVI of my second volume.) We are interested in the probability

(7.2) pu(lzp) = P{S, — b€ 1., = F*(x+ h+ b)) — F*(x — h 4+ by)
(at points of continuity). The following theorem states that in the limit, p, be-

comes independent of x; it could be sharpened by various estimates.
THEOREM. Asn — o,

(7.3) a,p.(I.1) — g(0)-2h.
Proor. Let 8, denote the density defined by

(7.4) bi(r) = 1 ST

T2
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whose characteristic function vanishes for [¢| > 7 and is given by 1 — |¢|/7
when [{] < 7.

The starting observation is that (1/2h)p.(I, ) is the value at the point x + b,
of the convolution of F** and the uniform distribution with characteristic func-
tion sin h{/h¢ If ¢* were in £,, we could apply the Fourier inversion formula
directly, but to cover the most general case we take a further convolution with &,.
By the I'ourier inversion formula,

+ T
(7.5) %f Pull sy )8 () dy = 5 rwﬂwwwl—mym
- T ) T

A relation of this form was the starting point of Berry’s investigation, and
the same technique is of much wider applicability than is generally realized.
We proceed to estimate the two sides in (7.5).

(a) Proof that the right side tends to ¢(0). With the obvious change of var-
iables the right side becomes

X Y ¢ sin hs‘/an< ¢l
i +tba)/an nf 2 Y222/ — b
(7.6) 2mﬁwe () e (1= as) i

From the assumption (7.1) it follows that for each fixed ¢ the integrand tends
to v(¢). By the IFourier inversion formula the formal limit of (7.6) equals g(0),
and to prove the assertion it suffices to show that the contribution of the inter-
vals |f| > A is negligible when A4 is sufficiently large. More precisely, we show
that given e there exists an A such that

{5
(7.7) ~L«ﬁ(an)

Since F is nonarithmelic, ¢(¢) is bounded away from 0 in every closed interval
excluding the origin. There exists, therefore, a number ¢ < 1 such that the
contribution of ga, < |¢| < ra. to (7.7) is bounded by ra,g*, which tends to 0.
The only difficulty consists in proving that there exist numbers A and n such that

- NEs
(78) ,/A<§'<qan ¢ (an>

Since we can pass from ¢ to the characteristic function |¢|?, there is no loss in
generalily in assuming ¢ 1o be real and positive. Using the inequality 1 — ¢ < e~
it is seen that it suffices {o prove that for n sufficiently large and » sufficiently
small,

(7.9) n [1 — ¢ <a£>] > e for 0 < ¢ <n9a,

dif < e

d¢ < e

where « is the characteristic exponent of the stable distribution G and ¢ a positive
constant independent of 7. Obviously

an/t 2
(7.10) = [1 —¢ (5)] 2n /_ﬂ"/f (1 — cos %) F(dx) > %n%{i v (%)
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We know that
(7.11) lim a—” Ula,) = co

exists, and so the first inequality in (7.9) will hold with ¢ = ¢,/6 if
U(an)
v(%)
$

But U varies regularly and so (7.12) will hold for all n sufficiently large provided
only that { > 1 and a,/¢ is sufficiently large.

(b) The left side in (7.5). We now describe Berry’s method of estimation,
which is by no means restricted to our special problem. Put r = 2¢2. The
density 8, attributes mass <e to |y| > e For |y| < € the interval I,_, s contains

the interval I. 4., and so the integral on the left side is > (1 — €)pa(lza—e)-
Replacing h by h + ¢ we have thus obtained an upper estimate of the form

(7.12)

< 2 f?—m.

(7.13) %‘p,.(lz,h) < (1+ ev(0) + ¢

for all n sufficiently large. Using this we get an upper bound for the coutribution
of |y| > e to the integral on the left in (7.5). For |y| < ¢ we have p.(I.—y 1) <
p.(I; pse), and we get thus a lower bound for p,.(Z. ) similar to (7.13).

[For distributions with variance (and therefore belonging to the domain of
attraction of the normal distribution), the theorem was proved by L. A. Shepp
using different methods: “A local limit theorem,” Ann. Math. Statist., Vol. 35
(1964), pp. 419-423. After presenting this address, I noticed that our version
of the theorem is contained in more general results recently obtained by Charles
Stone in “A local limit theorem for non-lattice multi-dimensional distributed
functions,” Ann. Math. Statist., Vol. 36 (1965), pp. 546-551. (See alsosection 9.)]

8. Dominated variation

We proceed to investigate how much of the theory of regular variation remains
if the requirement that a unique limit exists is replaced by a compactness condi-
tion. For definiteness we focus our attention on measures.

DEFINITION. A positive monotone function on (0, ) varies dominatedly at «
if every sequence {t;} converging to © contains a subsequence {t;} such that

U(th)

(8.1) U@ () <o

for almost all x.

An equivalent requirement is the existence of numbers a, — « such that every
subsequence of {nU(a,x)} contains a convergent subsequence.

We now show the close relationship between dominated and regular variation.

THEOREM 1. A nondecreasing function U varies dominatedly at « iff there exist
postlive constants such that
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U(tz)
40}

Proor. The condition is sufficient by virtue of Helly’s selection theorem.
If U varies dominatedly, it is possible to choose p > 0 such that

(8.2) < Cx* for t>7r, z> 1.

U@y
(8.3) TG < 20 for t> 7.
Then
U(2) .
(8.4) %0 < 2
and if 2*! < ¢ < 27, this implies (8.2) with C = 2¢. This condition is therefore
necessary.

We now preserve the notations and conventions introduced in (4.1) and (4.2),
and proceed to prove the counterpart to the basic relation (4.7). Also (4.6) has
a similar counterpart, but the proof is slightly more delicate.

Taeorem 2. If q¢ > p, then (8.2) implies

(8.5) l”f,‘f}}p U( (i) <7

with

(8.6) y=—-14+0¢c-2_
q—p

Conversely, (8.5) implies (8.2) with

X =1 =2 .
8.7 c + 7, =i

Proor. (i) Assume (8.2) and choose X > 1. Then

88) Vi)

E, Valvemt) = V)] < ngil (=) =o[U () — TU(10)]

— U (t) + (e — 1)t )Zjl AU (")

therefore, for ¢ > r and arbitrary A > 1

V() _ 1
oo =1 Cr =T
Letting A — 1, one gets (8.6).

(ii) Assume that for y > 7,

(8.9)

¥y Vo(y)
8.10 <
(8.10) Uy 7
An integration by parts shows that
8.11) Ul) = —yVoly) + ¢ [ sV (5) ds.

Putting for abbreviation
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(8.12) [ smVa(s) ds = Woty),

we see, therefore, from (8.10) that for y > r,

. Y V(y) v 1
8.13 < - =
®19 W) Sv+1ly
Integrating between ¢t and tx one gets forx > land it > 7
W (tx)

< x*.
W0 =
Referring again to (8.11) we have, therefore,
(8.15)  Ulla) < qW,(tr) < quelVo(x) = 2*[U(x) + 2V, (1)] < 22U (x)[1 + 7],
and so (8.2) holds with the constants, given in (8.7).

Note. The occurrence of the factor ¢ in (8.2) and (8.5) introduces a lack of
reciprocity between the constants occurring in (8.2) and (8.5). In fact, starting
from the relations (8.5)—(8.6), one does not get (8.2) with the original exponent p,
but the new exponent is

L
y

(8.14)

S y_C—1 1
(8‘1()) p = C q + C p-

Thus p’ = p only if ¢ = 1. In the theory of regularly varying functions one
could choose C arbitrarily close to 1, and this establishes a complete symmetry
between (8.2) and (8.5). It is therefore natural to ask whether our inequalities
can be improved to obtain more symmetric relations. The following examples
show that our inequalities are, in a sense, the best. In both examples F is a
probability distribution and U its second truncated moment (2.7). We take
g = 2 so that V, coincides with the tail sum 7.

ExampLes. (a) Let a > 1 be fixed, and let F attribule mass (@ — 1)a™ to

the point a* (here n = 1,2, --.). For a* <t < a**! one has U(t) = a*™' — «
and Vy(t) = T'(t) = a=*. The left side in (8.5) therefore equals a. Now for every
x> 1,
o Ut
(8.17) lim sup 90
Whatever the exponent p, the constant C in (8.2) is therefore at least a, whereas
(8.7) leads to the estimate (a 4+ 1). Since a can be chosen arbitrarily large, the
estimate (8.7) is essentially the best.

(b) Let F attribute mass e7!/n! to the point A, = 2*n)V2 T'or A, <t < Ay,
clearly U(t) = e 1(2* — 1) and Vy(t) = T(t) «~e¢/(n + 1)I. For every e and ¢
sufficiently large the inequality (8.2) holds with C = 2 4+ ¢ and p = ¢, whilc
(8.5) is true with y = 1.

)Za.

9. Stochastic compactness

If a sequence of probability distributions is stochastically compact in the
sense of the definition in section 1, the same is true of the sequence of distribu-
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tions obtained by symmetrization. For our purposes it suffices, therefore, to
consider symmetric distributions. This is not essential, but it simplifies the
exposition.

TuroreM. Let F be symmelric. In order that there exist constants a, > 0 such
that the family of distributions F™*(a,x) is stochastically compact, each of the follow-
ing conditions is necessary and sufficient.

(a) The following condition holds:

.x* T ()
(9.1) 11111::11) o) < »
(b) There exist constants a > 0, C, 1 such that
(9.2) l(((tf)) < (e for >1, t>r

One admassible choice of a, is such that
(9.3) ?1?} [ (a,) = 1.

Proor. Assume that {F**(a,r)} is stochastically compact. As stated in sec-
tion 3, the sequence of numbers na; U (a,z) is bounded for each x > 0, and
there exist some z for which it is bounded away from 0. Since a scale factor is
inessential, we may suppose that this is the case for x = 1. Then

n ..
9.4 A7V < 5 Ua) < A
Ay
for some constant A. Because of the monotonicity of [ this implies

(9.5) A7 <t <y,
Again, because of the right continuity of U there exist numbers a, such that
naoy *U(a,) = 1, and obviously the ratios «,/a, remain between A-! and 4. Tt
follows that we can replace a, by a, without affecting the stochastic compact-
ness. This justifies (9.3).

Assume now that (9.1) is false. In eonsequence of (9.5) there exists then a
sequence 1y, ns, - -+ such that as n runs through it

. axF (a.)
¢ 5
(9.6) . — o,
and hence
9.7) nF(a,) — =.

But by the theory of triangular arrays, nF(a,x) remains bounded for every fixed
2 > 0, and so the condition (9.1) is necessary. Using theorem 2 of section 8 with
¢ = 2, it is seen that the conditions (9.1) and (9.2) imply each other. It remains
to show that (9.2) is sufficient.

Choose a, o as to satisfy (9.3). Then na; " (a,2) < Cz>= for all 2 > 1.
Turthermore, we sce from (8.5) that
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(9.8) lim sup nT(a.x) < Cvy-z7°,

and by the criteria of section 5 these relations suffice to guarantee the stochastic
boundedness.

By way of application note that the error estimate in section 7 depended only
on (9.2) but not on the regular variation of U. To be sure, if F does not belong
to a domain of attraction, then the integral on the right in (7.5) need not con-
verge, but stochastic compactness of {F"*(a,xz + b,)} guarantees that it remains
bounded away from 0 and «. The argument of section 7 then applies to each
convergent subsequence, and the theorem may be replaced by the following
more general theorem.

THEOREM 2. Assume that F is nonarithmetic and that there exist constants a, hy
such that the sequence of distributions Fr*(a,x 4 b.) ts stochastically compact.

There exist norming factors a, such that

(9.9) oxPr(Iz ) — 2h,
and A7 < a,/a, < A.



