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1. Introduction

We shall consider the frequently met problem of liniear extrapolation of the
stationary random processes x(s), -x < s < x, wvith Ex(s) = 0. The problem
consists of finiding that linear functional . (t; T), T > 0, of the values x(s) for
s < t (extrapolation according to the entire past of the process) or for t - T <
s < t (extrapolation of a process giveni on a finiite initerval) which would give
the best approximation to the raiidom variable x(t + T). "Best" here is intended
in the sense of least-squares; that is, it is reqIuired of the functionial f(t; T) that
the mean-sqtuare prediction error

(1) a.2(T) = ElJX(t + T) - NT; T)1
takes oni its minimum value.

A. N. Kolmogorov [1], [2] initiated the theory of linlear least-squares ex-
trapolation of stationary processes. This theory was developed furtlher by M1. G.-
Kreini [3], N. Wiener [4], K. Karhuneni [5], anid others. At presenlt, it has
achieved a signiificant degree of completioni (see, for example, Doob [6], chap-
ter XII, or Rozanov [7]). We may formulate the genceral solutioni of this problem
in the following way.

Let us start from the spectral representationi of t;he stationary stochastic
process in. the form

(2) i- (s) = I ' dZ(x)

where Z(X) is the stochastic measure oni the -x < X < oo axis. This measure
is connected to the spectral functioni F(A) of the process x(s) by the relationship

(3) E{Sf dZ(X) fSdf(X\)}=I= dF(X),

wlhere the bar above the symbol signiifies the complex conijugate. If F'(X) is
zero on a set of nionizero Lebesgue measure, or if F'(X) is niot zero almost, every-
where btit

(4) f log F'(X)|
=
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260 FIFTH BERKELEY SYMPOSIUM: YAGLOM

then the best linear extrapolator 1(t; T) agrees almost surely with x(t + T); in
other words, in this case 6(r) = 0 for all r. If the integral in the left-hand side
of (4) converges, then
(5) £(t; T) = f| ei'TM(X) dZ(X)

where 'I,(X) = 0 for X e S, and

(6) = 2w<(A) f e-iPx dp f ei(P+T)"'p(u) du for X S.

Here S is a set of zero Lebesgue measure consisting of the discontilnuities of
F(X) and of the growth points of the singular component of F(X), and zp(X) is
defined by the condition <(X) = Iim,, o (A- iM4) for almost all X, where

(7) p(w) = exp {1 i AXw log F'(X) dx}

The function $o(w) is analytic and has no zeroes in the lower half-plane of coin-
plex variable w, and its boundary value on the real axis (p(X) satisfies the condi-
tion Ip(x\) I2 = F'(A) almost everywhere.
The function cF7(X) is called the spectral characteristic for linear extrapolation.

When the analytic expression for this function is known, it is also usually pos-
sible to give an explicit expression for the best extrapolator t(t; r). In fact, from
(5) and (2) we have

(8) x(t; T) = f x(t - p)w(p) dp,
where w(p) is the generalized function (a Schwartz distribution) which is the
Fourier transformation of the functioni br(X):

(9) w(p) =
I f e'PX4)T(X) dx, 4 (X) = f e-iPw(p) dp.

The mean-square extrapolation error is expressed in terms of the spectral char-
acteristic of the extrapolation by usinlg the formula

(10) a2(r) = | |e'T-sT(X)j2 dF(X) E X(t)12 f__ 1Fr(X)I dF(X).
In a number of cases the funetioni 4,(x) may also be found without using the

complicated formulas (6) and (7). Thus, for example, in the case of an absolutely
continuous spectral functioni F(X), it is easy to show that if there exists a func-
tion 4, of the real variable X such that 4' (a) belongs to the space L2(dF) (has an
integrable square modulus in the measure F'(X) dA), (b) may be continued analyt-
ically in the lower half-plane so that there it will not have an order of growth higher
than a power of IXI, and (c) satisfies the condition that [eiTX- 4'(X)]F'(X) may be
continued analytically in the upper half-plane so that it will fall off not slower
than a power of IAI at infinity, then 4' will indeed be the spectral characteristic
bT(X) (see [8]).
A general solution for the problem of the best least-squares linear extrapola-
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tioll of a stationary process x(s) (such as given by formulas (5)-(7)) cannot be
obtained by means of values on the finite interval t - T < s < t. However,
some sufficient conditions similar to the conditions (a), (b), and (c) presented
above, which permit the direct selection of the spectral extrapolation char-
acteristic 4.T(X) in several special cases, may be formulated for this case too.
For example, let us suppose that the nondecreasing bounded function F(X) is abso-
lutely continuous and that there exists a function 4t such that #,(aT) belongs to L2(dF),
(bT) it is an entire function of complex variable X of the form Pt(X) = _= e-iekXtk(X)
where r is an integer, 0 < Sk < T for all k and all 'k(X) are rational functions,
and (CT) satisfies the condition that [eir' - 4p(X)]F'(X) may be represented in the
form op1(X) + e-iT\So2(X) where qpi(X) may be continued analytically in the upper
half-plane and 02(X) may be continued analytically in the lower half-planc so that
both functions will fall off in the corresponding half-planes not slower than a power
of IAI. Then it is possible to show that +'(X) will indeed be the spectral characteristic
for the linear extrapolation of the stationary process x(s) with the spectrum F(X)
in terms of the values x(s) on the interval t - T < s < t (see [9]).

2. Explicit expressions for the best extrapolator
The general case of an arbitrary stationary process was considered in the

Kolmogorov [1], [2] and Krein [3] works on the theory of extrapolation.
However, since it is impossible to give any uniquely defined "most natural"
representation for the functional £(t; T) in the general case, the problem of
finding this extrapolator was not even posed in the works mentioned above, and
all attention was turned to finding an expression for the mean-square extrapola-
tion error o2(r) and, especially, to the clarification of the conditions under which
92(r) = 0 or, conversely, u2(T) ': 0. Wiener's great contribution was that he was
the first to direct attention to the possibility of obtaining very simple and
conveniient explicit expression for the best extrapolator x(t; r) in some particular
cases. Namely, in his book [4] Wiener examined the case of stationary processes
with an absolutely coIntiInuous spectral function F(X), and an everywhere positive
rational spectral density F'(X). The general form of such a spectral density is
given by

M 2

II (X -k)
(11) F'(X) = B k=1 2' -X < X < X

II (X - aj)
j=l

where B > 0, N > M and the imaginary parts of all roots aj and ,Bk are positive.
It is easy to verify that in the case of (11) the function p(w) in formula (7)
acquires the extremely simple form:

M
II (W - Ok)

(12) ,c4w) N

II (w - a)
j-1
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Substitutinig this expressioii inlto (G) (for the S = 0 case), W"ienier obtainied an
cxplicit expressioni for bT(X) in the formin
(13J) br(J') = 1/ ) .VN-1

4,, (X) 3I C,(A-= I

II (X - /k) j=o
k= 1

whlerc the coefficieints (1, = Cj(r) (depenldenlt oni T) ar'e determinied fr'omii a siliple
algebiaic system of N liniear e(quationls. The samne result is obtainied eveni more
simiiply by startinig from the sufficicent coniditionis (a), (b), anid (c) defillilng sT(X\)
mlenitionied at the enid of sectioii 1. The extrapolator t(t; T) of the form

N-Af-I .1M
(14) .,(t; T) = BBjx(i) (t) + Y BNv-1-1+k| eigkPx(t - p) dp,

j=o
= f

wlhere the coefficientts Bo, , B.v_j aie linlear comiibiinationls of the C0, *, .v-I,
corresponids to the spectral characteristic (13) under the conidition that the /3k
are differenit. When multiple roots /k = /3k+1 = * = Ok,Z exist. alon1g the roots
l3', , Om, the weight funcetionis cigP, * , eiF~k,P ill (14) must be replaced by
eigkP, pci0kP, * , All these results are widely knowii at preseint alid mlay
be fountd in several advaniced mathematical anid eniginieerinig texts.

It is far less kniownl, however, that there are maniy examples of processes withl
irrationial spectral denisity F'(X) for which the explicit formula for the best
liniear extrapolator is no more complicated thanl in the case of a rational spectral
denisity. Apparently, the author gave onie of the first of such examiiples arounld
teni years ago in [10]. The question of the least-s(luare extrapolation of stochastic
plrocesses with sl)ectral denisity of the forml F'(X) = AX-, -x < X < x, wvas
conisidered there. Clearly, such a funcetiont F'(X) may not be spectral denlsity of a
stationary stochastic process x(s) sinice it is nioninitegrable. Nevertheless, the
functioni F'(X) = AX-a for A > 0 anid a > 1 is the spectral density of a sto-
chastic process x(s) with stationtary incremeints of somiie order, and the whole
theory of tlle linlear extrapolationi of stationiary stochastic processes is extelnded
without difficulty to such processes. In particular, formula (6) is oinly slightly
changed wvl-het applied to processes with stationiary iiciremiienits. It is further-
more easy to show that for F'(X\) = AX-a the funietion ep(w) in (7) will be given
by Sc(w) = '-AW-a/2 where w = lwlei , 0 > 6> -7r.

Substituting this value of ((w) in the appropriately modified formliula (6), wec
finid an anialytic expressioni first for the spectral extrapolation characteristic
FT(X), anid theni for the best extrapolator (t; T). Flor example, if 1 < a < 2, it
cani thereby be showni that the best extrapolator here has the formli

(15) x(t; T) = T2 paIl(p + T) dp;

anid if 2 < a < 3, thlet
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ira
(15') &(t; 7) = X(t) + Sill TfCY dp)

(Jo pa (p + T)
In botlh these cases, the process x(s) is a process with stationiary first increm-ensts
which has the stiructure funetioni Ejx(t + s) - (s)2 of the formwi

(1(;) ])(t) = Elx(t + s) - x(8s)12 = 1)a|a-I I) = -41 L'(1 - a) Sin ,

Rolimoogorov [11] first conisidered such stochastic processes; it latei t urlied out
that they play ani essenitial part in the statistical theory of turl)ulellt flows
(see, for example, [12]).
The method applied ini [10] may event be used to solve problems oni the

extrapolation of some stationary stochastic processes wvitlh irrational spectral
denisity. For example, let the spectral denisity of a stationiary randomll process
x(s) be

(17) F'(A) = A(,\2 + a2)-a 2

where a > 1, A4 > 0, a > 0. Iii this case, the covariaice fulnction RL(t) of the
process J (S) is

(18) I(t) = AX(t + S)lx(s) = J) tj(a.l) 2K(a_l).2(1ItI),
|) = '7r' -(.-3),,22 --(a-1) 2!|()(, -I)=V2(ai)2 1 2[F(2a)]-',

where K, is the so-called Basset's futictioni (the iinoditied Ilessel function of the
second kinid). The fwiiictioni 4r(w) in (7) has the formiii f(u) = 'VA (W2 + a2)-a 2
ini this case, wlhere the argumenit 0 of the coiimplex 1iumllber w2 + a2 =

(I i-4)2 + a2 is assumiied to satisfy the inie(quality 0 > 0 > -27r. 'Moreover,
repeatiing the reasoning in [10] which restults in formiulas (15) amid (15'), we
find(l that

(I9) (t; T)

0 ra

r| ~ V(I_Ta'2 I + , p) dIp for- I < a < 2,
Jopa (p-F T)

1 7ra
2 e arTa (t - p) - --x(t)]-2 for <Ka < 4
7r p+T rjT P.a

fi

(anlalogouls formliulas for . (t; r) may also be obtained for a > 4). Mfore complex
results of the same kiind, referring to the problem of tHe ext rapolationi of homl-o-
genieous anid isotropic stochastic fields x(tI, 12, t1,,) wN-ith a spectral denisity of
the foriii (17), ini terms of their values in the t, < O lalf-space may be found
in the IFortus worik [13].

Still aniother class of stationiary stochastic processes with irrationial spectral
denisity for w-hich aii explicit formiiula mlay be written for the best extrapolator



264 FIFTH BERKELEY SYMPOSIUM: YAGLOM

is the class of processes x(s) with spectral density expressed in terms of polyno-
mials in X and trigonometric functions in X as follows:

M K
]I (X - 13) II (1 + bme-io8-")j2

(20) F'(X) = B k-1 mr1n
][I (X - aj) II (1 + aneiYx)12

j-1 n-1

where B > 0, N > 11, the imaginary parts of all aj and ,Bk are positive and
an, bm, yn, and am are real numbers such that yn > 0, dim > 0, lanI < 1, Ibmi < 1
for all n and m. It is easy to verify that in this case

M K

:I (w -fk) II (1 + bme-iuw)
(21) p(w) = VB N L=1

II (w -a) II (1 + ane-iY-w)
j-1 n-I

Substituting this expression for SO(w) in (6) (with S = 0), we may obtain
after some analytical manipulations anl explicit formula for the spectral extrap-
olation characteristic t,(X) and then for the extrapolator x(t; T) also. The same
result may be obtained more simply by direct selection of the function 4)(X)
satisfying the conditions (a), (b), and (c) mentioned at the end of section 1;
that is, by using the method developed in my book [8] to solve problems on
linear extrapolation for the case of a rational spectral density F'(X). Filially,
it is also possible to use here the fact that under condition (20), the difference
equation

L K
(22) ]I [x(s) + anx(s - Y)] = IJ [y(s) + brny(s -am)]

n=1 m=l

will have the solution y(s), which is a stationary stochastic process with rationial
spectral density of the form (11), such that Hz (t) = H- (t) (here H; (t) denotes
the linear span of the set of stochastic variables x(s), s < t, which is closed
relative to mean-square convergence) and

L K
(22') rI [£(t; T) + an(t; T-- 'y,)] = rI [9(t; T) + b,j (t; a3m)]

n=1 m=1

(the last approach has been recently developed in his candidate dissertation by
S. Grigoryev at Kazan University for the cases K = 1, L = 0 and K = 0,
L = 1). In the particular case where

(23) F'(X) = B 11 + be-iA'2 = B (1 + b2) + 2b cos 3X
IX -ijCI2 X

where B, b, ca, and 3 are real parameters, B > 0, a > 0, 3 > 0, IbI < 1, each
of the three methods we have described leads to the formula

le_, + be-i(6- ,x
11 + be-4X for -T < 6,

(24) l1(X)=
+ be")
1 + be-l" ~~for r > 3.
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It follows that

(25) &(t; T)

Iea ZTE (- 1)kbkx(t - k6) - E (-1)bk /(t + r - k 8) for r < v,
k=O k=1

e.aT(i + bea6) E3 (_1)k'bkj(t - k.6) foIr T > 6

(the result (25) for the case b = -e-a8 has beeii published by Grigoryev [14],
who used a more artificial method in his paper). If, for example,

(26) F(X)=B ~ --B(26) F'(X) = jX -ia-221 + ae-iyX2 (X2 + a2)(1 + a2 + 2a co.sVA)'
where B > 0, a > 0, -y > 0, a is real and lal < 1, then

(27) D17(X) = e-[1 - (- aeY] (1 + ae-iYX) + (-1)rare-i(rr-T)x
1+ aeGy

for (r - 1)-y < T < 'y, which meanis that for such T

(28) x(t; T) = 1 + aea [x(t) + ax(t )]
+ (-l)rarx(t + r - ry).

As is seen from these examples for specific spectral densities of the form (20),
explicit formulas for the best extrapolator turn out to be no more complex than
for rational spectral densities of the form (11), which contain the same number
of factors in the numerator and denominator. However, the form of the extrap-
olators in these cases differs considerably from the forms of the extrapolators
for rational spectral denisities.

Generally, it is considerably more difficult to finid ari explicit expressioin for
the best extrapolator x(t; T) for the best least-square linear extrapolation in
terms of the values x(s) on the finite interval t - 7' < s < t than for extrapola-
tion in terms of its values on the half-axis s < t. However, in the particular
case of a rational spectral density of the form (11) (where the numerator may
even vanish; that is, the imaginary parts of some O's may be equal to zero),
this expression may also be effectively determinied (for example, by usilng direct
selectioni of characteristics bD(X) satisfyinig the contditionis (aT), (bT), anld (CT)
of sectioni 1 or by some other simnilar method; see, for example, [15], [7], [9]).
It turns out that in this case the extrapolator S(t; r) has the form

W-m-1 N-M-1
(29) x(t; r) = E Bkx(k)(t) + E BN-M-kX(k)(t - T)

k=O k=O

+ 57 BIV2M-14- eio~kpx(t p) dp

M fT
+ L_ R2Y - l i$3Px(t - p) dp,+kE=B2v_l_l-+(
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where B1, B1, , B2,B21 are r-dependent coefficieiits determinied frolmi someIC
system of 2N linear equations (for simplicity, we conisider all the roots 0,, , _,
to be differenit). It is, however, essenitial that N of these linlear eqIuationis he
hoiiogeiieous e(luationis niot conltaininig the parameter T; helnce, only N of the
2N coefficienits Bo, ... , B2.V_i are inidependenit. Therefore, for aiiy 7T thlie best-
extrapolator . (t; r) iimay be represenited as the suIml of N definiite linlear combina-
tionIs of values aiid deerivatives of the process x(s) at the poinits s = I anid s =
t - 7' anid of initegrals of x(t - p), 0 < p < T, with the weight funietionis ei3kP
anid ei&kP, wherc every comiibitiationi is multiplied by some r-depenidelit coefficielt s.

rThe coniditionis (a7), (b7), anid (CT) may also be applied to finiding the explicit.
expressioni for the best extrapolator .(t; r) in terms of the values x(s) for t -
T' < s < t ini the case of more general spectral denisities of the formil (20) (whlerc
the imiaginiary part, of somie O's may evetn be zero and somne b's miiay be e(qual
to +1 or -1). For special cases where either K = 1, L = 0, or K = 0, L = 1,
tle expression for .i(t; T) lhas recenitly beeti obtaiiied by this inet hod by (Gligoryev
in his dissertationi (the results for the spectral denisity (23) where b = -c-11
were published ini [14]). Iii the gene-eral case K = 1, L = 0 thc best extrapolator
for r > &, conisists of the ihitegral teni anid the linlear combination of the values
anid derivatives of tlie process x(s) in the points of the formi t -j6 and t -
7' + jo', j = 0, 1, , b)elonIgingo' to the iiiterval [t - ', 7']; the extrapolatol
for T < 61 conitainis additiomially the values amid the derivatives of the process
in the poiiits of the f'orm t + Tr- j1, j = 1, 2, I- - . II tlie case w\-here K = 0,
L = 1, the best extrapolator (t; T) conitainis the initegral termi, the values, anld
the derivatives of thle process at the poiitS t, t - ', t- m/t- 7' + yl, belonig-
ilig to the initerval [t - ', t], anid the value of the process at the pointt t + T-ry,
where (r-I)y, < T < r-y.
For the process with statiommary imicrelnielits having the strutctture fuiietion (10)

ali(l the spectral denisity F'(X) = A,-a, 1 < a < A3 it is also possible to ol)taill
the explicit expression for the best extra)olator in termis of the values of the
plrocess on the interval t -1' < s < t (KIreli. [16], [17], (Grigoryev). AccordingZ"
to Grigoryev, the extrapolator .V(t; r) for 1 < a < 2 has time formi

7ra

(30) *1(t; T) = 2 [(7 + T)] 2 | X(-c dp,L-r(T +[p"J' p)] 2 Lp+T I
where = (2(a - 1) 'aT)F(l, a; 1 + a,/2; --T ') awl1 F((, 1); C; Z) is thle uistual
symbol for t lie hypergeolnet i- c seliCS.

3. Simplified linear extrapolators. The use of the decomposition of the
random process into the principal components

The prob)lem of fiundiing thte explicit expressionis for the best linear extrapolator
is an initeresting, purely amialytical problemn. Howvever, tlec solutioiis of the
probleil are rarely used in practice, as they are usually iiot siiiple eiioughl.
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Besides, eveni when the explicit expressions for the best extrapolator are used,
they are often not the best in reality. The derivation of the expression for
£(t; r) requires the knowledge of the precise form of the spectral (or covariance)
function of the process, anid the spectruim or covariance which is used in mally
cases is only an approximation to the precisely unknown or too complicated
true funcetioni F(X) or B(t).
From the theoretical poinlt of view, the use of the best extrapolators cor-

respondinig to the approximate expressioni for the covarialnce functioll or the
spectrum seems iiot to be justifiable. There are somiiC special examples wlhere
the best extrapolationi becomes meaninigless (for example, as it contains non-
existinig derivatives) or very far from beinig optimal after very small changes
of the funietionis B(t) and F(X).

(In the special case where it is kniowin that the approximationi F1(X) to the
true spectrum F(X) which is used has the property that, the difference F1(X) -
F(X) is itself the spectral funietioni, the situation is simpler. In this case the best
linear extrapolator . 1(t; T) which corresponds to the spectrum F1(X) can obviously
be applied to the process x(s) with the spectrum F(X). It is also easy to show
that if F1(X) - F(X) is a spectral function and maxx [FI(X) - F(X)] is small
enough, the error of the extrapolator x,(t; T) will be quite close to the error of
the best linear extrapolator .r(t; r) for all T (see Rlozaniov [18]).)
However, in almost all practical applicationis the use of the best extrapolators

corresponding tlo the rather rough approximiations to covarianice or spectrum
ftiuctionis as a rule leads only to a very small excess of root-meani square error
of extrapolationi over the root-meaii square error of the true best linear extrap-
olator. But the excess of root-meani square error over its miniimum value a-(T)
will also be usually very small for many linear extirapolators of different forms.
Therefore, in maniy cases it is possible to fix beforehanid a form of the extrapolator
conitaininlg a few unidetermined parameters and to select only the values of the
pam-amenters from the conditioni of miniimization of mean s(quare error. From this
poinit of view the most interesting result of the theory of linlear extrapolation is
the evaluationt of the minimum value of mean s(uare error. The knowledge of
ithis irrenmovable mean square error of extrapolationi permits uis to make sure
thlat the selected simplified extrapolator canniot be significanitly improved.

Onie of the simplest possible extrapolators is evidently the following:

(831) x(t; r) = a(r) (t).

Root-meati s(iuaic crror of thle extrapolator (31) wvill have the minimumn valte
a,(T) = {/B(O) [I - B2(T)/ B2(O)]} 1/2 whenl a(T) = B(r)/B(O). In the case of the
convex covariance funietioii B(t), the error al(r) can be compared w-ith the root-
meanl sqtuare error o-(T) of the best linear extrapolator with the help of HAjek's
i-esult [19]. According to this result, if B(t) is a convex funcetioni, then a-(r) >
tIB(0)[1 - B(T)/B(O)]- I/*'. It follows that for the convex function B(t) the
error al(r) exceeds C-(T) by no more than the factor [1 + B(T),/B(O)]1l2 (that
is, by no more thani 50%/0,,). Hajek's estimation for a-(T) is sharp (it is
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attained exactly when B(t) = max {1 - It, O}); however, for many individual
covariances it appears to be rather rough. As to the nonconvex covariances B(t),
there is no general estimation of the ratio oi(T)/1o(T) (since it is possible that
a(T) = 0 and al(T) > 0). Nevertheless, even for the nonconvex covariances met
in applications, the value ol(T) is often surprisingly near a-(T). For example, if
B(t) = e-alt[ cos at, then max, aj(r)/a-(T) 1.01 (that is, o-,(T) exceeds a(T) by
nio more than 1% for all T). The ratio o-l(T)/"<(r) takes someiwhat larger values
in cases where the function B(t) is twice differentiable, and the best extrapolator
x(t; T) containis values of the derivatives of x(s) at the point s = t. However,
even in these cases the replacement of the best linear extrapolator by the best
extrapolator of the form (31) has in many practical cases sufficient accuracy.
A still better approximation to the minimum value of the root-mean square

error of extrapolation can be attained using two-term extrapolators of the form
(32) &(t; T) = a(T)x(t) + al(r)x(t - ti).
When t1 is fixed, the optimal values of the coefficients a(T) and a,(T) are deter-
minied from the simple system of two linear regression equations. Determination
of the optimal value of t1 in equation (32) is a complicated mathematical problem
having, in some cases, no solution. (For example, if B(t) = Ce-a11(1 + altl),
then the root-mean square error of the extrapolator (32) will decrease with the
decreasing of t1 tending to the root-mean square error of the best liniear ex-
trapolator as t1 -* 0.) However, by means of two or three tests, in almost all cases
it is easy to select a value t1 such that the root-mean square of the extrapolator
(32) will exceed the root-mean square of the best linear extrapolator no more
thaii by a few percent. If still greater accuracy is required, it is possible to use
an extrapolator x(t; r) haviiig the form of a linear combination of three values
x(s) at the poiInts s < t.
Note that in the case of extrapolation of a multidimensional stationary randomli

process (that is, of an homogeneous random field) the number of terms in the
right-hand part of equation (32) necessary to attain accuracy of extrapolation
close to the one of the best linear extrapolator appears to be markedly greater
than in the one-dimensional case. For some special cases of extrapolation of a
two-dimensioinal process x(t1, t2) in terms of its values in the half-planle t2 < 0,
it was shown by Fortus [20] that a good approximation to the root-mean square
error of the best linear extrapolator can be attained only by means of the linear
combination of several knowni values of the process containing nlo less than
ten terms.
One can also find in the scientific literature a great nutmber of functionals

different from linear combinations of some values x(s) at s < t used as extrap-
olators x(t; r). For example, Yudin suggested in [21] to extrapolate the process
x(s) with stationary increments and with structure function (16) by the meain
arithmetical moving average of the form

(33) &a(t; T) =
f

- p)dp,
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where the best value a = a.,t is determinied by the conditioin of minimization of
meani square error a2(T; a) = Elx(t + r) - a(t; r)12. He found that a0pt = 0 if
a > 2, so that the best extrapolator of the forim (33) is the "inertial extrapolator'
&(t; T) = x(t) if a > 2. However, if 1 < a < 2, then the ratio a.ptj/T takes a
finite value differeiit from zero, and ini this case, o-(T; ao,t) exceeds the root-
mean square error of the best linear extrapolator (15) (found after the publica-
tioin of Yudiii's paper) by no more than 10%. The fact that extrapolator (33)
is of Ino use when a > 2 is the consequentce of the negativeniess of the correlation
coefficient between x(t + r) - X(t), T > 0, aiid x(t - p)- x(t), p > 0, in these
cases. It is clear from eqiuationi (15') that wheii 2 < a < 3, it is much more
reasonable to select an approximate extrapolator of the form

(34) .A(t; T) = X(t) + - [x(t) X(t - p)] dp

1 ra= 2x(t) - a x (t- p) dp.

If the mean square error of the best extrapolator (34) is again denoted as
a2(T; a0pt), theil o(Tr; a.pt) will also be very close to the root-mean square error
of the best linear extrapolator for 2 < a < 3.
Sometimes the exponenitially weighted moving averages of the form

(35) &,a(t; T) = a fo e-apx(t - p) dp

are also used for extrapolation (see, for instance, Cox [22], where the time
series with discrete time are studied). The extrapolator (35) is closely related
to (33); in the case where the value a = a0pt is determined from the root-mean
square criterion, its root-mean square error will in many cases only be slightly
in excess of the minimum value of such an error. For the cases when the extrap-
olator (35) is not good enough, Cox [22] suggested the use of an extrapolator
of the form

(36) Xa,b(t; r) = bx(t) + a(l - b) fo e-aP x(t -p) dp.

The last extrapolator containis two parameters, a and b, the values of which
can be determined by minimization of the mean square error.

All extrapolators (31)-(36) are linear combinations with variable coefficients
of some fixed simple linear fuiietionals of the past of the process. It is also
possible to use a linear combinationi of functionials, selected iiot because of its
simplicity but for particular theoretical reasons. Flor example, it seems reasollable
to select the functionals involved in the extrapolator by a method based on the
general analysis into principal components. The analysis was introduced by
Hotelling [23] at the beginning of the 1930's for finite families of random var-
iables and is, at present, the widely used method of multivariate statistical
analysis (see, for example, Andersoni [24], chapter 11). Its generalizationl to the
case of the continiuous family of ranidom variables (to the part of the continiuous
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randoimi process) was later obtainied indepenidenitly by several scienltists (see [25]
to [29]). The analysis begins by extractinig the first prinicipal comaponienit. The
componienit is the normnialized linear coiiibinationi or the norimialized liniear fuiic-
tional of the giveli ranadom variables havinig maximumii variability (that is, max-
imum variaiice). The woord niormalized miieanis that the sum of squares of the
coefficients or the initegral of the square of weight funietioni is one. Tieii thle
seconid normalized liniear combiniation or niormalized linear funietionial is souglht.
It is unicorrelated with the first onie antd has maximum varianice amonig all those
wlhich are unicorielated wit;h the first prinicipal componient, and so oni. D)ealiing
with the statistical problem coincernled wvitlh the givein famiily of ranidom var-
iables, it is niatural to filmd the approximate solutioni which depenids ontly oni a
few fiIrst prinicipal coimponienits (supposinig that the other componients with small
variability canniot chanige the solutioni signiificanitly). Durinlg the last years this
al)lproach was often suggested for practical statistical extral)olation (see, for
iiistaince, Pugachev [30] anid Loreniz [31]).
The prinicipal componienits of the part of the stationiary randomn process x(s),

t - T < s < t, with covarianice funictioni B(t), are the Fiourier coefficienits of the
process correspondinig to the orthogoinal set of eigeitfuniictionis of the initegral
e(uationi

(37) T-TB(s - s)(s1) ds, = c(s) t - T < s < t.
The varianice of the comilponien-t

(38) JF k = x°.*(t - p)>,(t - p) (ip, f J,Ik(S) 12 ds = 1,

is e(lual to V,', hllere Xk is the corresponidinig eigenivalue of the eqjuationl (37).
The coittributioin of the prinicipal componienit lklk to the best liniear extrapolator
NI(t; r) is e(Iual to

(39) ak(t; T) = E [x(t + T)W h] ' =V B (t + T - S1)Ak(S1) (!1l F1k.-

The sum of all conitributionis &k(t; T), k = 1, 2, ,is evidently e(lual to the
best liniear extrapolator in terms of the values x(s) for t - ' < s < t (cf.
Greniaiider [32], p. 269). So it is natural to expect that the sum of a few first
terms 4(t; T), with smallest indices k correspondinig to the smallest eige ivalues
Ak, will form a good approximationi to the best extrapolatoi &(t; T).
Howvever, the true situationi does not cointcide with the expected olne. Let us

conisider the typical case of rationial spectral denisity (11). It is possible t.o show
that ini this case the initegral e(quationi (37) is equivalenit to the cigenivalue prob-
lemii for the differenitial e(quation

(40) II (-+2 + aj ) ,(s) = 2.-XBll(-+I2 + I )k (s)

with the special boundary coniditionis at the poinlts s = t anid s = t -T (see [33]).
T1'his statemienlt leads to the conielusioni that the eigenivalues Xk ill the iational
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spectral density case are the roots of soille traniscenidenital equatioll accessible
to numerical analysis. The corresponding eigenfunctions fPk(S) have simple
analytical expressions which involve the parameter Xk. In the simplest case of
the Ornstein-Uhlenbeck process with covariarice funcetioni B(t) = Cce-I", the
iraniscein(lenital e(juatioIl for Xk has the form

(41) -' -- tan\2(aX -a2- = 1
V\/2CaX - a2

anid the funietionts OA.(s) are proportionial eit her to cos \V2( aX\k - a2 (S- t + '/2)
or to sin V2CaXk - a2 (S- t + T72). These results allow onie to comipute easily
the root-mean square error cl(r) of the extrapolator .lI(t; r) for the Oriisteini-
Uhlenbeck process x(s), t - T < s < t. If, for example, a-r = 0.1, it appears
that o-i(r) 1 1.3o(r) for aT = 4, ul(T) *' 1.75a(T) forcaT = 1, anid ar(T) '
2.2o(r) for aT = .3, where o(r) is the root-meani s(quare error of the best liniear
extrapolator N(t; r). Similarly, if aT = 0.2, theti al(r) .-- l.l15o(r) for a7' = 1

1(T) 1.4f(ir) for aT = 1, anid ai(T) ;' 1.6o-(r) for aT = :3. Therefore, thle
extrapolator .I1(t; T) involvinlg onlly the first prinicipal comipontenit is, ini this case,
satisfactory for a short initerval 7' (anid a tiot too small T) but ver'y illaccurate
for a lonig interval T. The next approximationis Y .Il,(t; T), n = 2, 3,* * ,
behave the same wvay, anid conse(quenitly, in order to obtaini a good approximiia-
tion to N(t; T) for a lonig eniough 7', it is necessary to use a large iitiumber of
prinlcipal componienits 11>..

This pheniomlentoni may be explainied by the fact that tlhe values (S) inl the
begiiiiuniig anid in the enid of the initerval t - 7' < s < I conitribute e(qually to
the prinicipal components, whereas the last kniowni values of the process are much
more important for the extrapolationi thaii the earliest onies. It is also clear that
the Ornistein-Uhleiibeck process is the least suitable for the extrapolationi by
meanis of prinicipal componienits because all the iniformationi about t he future (f
such a process is containied in its last kIIowti value x(t). However, in all other
cases the best extrapolator will also be depenideiit mainily oni the values x(s) in
the neiglhborhood of the poinit s = t. Therefore, for the extrapolator determiniated
by a fixed number of the first prinicipal componienits Jfk., the accuracy of extrap-
olation must decrease when the lenigth of the initerval of kniown values x(s),
anid conise(luently, the kntowin iniformationt, is iniereasinig. This proves that the
applicationi of the method of prinlcipal componienits to extrapolationl problems
with lonig initervals 7' is niot advisable.

4. Theory of canonical correlations for stationary random processes

The decomposition ilitO the principal compontenits is not coniveniienit for tile
extrapolationi because it is based oni the selection of the funietiolials colntainlilln
maximumi total itiforimlationi (tlhat is, maximuitmiii variability), whvlereas onily the
specific informnationi about the futule values of the process is of ilnterest for
extrapolationi. The mlethod of statistical anialysis beinig most suitable for the
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study of interdependencies and interrelations between two families of random
variables is the method of canonical correlations. Therefore, it is interesting to
investigate the application of this method to statistical extrapolation. The the-
ory of canonical correlations was developed in the middle of the 1930's independ-
ently by Hotelling [34] and by Oboukhov [35], [36] (see also Anderson [24],
chapter 12).

According to the theory, the investigation of the interrelations of the families
x = (x1, . * , xS) and y = (yi, * * *, ym) beginis by findinig out the normalized
linlear combinations U1 = aidix and VI =

_ fjlyj having maximum cor-
relation coefficients p1. Then the second linear combinations U2 = I ai2Xi and
V2 = Eltmj2yj are sought. They are uncorrelated with the first ones and have
maximum correlation coefficient p2 among all those which are uncorrelated with
the first ones, and so on. As a result one manages to select coordinate systems
in the spaces of variables x's and y's such that all the components of the com-
pound vector (Ul, U2, * - , Un, V1, V2, ...- V-) (where U and Vj are the
components of x and y in a new coordinate system) appear to be pairwise
uncorrelated with the exception of the pairs (Ui, Vi), i = 1, 2, * *, I where
1 < min (n, m).
One can show that the canonical variables Uk = aikXi = zkx and Vk =

E I3ikYj = jky and the canonical correlations Pk X are determined by the
following algebraic eigenvalue problem:
(42) -X1(Wcx + (B"I3 = 0, ffl11cl - BY110 = 0,

where 63xx, x 63zy, and (B,, are the coireEpo11dinlg covariance matrices.
The method of obtaining the values Cl, . . . Ul, V, .. . , VI, and pi, ,pi

can also be described purely geemetrically. Let us consider the multidimen-
sional space Hz y of all linear combinations w = 1 aixi + 7 ,Bjyj with the
usual scalar product (W1, W2) = EwlW2. Let 6, be the matrix of projection in
Hx.V on the linear subspace Hx consisting of linear combinations of the form

I aix2, and let Py be the matrix of projection to the subspace Hy of combina-
tions F_ ,jyj. In this case the correlations pi, - - *, pi will coincide with the non-
zero eigenvalues of the matrix 6( = G(P@,S,6 (or the matrix (3By = eP). The
variables U1, *- - , U1 and V1, - - , VI will be eigenvectors of the matrices (6x
and 63, corresponding to the eigenvalues pi, . .. , pi.

It is clear that in the case x-here the variables (xi, i"),yS , y..* ym) have
a multivariate Gaussian distribution, all the information about the vector x con-
tained in the vector y is fully characterized by the values of the canonical cor-
relations pi, * * *, pi. Using the knowii Shaninon's formula it is easy to calculate
that in the case considered the amount of iniformation about y contained in x
is equal to - (1/2) _ log (1 - p2) (cf. [33]). In the course of evaluating the
amount of information about a Gaussian random process cotitainied in another
random process, the theory of canonical correlations was generalized by Gelfand
and Yaglom [33] to the case of two infiniite families of random variables (that
is to the case of two random processes {x(s), s c S) and {y(t), t G T}). If S
and T are two intervals of a real axis (which can coincide with each other),
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the determiination of calloinical correlatioins and canoniical variables for {rx(s))
and {y(t)} can formally be reduced to the solution of the eigenvalue problem
(related to (42))

(43) -X ,f Bx(t, t'),(t') dt' + f BxI(t, s')41(s') ds' = 0, t E T,

BY,,(s, t')P(t') dt' - X fs B,J(s, s')4(s') (1.s' = 0, x ,

where Bxx, Bx.,,, Byx, aindB are the covariaiice funictionis and the cross-covarianice
funietions. However, the eigenftiietionis of the problemn, as a rule, are gelleralize(l
functions (for example, they can conitain the s-functioni and its derivatives; cf.
the similar situationi in the paper [15] devoted to extrapolation and filterinlg).
Therefore, the mathematically rigorous presentation of the theory of canoniical
correlations for random processes can be developed more easily by basing it on
the geometrical interpretation of the theory. This interpretation can be exteende(d
lo aii infiniite dimensional case without any changes with the exception of the
fact that the matrices 6., W, and , 5,, turnll out to be operators in the Hilbert
space (see [33], [37] and related purely geometrical papers [38], [39]).
The papers [33], [40] deal with the case where S anid T are the same interval

of the time axis -c < s < X and wvhere y(s) = x(s) + z(s), with x(s) anid z(s)
mutually uiicorrelated stationary ranidom processes with rational spectral dell-
sities. UInder the additional assumption that the spectral denisity of z(s) falls
off at infinity faster than the spectral density of x(s), the evaluation of the
caniontical correlations for this case can be reduced first to some eigenvalue prob-
lem for a linear differential operator with constant coefficients and then to the
solut ion of some tranisceindental equation contaiining exponential and trigonioinet -
ric funictiois. The number of nonzero canonical correlations pk in this case is
inifiniite.
For the theory of extrapolation of stationary ranidoimi processes, another ca;e

is clearly more interestiig. This is wheni x(s) and y(t) are the same statiollary
random process, but the sets S and T are different: S is the past (that is, eithel
the semiaxis s < t or the finite interval t - T < s < t), anid T is the futiure
(that is, either the semiaxis s > t + T or the interval t + r < s < t + r + T'1,
where T > 0). Such a theory of canonical correlations of two parts of the same
stationary ranidom process was considered in the paper [41] for the case where S'
is the semiaxis s < t and T is the semiaxis s > t + r. Here the operator (, of
the projection of the future on the past is the operator which transformns
x(t + rI), Ti 2 r, in its best linear extrapolator &(t; Ti). The formulas (13) and
(14) show that if the process x(s) has rational spectral density of the form (11),
the projection (P1H, of the whole future into the whole past is a finiite dimeil-
sional (namely N-dimensional) linear manifold. Consequently, the number of
nonzero eigenvalues of the operators 6x and G33 in this case cannot be more
I han N. In the Gaussian case it follows from the above mentioned pheniomeieoni
that for a stationary process x(s) with rational spectral density, all the informa-
tioII about the ftutiire contained in its past is concenitrated ill N special liniear
functionals U1, , (Tv of the valuies x(s), s < t.
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The explicit evaluiationi of the canoniical correlationis pk and canionical var-
iables Uk, Vk for the rational spectral densities can be obtained with the help
of a simple modification of the conditions (a), (b), and (c) mentioned in section 1
in connection with the problem of the best linear extrapolation. Let us suppose
that the spectral denisity F(X) is absolutely coinitnuous, and let us initroduce the
functionis 4k (X) anid bk+(X) determined by the relations

(44) ( k = f ( ifX4^ (x) (IF(X), T- = f (i(f+r)X4t (N) dF(\).

Thenl the conisiderationis used in [8] for ol)taillillg the sufficienit coniditionts (a),
(b), arid (c) allow us to prove the followinig statement.
Assume that there exist functions {f-(X) and 4,+(A) and a nonnegative number p

such that:
(a') 4'- and i+ satisfy the conditions

f 1,-(X)J2F'(\) dX = f j1+(X)j2F'(\) dX = 1;
(b') the function 4{+(X) may be continued analytically in the uipper half-plane oJ

the complex variable X and 4{-() may be continued analytically it the lower halJ'-
plane so that both futnctions will not have an order oJ' growth higher thant a pow('r
of IAI; and

(c') the function [eiT"14+(X) - p41-(N)]F'(\) may be continued analytically in the
upper half-plane of N, and the function [e-i7,-(X) - p4P+(X)]F'(X) may be con-
tinued analytically in the lower half-plane, so that both these fuinctions will fall off
not slower than a power of IXI at infinity.

T'hen 4'+ and 4- will be the functions 4)k+ (N) and Dk (N) corresponding to canonical
variables U1k and Vk and to the canonical correlation Pk = p (see [41]).

If the spectral density F'(A) is rationial anid has the form (11), the stated
conditionis may be satisfied by functionis 41(N) and 4{+(X) of the form

(45) 4-(A) m () 12+(A) = e(A)
m =m

rI (A- j) II G\-)
j=1 j=1

where -y-(N) anid -y+(X) are polynomials of degree N - 1. Then the conditions
(a') anid (b') will be evidently fulfilled (after the niormalizationi of the coefficienits
of y-() anid -y+(X)). In order to satisfy the coniditioni (c') also it is niecessary to
select y-(A) anid -y+(X) in such a way that the funcetionis

Al 31
ei ' II (N - j),y+(N) - p I (N - j)-y (A)

j=1 j=1
N
rI (N- ak)

(46) k ==1
C-HirXI (N - j)y-(N\) -p II (N\ -/) (,\)

j=1 j=1 __ _

1I (X-a,;)
k= 1

should be enitire funietionis of X.
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The last- coiiditioni leads to a system of 2N homogeneous linear equations for
the 2N uInkniowIn coefficienits of the polynomials -y(X) and -y+(X) which contain p
as a factor in certaini terms. The conditioni of the existence of a nonizero solution
of the system gives us the algebraic determinantal equation for p of degree 2N.
The equation has the roots pi, - , p.v and -pi,-,. , -p.. When the canonical
correlations Pk have been determined, the coefficients of the polynomials yk (X)
and ay+(X) corresponidinig to the functions ok-(X) and sk±(X) can be found from
the linear system involved in (c') and the normalizinig conditions (a').

Similarly, one may treat the more general problem about the canoniical cor-
relations and canonical variables for two finite parts [x(s), t - T < s < t} and
fx(s'), t + T < s' < t + T + T1}- of the stationary random process x(s) with the
rationial spectral density (11). Here the operator @2 tranisforms the variables
X(S'), t + r < S' < t + T + T1, into the best linear extrapolators in terms of
the values x(s) for t - 7' < s < t. Since the space of all linear functionals of
x(s) where t -T' < s < t for T < x is a subspace of the space of the linear
functionials of the whole past of the process x(s), it is evident that the space
PxH, cannot be more than N-dimensionial for T < x (cf. equation (29) and the
statement after it). It follows that for two arbitrary disjoint finite intervals of
the process x(s) there canniot exist more than N nonozero caiotiical correlatiolns.
These correlationis anid the corresponiding canoinical variables can be found with
the help of the followinig modification of the contditions (a'), (b'), and (c')
mentioned in section 1.
Assume that there exist functions 4{-(X) and 4{+(X) antd a nonnegative number p

such that

(a") f 14,-(X)12F'(,\) d\ - f t'+(X)l2F'(X) dX\ = 1;

(b") the functions {t-(X) and 4{+(X) are entire functions of X represented in the
form ()= {1 (X) + e iTX4,j(X) and 4{+(X) = {+'(X) + eiTlx42(X) where the
functions 41i, 42, 4/'+, and 4i+ are rational; and

(c") the functions [eiTA4I+i(X) + ei(r+ 7',)x4+(N) - p4- (X)]F'(X) and 4,t+(X)F'(X)
may be continued analytically in the upper half-plane of X, and the functions
[e-iTs6 (X) + e-i(T+T)4,- (X) - p1+ (X)]F'(X) and 4'27 (X)F'(X) may be continued
analytically in the lower half-plane so that all the functions will fall off not slower
than a power of IXI at infinity in the corresponding half-planes.

7'hen the functions 4-(X) and A+(X) will be the functions j (N) and k+(X) of
the equations (44), which determine the canonical variables Uk and Vk (correspond-
ing to the canonical correlation p = Pk) of the parts {x(s), t - T < s < t} and
-x(s'), t + r < s' < t + r + T1} of the process x(s) with the spectral density F'(\).
The proof of this statement is similar to the proof of coniditions (aT), (bT),

and (CT) mentioned at the end of section 1. For the rational spectral density (11)
the conditions may be satisfied by the functions of the form

I (jX) -_
_I(47) 4' (X) = 4f-, (N\) = - 1
'

r = 1, 2,
III (N -j)12 III (N - 0jY32
j=1 j=1
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where y (X) aiid yT (X) are the polyniomials of degree N + 1I-1. Tle coindi-
tioins (a"), (b"), anid (c") lead to a systemii of liniear homogeineous e(luatioiis
for the coefficientis of the polyniomiials yr-(X) and yr- (X). After eliminiatinlg some
unikniownis from the system, it is possible againl to obtaiin time determinnantal
e(luatioin of degree 2N havinig the roots pi, * *, p, -pi, ,* -pv. Wheni the
canioniical correlations pk are kniowni, the coefficienits of 7yr(X) anid yr (A) calI
bc easily obtained for every Pk floml tIme system of linlear e(quatiolns anld the
normializinig coniditionis (a").
The best linlear extrapolator &(t; T) Hi terms of the values x(s) for s < t or

t- 7' < s < t cain always be decomposed iimto the sum of contributionls of dif-
ferentt canionical variables Uk for the corresponding past values anid the arbitrary
part of the future wlhich containi the poinit t + T (for exaample, for the semiaxis
8 > t + T or S > t + To, where 0 < To < T). Therefore,

(48) .i)(t; T) = 7 (EX (t + T) Uk) *'k.
k

t-sually in real situationis the cantoniical correlationis pk are rapidly decreasinig
whenm the inidex k incr-eases. Therefore, as a rule, the extrapolator cali be approx-
imiiated precisely by a few first terms ini the riglht-hanid part of (48). InI the
special case of the Oiristeiin-Uhleinbeck process, where the miiethlod of the prinicipal
componient turnls out to be inieffective for the purpose of extrapolatioln, the right-
hand part of (48) containis onily onie term corresponidinig to U1 = x(t).

In the more genieral case of the arbitrary rationlal spectral density (11), the
iight-haind part of (48) containis a finiite iiumber (namiely N) terms; however,
all of them, with the exceptioni of onie or two first trims, aie usually niegligible.
If we inicrease the lenigth of the imitelval of the kniowni past values of the process,
the accuracy of the approximate extrapolator conitaininsg onily the fixed niumber
of right-hanid terms in (48) will be inereasinig too. All these facts display the
great advanitages of the canioniical variables in) comiiparisoni withi tlhe prinicipal
coiinpoiieiits ini studyiing the statistical extrapolationi.
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