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1. Introduction and summary

How can one choose, at random, a probability measure on the unit interval?
This paper develops the answer announced in [4]. Section 1, which can be
skipped without logical loss, gives a fairly full but slightly informal account.
The formalities begin with section 2. All later sections are largely independent
of one another. Section 10 indexes definitions made in one section but used in
other sections.

A distribution function F ou the closed unit interval I is a nondeccreasing,
nonnegative, real-valued function on I, normalized to be 1 at 1 and eontinuous
from the right. To each F there corresponds one and only one probability meas-
ure |F| on the Borel subsets of I, with F(z) equal to the |F|-measure of the
closed interval [0, z], for all x € I. Choosing at random a probability on [ is
therefore tantamount to choosing at random a distribution function on I.

A random distribution function F is a measurable map from a probability
space (2, F, Q) to the space A of distribution functions on the closed unit in-
terval I, where A is endowed with its natural Borel o-field, that is, the o-field
generated by the customary weak* topology. The distribution of F, namely
QF-1, is a prior probability measure on A. Of course, F is essentially the stochastic
process {F,0 <t <1} on (2, %, Q), whose sample functions are distribution
functions: F,(w) is F(w) evaluated at {. Therefore, this paper can be thought of
as dealing with a class of random distribution funetions, with a class of stochastic
processes, or with a class of prior probabilities. Similar priors are treated in
9], [11], {16], and [17].

Since the indefinite integral of a distribution function is convex, this paper
can also be thought of as dealing with a class of random convex functions, but
we do not pursue this idea.

Which class of random distribution funetions does this paper study? A base
probability u is a probability on the Borel subscts of the unit square S, assigning
measure 0 to the corners (0, 0) and (1, 1). Each such u determines a random
distribution function F and so a prior probability I’, on A, which will now be
described, by explaining how to scleet a value of F, that is, a distribution func-
tion F, at random.

AssuMpTION. For ease of exposition, we assume throughout this section that u
concentrates on, that is, assigns probability 1 to, the interior of S.
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ConstructioN. To select a value F of F at random, begin by selecting a
point (z, y) from the interior of S according to u. The horizontal and vertical
lines through (z, y) divide S into four rectangles. Consider the closed lower
left rectangle L and the upper right one R. The unique (positive, affine) trans-
formation of the form (u, v) — (au + 8, yv + §), a and v positive, which maps
S onto L, carries u into a probability u; concentrated on L. The probability ug
is defined similarly. Now select a point (xr, y.) at random from the interior
of L according to uz, and a point (zg, yr) at random from the interior of R
according to ug. As before, (zr, y.) determines four subrectangles of L, and
(xg, yr) determines four subrectangles of R. Consider the lower left subrectangle
LL of L, the upper right subrectangle RL of L, and the analogous subrectangles
LR and RR of R. The construction may be continued by selecting one point at
random from each of these four rectangles, according to the appropriate affine
image of u, and so on. This procedure yields a nested decreasing sequence of
closed sets, the n-th one being a union of 2» closed rectangles, namely, S, L U R,
LL\) RL\J LR U RR, and so on. The intersection of these closed sets is a
nonempty closed set which, with probability 1, is the graph of a distribution
function. This funetion is taken as the random value F of F.

Section 2 gives a formal description of this construction, including a proof
that the closed set in question really is the graph of a distribution function.
The idea of the proof is to show that the set has area 0 with probability 1,
because the sets shrinking to it have areas whose expectations shrink to 0.

We do not know an abstract characterization of the set of priors P, as u
ranges over the base probabilities.

Section 3 gives a necessary and sufficient condition on u for P, to assign
positive mass to every nonempty open subset of A. When the support of n (the
smallest closed set of u-probability 1) contains neither (0, 0) nor (1, 1), the
result is easy to state: the support of P, is then all of A if and only if the graph
of every F € A meets the support of u. We conjecture that unless the support
of P, is all of A, it has empty interior.

As shown in section 4, P, assigns probability 1 to the continuous and strictly
increasing distribution functions. For at stage n of the construction, there are
2= closed rectangles whose union includes the graph of the distribution function
being constructed. The sum of the squares of the heights (respectively, widths)
of these 2" rectangles decreases, has expectation converging to 0, and therefore
converges to 0 almost everywhere. Consequently, so does the maximum height
(respectively, width).

Unless u concentrates on the main diagonal of S, P, concentrates on the purely
singular distribution functions. For many u, Kinney and Pitcher [14] have
sharpened this result beautifully (by showing that P,-almost all F have a
Hausdorff dimension which is a constant less than 1). Here is a different sharpen-
ing (section 5). Say F € A is strictly singular if F has a finite, positive derivative
nowhere. Unless u concentrates on the main diagonal, P,-almost all F are strictly
singular. The case which we learned from de Rham of a u that assigns measure 1
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to a single off-diagonal point, say (r, w), brings out one of the ideas in the proof.
Clearly, P, then assigns measure 1 to a single distribution function, say S, .
(This two-parameter family of distribution functions is studied in ([8], chapters
5 and 6), and the one-parameter family S,, ;2 is studied in [2].) Fix z € I. At
stage n of the construction of S, , there will be 2» closed rectangles whose
union includes the graph of S, ,. Of these rectangles, there will be a leftmost
one whose projection on the horizontal axis contains z. Its diagonal d, is a
chord in the graph of S, ,, whose projection on the horizontal axis contains z.
The ratio of the slope of d.; to the slope of d, is either w/r or (1 — w)/(1 — r).
Since both numbers differ from 1, the slope of d, cannot converge to a finite,
positive limit. Hence, S, » does not have a finite, positive derivative at z.

Suppose p assigns measure 1 neither to a point, nor to the main diagonal,
and G € A is not the uniform distribution. Are P,-almost all F singular with
respect to G? In case u assigns measure £ to each of the points (%, 1) and (3, 1)?

The strict singularity of S, , has various other generalizations (sections 6,
7, 8). Let K be a subset of the unit square. Say F € A is K-constructible if its
graph can be obtained by the coNsTRUCTION, with this constraint: at each stage,
each point selected from each rectangle is in the positive, affine image of K in
that rectangle. Of course, no base probability is involved in this definition. If,
for every strictly convex F € A, and strictly concave G € A, there is a point
(z, y) € K with F(z) < y < G(z), then K is tangent to the main diagonal. The
main result of section 6 is the following. If K is tangent to the main diagonal,
then there is a K-constructible distribution function equivalent to Lebesgue
measure; otherwise, every K-constructible distribution function is purely sin-
gular. We do not know necessary and sufficient conditions on K for each K-con-
structible distribution function to be strictly singular, but as section 7 shows,
this condition is sufficient: for some strictly convex F € A, every point of K is
on or below the graph of F. If K is a compact subset of the interior of S, and is
disjoint from the main diagonal, no K-constructible distribution function has
even a finite, positive, one-sided derivative anywhere (7.2). We do not know
necessary and sufficient conditions on K for this to hold.

Let F and G be distribution functions: F is strictly singular with respect to G
provided there is no z for which the ratio of F(x + h) — F(x) to G(x + h) — G(x)
converges to a finite, positive limit as A tends to 0. Section 8 proves the following.
Let 0 <7 <1, and let u and » be distinet base probabilities, each assigning
measure 1 to the vertical line segment z = r, 0 < y < 1. Then there are Borel
subsets C and D of A, with P,(C) = P,(D) = 1, such that F is strictly singular
with respect to @ for all F € C and G € D. In particular, P, # P,. It is likely
that, unless u concentrates on the main diagonal, P, determines u.

A probability P on A determines an average distribution function Fp according
to the relation

(1.1) Fp(z) = ./GGA G()PdG).

The average Fp,, or I, for short, is a fixed point for 7', (section 9), where 7, is
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this mapping of A into itself. For ¢ € A, T,( is the distribution function of a
point » chosen from I according to this mechanism: choose a point « at random
from I according to G, and independently a point (x, y) at random from S
according to g; then v is xu with probability y, and « + x(1 — «) with prob-
ability I — . Consequently, as [7] implies: 7', has F, for its unique fixed point,
and for G € A, (T,)"(; converges to F, uniformly as n — = ; F, is continuous,
strictly monotone, and cither purely singular or absolutely continuous.

Here is a more special result. Let 6(u, 2) be the conditional up-expectation of
the second coordinate given that the first coordinate is z, and let w, be the
projection of x on the horizontal axis. Then F, is Lebesgue measure if and only
if 8(y, 2) = x for w,-almost all x (9.28). We conjecture that unless F, is the
uniform distribution, it determines 8{x, -) and us.

In certain special cases, it is possible to compute F, explicitly. If u concentrates
on the vertical line segment @ = r, 0 < y < 1, and has mean (r, w), then
F, = Sy, If uis the uniform distribution on S, or on the horizontal line seg-
ment 0 < x < 1,y = 1, then F.(2) = 2r ! are sin z/2, This contrasts with the
fact that F, is the uniform distribution if g is uniform on the vertical line segment
r=4%50<y <l

We do not know which I € A arc of the form F, for some base probability p,
nor whether distinet F, can agree on an interval, nor when F.’s are equivalent
or singular.

2. The definition of the prior P,

TFormalizing the CONSTRUCTION of xcction 1 scems to require a fair amount of
notation: I is the closed unit interval [0, 1], and S is the closed unit square
I X I. For any sets X and Y, XY is the sct of all functions from ¥ to X. I'or
n=0,1, -+, B, is the sct of all n-tuples of ¢’s and 1’s; the only element of By
ix the (empty) O-tuple . For each b € B,, b followed by 0, namely b0, is in
B, asis b1, Let B = Uy - B..

I'or any closed subinterval J of I, {(J) is the linear mapping of I onto J which
carries 0 to the left endpoint of J. Ior t € I8 and b € B, define the real number
q(b, 1) and the closed interval J(b, ) inductively: J(&,t) is I; q(b, t) is the
image of t(b) under {(J(b, 1)); J(b0, {) is the image of the closed interval [0, {(b)]
under (J(b, 1)); and J(b1, t) is the image of [{(b), 1] under (J(b, t)).

Of course, + € SB can be identified with a pair (r, 2) € I8 X 1% by the
relation 7(b) = (r1(b), 72(b)) forallb € B. I'orr € SPand b € B, define p(b, ) € S
and r(b, 7), a closed subrectangle of S, by

<2‘> p(b7 T) = (([(b) Tl)y (1([): 72)))
2.2 r(b, r) = J(b, 1) X J(b, 2).
Let

(2.3) M. (r) =\ {rh,7):b € B}



RANDOM DISTRIBUTION FUNCTIONS 187
and

(2.4) M (r) = néo M. (r).

Let A be the set of distribution funetions on /, normalized to be 1 at 1 and
continuous from the right on the half-open interval [0, 1). If F € A, its solid
graph nF is the smallest closed subset of S whose intersection with every vertical
line is convex, which contains (0, 0), and which includes the customary graph
of I. Let T be the set of all 7 € 88 such that M, (r) is the solid graph of some
F € A, and let M(7) be this F.

For any sets X and Y, if X is endowed with a topology (s-field), then XV is
given the product topology (s-field). If u is a probability on (a o-field of sub-
sets of) X, the power probability ¥ on (the produet o-field of) XY is defined by
this property: as y ranges over Y, the coordinate functions §, with §(w) =
w(y) € X for all w € X7, are independent under ! and have common distribu-
tion u. Endow A with the weak* topology, that is, the smallest topology such
that ¥ — f, f(x)F(dzx) is continuous for cach continuous, real-valued function f
on I. Indow A with the o-ficld generated by this compact, metrizable topology.
(2.5) Lemma. T 4s a Borel subset of 8B, and M is a Borel measurable map
of T inlo A.

Proor. Plainly,  is continuous and 1 — 1 from A into 25, the set of non-
emply, closed subsets of S; for a discussion of 25, see ([12], section 28) or ([19],
section 15 and [20], section 38). Consequently, n~! is continuous on its domain
74, and therefore Borel measurable. For n < =, each M, is continuous; so M,
is upper semicontinuous, and therefore Borel measurable [18]. Ifinally,
T=Mz"9sAand M = yM,. ¢
(2.6) DerintTioN, If the probability u on S assigns measure 0 to the corners
(0,0) and (1, 1) of S, then u is a base probability.

(2.7) Lemuma. [If u s a base probability, then uB(T) = 1.

Proor. Let A,(7) be the planar Lebesgue measurc of M, (r),n =0, 1, - -+ | =;
then 7 € T if and only if 4,.(r) = 0, or equivalently, the monotone decreasing
sequence Ay(r), Ai(r), - -+ converges to 0. But 4,(r) does converge to 0 for
wB-almost all 7 because ils uB-expected value is p* with 0 < p < 1. In more
detail, let

(2.8) o= [l + (1= )1 = y)lulda, dy).

Then p is the pB-expectation of A;; and if » > 1, the conditional uB-expectation
of A,q, given 7(b) for b € U2, By, is pA (7).

lsach probability @ on S is transformed by 3 into the subprobability QM !
on A. Plainly, QM~! is a probability if and only if @(7) = 1. The principal
concept of this paper can now be introduced.
(2.9) DerriniTion. Ior cach base probability u on S, the geometric prior P,
is the probability p?M—1 on A,
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(2.10) NorarioN. Throughout the rest of this paper, except in (9.2) to (9.11),
u is a base probability.

We do not know an abstract characterization of the set of priors P, as u
ranges over the base probabilities.

3. The support of P,

This section gives a necessary and sufficient condition for the support of P,
to be all of A (3.6). Some readers may prefer to skip this section, which is not
relied upon in future sections. As usual, the support of a probability on a com-
pact metric space is the smallest closed subset of probability 1.

(3.1) DeriNiTION. A distribution function F is K-constructible if there is a
r€ T with 7(b) € K forall b € B and M(s) = F. If K is the support of a base
probability u, then u-constructible will mean K-constructible.

(3.2) LemmA. The support of P, is the closure of the u-constructible distribution
Sfunctions.

Because M is continuous on T, lemma (3.2) is an immediate consequence of
(3.3) and (3.4), whose easy proofs are omitted.

(3.3) LEmma. Let ¢ be a measurable map of a probability triple (2, §, P) into
a compact metric space X. If W € § has P-measure 1, the closure of o(W) includes
the support of P2,

The next lemma uses the notation ¢p for the restriction of a function ¢ to a

part D of its domain.
(3.4) Lemma. LetQ and X be compact metric spaces, ¢ measurably defined from
part of @ to X, P a probability on @, K the support of P, and D a Borel subset of Q
having P-measure 1 such that ¢p is continuous. Then o(D N K) is included in the
support of Pyl

Of course, (3.2) implies the following.

(3.5) CoROLLARY. If the support of a base probability u includes that of another v,
then the support of P, includes that of P,.

Plainly, if 4 and » have the same support, so do P, and P,. If K is any non-
empty compact subset of S which does not contain (0, 0) or (1, 1) as isolated
points, then all base probabilities whose support is K lead to priors with the same
support, 3 (K). This section gives a necessary and sufficient condition for 3 (K)
to be all of A.

To state the condition, call K horizontal at (0, 0) if for each ¢ > 0 there is an
(x,y) € K with 0 < z < e and 271y < e. Likewise, K is vertical at (0, 0) if for
each ¢ > 0 there is an (z,y) € K with 0 <y < eand z7ly > L. Call F € A
elementary if its solid graph 7F consists of a finite number of line segments, each
of which is horizontal or vertical. If K and yF are both horizontal or both
vertical at (0, 0), then 9F is fangent to K at (0, 0). The analogous definition for
9F to be tangent to K at (1, 1) is omitted.

It is now easy to state a necessary and sufficient condition for 3~ (K) to be A.
(3.6) TaEOREM. Let K be a nonempty compact subset of S which does not contain
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(0, 0) or (1, 1) as isolated points. Then 3_(K) = A if and only if the solid graph of
every elementary distribution function tangent to K neither at (0, 0) nor at (1,1)
intersects K at a point other than (0, 0) and (1, 1).
(3.7) CoroLLarY. If K 1is tangent to all elementary distribution functions, then
S (K) = A.
(3.8) CororrLArY. If K contains neither (0,0) nor (1, 1), then 2 (K) = A #f
and only if K intersects the solid graph of every distribution function.

Write s(1) for the first coordinate of s € S, and s(2) for the second. Here are
five examples of K with > (K) = A (figures 3.1-3.5).
(3.9) Exampre. The horizontal line segment {s: s € S and s(2) = }}.
(3.10) ExamprE. This union of two line segments: {s: s €S and s(1) = 3,
0<s@2) <3 U {s:seSands(1) =3 3 <s2) <1}.
(3.11) Exampre. This union of two line segments: {s: s € S and s(1) = 0,
0<s52) <31 U {s:5e8and0<s(1) <% s2) =0}
(3.12) ExamprE. This union of two line segments: {s: s € Sand s(2) = 2s(1)
for0 <s(1) <3 U {s: seSand 0 < s(1) < 4, 5(2) = 0}.
(3.13) ExampieE. This union of three line segments: {s: s € S and s(2) =
s} U {s:se8and 0<s(1) <%, 5(2) =0} U {s: se€Sand 2 <s(1) L1,
s(2) = 1}.

3.1 3.2 3.3

F1GURES

The rest of this section is devoted to the proof of the theorem.

Proor oF (3.6). The ‘“only if”’ is settled by proving a little more.

(3.14) An elementary distribution function F tangent to K at neither (0, 0) nor
(1, 1), and intersecting K at no points other than (0, 0) and (1, 1), s not in
2 (K).

Suppose F horizontal at (0, 0) and (1, 1), for no new difficulty arises in the
other cases.

For G € A, let G* be the set of points above the graph of G, namely, the set
of s € (S — 9@) with s(2) > G(s(1)). Similarly, G* is the set of points below
the graph of G, namely, the set of s € (8 — #G) with s(2) < G(s(1)).

By elementary continuity considerations there are positive numbers 3, a1, as,
by, bs, c1, C2 less than 1 and continuous distribution functions Fy, Fs, Gy, G, sat-
isfying (3.15) to (3.19), as depicted in figure 3.6.

(3.15) K C Ff U F3 U {(0,0)} U {Q, 1)}.
(3.16) by < c2 < azand a; < ¢; < b
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g ¢y by
Fl 6 FI 6, [Fs
by C2 92

Fraure 3.6

(3.17) Fy is linear with finite, positive slope a on [0, 8], and F, is lincar with
slope @ on [1 — g, 11.

(3.18) Fi(ay) = Gi(er) = F(b) = Ga(b) = 1, and
Gi(b) = F(b) = Galea) = Fa(az) = 0.

(3.19) On (0, a1}, F1 > @ and is strietly monotone;
on (by, ¢;], Gy > F and is strietly monotone;
on [eg, bs), G2 < F and is strictly monotone;
on [ag, 1), Fa < (7> and is strictly monotone.

Toreach e > 0, let ;. = max {¢, (i) ; and let Goe = min {1 — ¢ G5} on [0, 1),
Ge(1) = 1. Let Vo= (NG U {s: seSand s(1) =0, 0 <s(2) < ¢ U
{s:8€8 and 0<s{l) <eo s(2) =0} U {s:se€S and (1) =1, 1 —e<
s(2) <1} U {s:s€8 and ¢ <s(1) <1, s(2) =1} (see figure 3.7). Let
V¥ = {G: G € Aand (7 € V). Plainly, V¥ is an open necighborhood of F. The
next step is to prove:
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9]

c2

Ficune 3.7

(3.20) For small enough €, there are no K-constructible distribution functionsin V¥,
Lemma (3.2) will then apply and give (3.14).

If s and { are in S with s(7) < 1(¥), 7 = 1, 2, then s X ¢ is the closed sub-
rectangle of S whose lower left corner is s and upper right corner is t. The positire,
affine map Asxi of S onto s X t is the map (i, v) — (au + b, cv + d) with «
and ¢ nonnegative which sends S onto s X t.

There is a positive p < & such that for s and ¢t in S with s({) < p and
1 — i) < pfori =1, 2:

(3.21) Aoy C U

(3.22 Asxdd™s C GY;

and

(3.23) the image under A of every line segment has at least } its origina]
length.

Reecall the meanings of o and g from (3.17) and choose € > 0 so small that
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(3.24) e < p,

(3.25) 0 <op,

and

(3.26) e+ 8% < 18*(1 + a?),

where § = (¢/a(1 — 2¢)). Let T be the closed triangle with vertices (0, 0), (0, €),
(8, ¢); and T the closed triangle with vertices (1, 1), (1,1 —¢), 1 — 8,1 — ¢).

Suppose 7 € 8B has 7(b) € K for all b € B and M (r) C V.. Once it is argued
that ‘

3.27) r¢T,
relation (3.20) will be established. More than (3.27) will be proved:

(3.28) TFor all n > 0 there is a (necessarily unique) b, € B, with the lower
left corner of r(b,, 7) in T, and the upper right corner in T}.

Plainly, (3.28) holds for n = 0 and n = 1. Suppose it holds for n = k. To prove
it for » = k + 1 requires only the verification that p(bi, 7) € To U Th. If
7(be) € F¢, it will be seen that p(bi, 7) € To. The case 7(bi) € F3 is omitted.
Abbreviate R for r(bi, 7) and o7 for the segment of nF; over [0, 8] (see (3.17)).

Since p(bx, 7) is in AgF%, it is above 7G; (see figure 3.8 and use the induction

edge of
ribg,T)

(8,¢€)

(0, T—
o plbk,t)

edge of S

d b
lower left corner edge of rib,7)
of ribg,0)|—

(0,0 edge of S

Ficure 3.8
hypothesis, (3.24), (3.25)). Since it is in V, it must be below the line s(2) = ¢;

(figures 3.6 and 3.7). But the length of Aro; exceeds the diameter of T\ (the
induction hypothesis and (3.24) to (3.26)). Thus p(bs, 7) is in the closed triangle
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bounded by s(2) = ¢, the left edge of r(bx, 7), and Agroy. To finish the argument,
it is enough to prove that the slope of Agzoy is not less than the slope of the
hypotenuse of T, which is a(1 — 2¢). Among all rectangles sy X 8 with s, € T,
and s, € T, the slope of Agxs0. is minimized with sy = (¢, 0)and s; = (1,1 — ),
and is then precisely a(1 — 2¢). This completes the induction, and with it the
proof of the “only if”” part of the theorem.

Turn now to the “if”” part of (3.6). The order of an elementary F € A is the
minimal number of line segments of which 4F is composed. It will be proved by
induction on the order that every elementary F € A is in }_(K). The two
elementary F’s of order 2 are in Y_(K) by a relatively easy argument which is
omitted. Suppose that for some &k > 3, every elementary F of order less than k&
is in > (K). To see that cvery F of order k is in )_(K), consider two cases.

Case 1: F is not tangent to K. Suppose first that & is odd, so the initial and
final segments of nF are parallel, say vertical. Let K, = {s: s € K, s(1) = 0,
5(2) > 0} and K, = {s: s€ K, s(1) =1, s(2) < 1}. Suppose that K, and K;
are nonempty, for no new difficulty arises in the other case. Let p be the lowest
point of K, and q the highest point of K;. These points exist because F is not
tangent to K. Suppose that F were not in >_(K). Then 9F cannot intersect K
at an interior point of S. For let s € 9F be an interior point of S. The part of
nF between (0, 0) and s, when rescaled so that s becomes (1, 1), is the solid
graph of an elementary distribution function, namely 714 g%, xnF. This dis-
tribution function has order less than %, so is in 3_(K) by the induction hypoth-
esis. Similarly, 77 14,x q.1nF is in 3 (K). If s were in K, F would plainly be in
S (K). Either p € nF or ¢ € nF (by the condition of the theorem); say p € nF.

It is now convenient to define an element r of K2, and a sequence Ry, Ry, - -
of subrectangles of S; this requires the simultaneous definition of a sequence
bo, by, - - - of elements of S. Let by = &. Forn > 0, let b,,; = b1 and 7(b) = p
for b € B,, as long as p(b., 7) is in the initial segment of #I" for every j < n.
Plainly, this part of the defining procedure cannot continue indefinitely. Let
ne be the last n such that r(b) has been defined for b € B,, and let By =
plbny, 7) X (1, 1). Since F ¢ Y (K), (57'Az'9F)(0) < p(2) and Az'9F does not
intersect K at an interior point of S. Because nF is not tangent to K, neither is
Az'mF. By the condition of the theorem, ¢ € A 'gF. The definition of 7 can
now be continued for n > n, by setting b,,; = b,0 and 7(b) = ¢ for b € B,, as
long as p(b;, 7) is in the final segment of nF for ny + 1 < j < n. This part of the
defining procedure also cannot continue indefinitely. Let n; be the last n such
that 7 has now been defined for b € B, and let Ry = p(bay, 7) X Py, 7).
Now return to selecting p, and so on, thereby defining R:, and so on, complet-
ing the definition of = and the sequence Ry, R,, - - - of rectangles.

Plainly, the height of R, converges to 0. For k = 3 there is a contradiction,
because 7 € KB N T and M(r) = F. Also for k > 3 there is a contradiction,
because the height of R, is bounded below by the F-measure of the open interval
0, 1).

Tor even k, with the initial segment of nF vertical and the final segment
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horizontal, replace ¢ by the rightmost point of {s: s € K, s(1) < 1, s(2) = 1},
and use a similar argument.

Case 2: I' is tangent to K; say at (0,0) where both are horizontal, for deli-
niteness. Let 2 be the right endpoint of the initial segment of 9F; so FF(y) > 0
for y > x. If e > 0, there is a ( € 3_(K) whose graph is within € of /. To scc
this, choose an (r, w) € K such that 0 < r < ¢, and if n is the least natural
number with # > x, then v’ < min {¢, F(x)}, where »* =1 — (1 — r)» and
W =1—=1—=wrIfF =9F U {s: seSand s(1) =, v < s(2) < F(O')}>»
then 97 A Gl o nFh s an elementary distribution funetion of order less than k-
=0 1% in 2 (K). The balanee of the argument is routine. ¢

4. Continuity and monotoneity

Call F € A conlinuous if F(0) = 0 and F is continuous on [ in the usual
sense. The main result of this section is the following theorem.

(4.1) 'THEOREM. P, assigns probability 1 to the set of continuous and strictly
inereasing distribution functions if and only if u assigns probability 1 to the interior
of the unit square.

The first lemma uscs notation introduced in seetion 2.

(4.2) LemMA. [f a probability 8 on I assigns positive probability to the interior
of I, then
(4.3) lim max length of J(b,t) = 0
n—w% bEBa
Jor 6B-almost all t € I5.

Proor. Each r €[ divides 7 into {wo intervals, of length r and 1 —
respeetively. The #-expectation of the sum of the squares of these lengths is
p = J} [r2+ (1 — r)?)6(dr) < 1. Let L,(t) be the sum of the squares of the
lengths of the 2 intervals J(b, t) for b € B,. The 68-expectation of L, is p",
which converges to 0. Since L, < L, L,(l) converges to 0 for #8-almost all ¢.
For each such ¢, equation (4.3) holds. ¢
(4.4) LemMma. A necessary and sufficient condition for P,~almost all distribution
SJunctions to be continuous 1s: (1) u assigns probability O to the vertical edges of S,
and (ii) w assigns positive probability to the interior of S.

Proor. The condition is plainly necessary. To prove sufficiency, apply (4.2)
with the projection of u on the vertical axis for 6, and conclude from (ii) that
for uB-almost all 7,

(1.5) the maximum of the heights of the 2+ rectangles comprising M, (7)
converges to 0.
In view of (i), for uZ-almost all 7,

(4.6) for each n, each vertical line intersects at most two of the rectangles
comprising M, (7).

For 7 satisfying (4.5) and (4.6), the intersection of each vertical line with 31,(7)
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is an interval whose length shrinks to 0 as n — =, that is, cach vertical line
intersects M,(7) in at most a single point. ¢

Lemma (4.8) can be given a proof similar to that of (4.4), but it also follows
from (4.4) by a formal use of duality.

Let o4 be the identity mapping of S onto S; while o; is the symmetry of S
which sends (x, y) to (y, x), and & sends (z, y) to (I — 2, 1 — ). The four
symmetries gy, 1, 02, and ayo» constitute the A-group. Iach ¢ in the A-group
carries the solid graph of an F € A into the solid graph of a new element o*#
of A. Plainly, ¢* is a homeomorphism of A.

If (9, F, P) is a probability triple, and fis a 1 — 1 bimeasurable mappingof Q
onto itself, the probability Pf is defined by the relation (Pf)(A) = P(fA).
With the help of this notation, it is easy to state the duality prineiple.

(+.7) LeEmMA. If o s in the A-group, then Pyo* = P,,.

Proor. The proof is easy. ¢
(4.8) LEMMA. A necessary and sufficient condition for P,-almost all distribution
functions to be strictly increasing is thal u assigns probability 0 to the horizontal
edges of S, and positive probability to the interior of S.

ProoF. An F € A is strietly increasing if and only if ofF is continuous.
Apply (4.4) and (4.7). ¢

Plainly, (4.1) is an immediate consequence of (4.4) and (4.8).

(4.9) TureorEM. A necessary and sufficient condition for P~almost all dislribiu-
tion functions to be purely discrete is: either the horizontal edges of S have p-prob-
ability 1 or a vertical edge has positive u-probability.

Proor. Necessity is obvious by (4.4). Turn to sufficieney. If the horizontal
edges of S have p-probability 1, I’,-almost all F obviously have a jump of size 1.
Suppose a vertical edge has positive g-probability. For cach F € A, let d(F) be
the sum of the jumps of F; let D be the P,-expectation of d, or equivalently the
uB-expectation of d(M); and let F(s) be the conditional uB-expectation of d(M)
given 7() = s. Plainly,

(+.10) D= L, E@s)u(ds) < 1;

4.11) E@s) = s(2)+ (1 — s(2))D for s(1) =0
=1-32) 4+ s@)D for s(1) =1
=D for 0 <s(1) <1,

where s = (s(1), s(2)).

Thercfore D < E(s) for all s € S. Hence (4.10) implies D = F(s) for p-almost
all s, and in particular for at least one s other than (0, 0) or (I, 1) on a vertical
edge of S. Therefore D = 1, so d(F) = 1 for P,-almost all F. ¢

A distribution function is purely flat if its support has Lebesgue measure 0.
(4.12) THEOREM. A necessary and sufficient condition for P,almost all dis-
tribution functions to be purely flat is that either the vertical edges of S have y-prob-
ability 1 or a horizontal edge has positive u-probability.

Proor. Apply (4.7) and (4.9). ¢
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The following lemma is probably known.
(4.13) LemMA. Let (tn, €.): n > 1 be a sequence of pairs of positive real num-
bers with u, — 0, ¢, — 0, and > u, = . There is a subset N of natural numbers
With Y neN Un = © aNd D_,EN €alln < 0.

Proor. Find a sequence of positive integers 7y, ki, Jo, ko, - -+ with
(4.14) Jipn > i + ks
(4.15) ley, <3

1 7
and
(4.16) sup €, < ly
n2ji 4
where
Jitki
4.17) Ui= 2 tUn
n=Ji

Tet N; be the set of k; + 1 numbers {j;, 7.+ 1, ---,7: + ki, and let
N = U1 N Then

(4.18) Zun=ZUfZZl=°°,
neEN i=1 i=11
and
o Jit+ki
(4.19) Z €U, = Z Z € llp
necV i=1 n=j;
< i (sup €.)U;
i=1 n>ji
< lg < . ¢
i=11% 1

(4.20) TuEOREM. Let K be a compact subset of S containing no point of the
boundary of S, except possibly (0,0) or (1, 1). If K s tangent to a vertical edge
of S, some K-constructible distribution function is purely flat; otherwise each
K-constructible distribution function is strictly increasing.

For the definition of “K-constructible,” see (3.1).

Proor. Suppose that K is tangent to the left edge of S. That is, there are
points (z., y.) € K with z, — 0 and z;'y, — ». By (4.13), suppose without
loss of generality that > 2, < «© and }_ y, = ». Define 7 € S8 by the relation
7(b) = (., y») for all b € B,.

Since II (1 — y,) is 0 and y, — 0, 7 € T. Moreover, the distribution func-
tion M(7) is flat at least on the interval of length ITy-o (1 — x.) whose right
endpoint is 1.

Apply this reasoning to the rectangles comprising M,(7). If one of these
rectangles R has width w, then M (r) includes a horizontal line segment of
length w II7-. (1 — z;), at the extreme right of the upper edge of R. The sum
of the widths of the rectangles comprising M, (r) is 1; so M,(7) includes a set
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of horizontal line segments of total length II{., (1 — z;). This expression con-
verges to 1 as n — «, which proves the first assertion.

Suppose K is not tangent to a vertical edge of S. Then there is a positive,
finite ¢ such that y < cz for all (z,y) € K. If (x;, y:) € K and 3> y; = «, then
> z; = ». Consequently,

(4.21) OO0 —y) =0andall y; < 1imply IT (1 — z;) = 0.
Likewise,
(4.22) IIy; = 0 and all y; > 0 imply IT z; = 0.

Suppose for all b € B that 7(b) € K and 7(b) is neither (0, 0) nor (1, 1). Let
{ba: m > 0} be a path through B; that is, by is & and bn4q is b,0 or b,1. If the
height of r(b., ) converges to 0, so does its width, by (4.21) and (4.22). That
is, M ,(7) includes no horizontal line segments. Moreover,

(4.23) If K is a subset of S, and F is a K-constructible distribution function,
there is a 7 € 88 with F = M(7) and, for all b € B, 7(b) is in K but
is neither (0, 0) nor (1, 1). ¢

(4.24) TarEOREM. Let K be a compact subset of S containing no point of the
boundary of S, except possibly (0,0) or (1,1). If K 1s tangent to a horizontal
edge of S, some K-constructible distribution function is purely discrete; otherwise,
each K-constructible distribution function is continuous.

Proor. Apply (4.7) and (4.20). ¢

5. Almost all distribution functions are strictly singular

A distribution function is strictly singular if it has a finite, positive derivative
nowhere. This section is devoted to proving the following theorem.

(5.1) TureorEM. Unless u assigns measure 1 to the main diagonal of the unit
square, P,-almost all distribution functions are strictly singular.

Of course, if F € A is strictly singular, it is singular with respect to Lebesgue
measure. Thus, if 4 does not assign measure 1 to the main diagonal, P,-almost
all F € A are singular with respect to Lebesgue measure. If G € A, when are
P,-almost all F singular with respect to G? If u assigns mass 3 to each of the
points (3, 3) and (3, 3)?

Some of the ideas behind the proof of (5.1) will be brought out in the proof
of the next theorem.

(5.2) TueoreEM. If K is a compact subset of S disjoint from the main diagonal,
then each K-constructible distribution function s strictly singular.

(5.3) DeriNITION. Suppose 7 € 88 has 7(b) in the interior of S for all b € B.
If n is a nonnegative integer, there are 2 rectangles comprising M,(r); there
are 2 — 1 exeeptional points in I; for each other z in /, there is a unique one
of these rectangles, call it the n-th 7-rectangle over z, whose projection on the
horizontal axis contains x. This rectangle is r(b, v) for a unique b in B,; call it
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b(n, 2, 7). It 1s convenient {o define these objeets (somewhat arbitrarily) for all
reStandael:
(i) b0, 2, 7) = &;
(i) b(n+ 1,2, 7) = b(n, x, )0 if & < ¢(b(n, 2, 1), 71);
(i) b(n + 1,2, 7) = b(n,x, 1)1 if & > ¢(b(n, x, 1), 7).
Call r(b(n, x, 7), 7) the n-th r-rectangle over .

The n-th r-rectangle over ¢ includes the n + 1st; and its projection on the
horizontal axis contains x. Ior each z and 7, {b(n,z, 7): n > 0} is a path
through B.

A distribution function is singular af a point if it does not have a finite, positive
derivative there. Theorem (5.2) is an immediate consequence of
(5.4) Lemma. If K s a compact subset of S disjoint from the main diagonal,
rel,xel,and v(b(j, x, 7)) € K for infinitely many nonnegative integers j, then
M(r) is singular at x.

Proor. Join each point of K by a line segment to (0, 0) and by a line scg-
ment to (1, 1). An casxy compactness argument proves there ix a § > 0 such
that all the resulting line xegmentx have slopes differing from 1 by é or more.
Suppose M (7) is continuous at x, and M(7)(x —¢) < M(r)(x) < M(r)(x + ¢
for all e > 0; otherwise the conclusion is obvious. I‘or each n, the n-th r-rce-
tangle over @ has an interior. The diagonals of these rectangles form a sequence
of chords inscribed in M_(r), whose projections on the horizontal axis shrink
to x, such that infinitely often the ratio of the slopes of the successive chords
differs from 1 by é or more. ¢

The first step in proving (5.1) is to generalize (5.4), for which additional
notation is needed.

(5.3) Noration. Torb e B;and O’ € By, let bb’ be the clement of B, which
agrees with b in its first 7 coordinates, and with o in its last j. I'or b € B and
7 € 8B define 7[b] € SB by the relation

(5.6) r[b1(") = 7(bD') forall O € B.
Let
(5.7 B = U B,
Jj=0

If I7 is a subset of 8 and »n is a nonnegative integer, let

(.8) En) = {r: re SPand 7(0) € I for all b € B(n)},
and let
(5.9) E, = {r: r € SBand r(b) € I for at least one b € B(n)}.

(5.10) LuaMa. IS K is a compcet subset of S disjoint from the main diagonal,
C is a compact subset of the main diagonal disjoint from (0,0) and (1,1), 7 € T,
xz €1, n is a nonnegative integer, and ={(b(j, x, 7)] € (K U C)(n) N K, for in-
finitely many nonnegalive inlegers j, then M (r) is singular at x.

Lemma (5.4) is the special casc: n = 0 and (" is empty.

Proor. There is a 6 > 0 with this property: if 7/ € (K U C)(n) N K,, and
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k is the least nonncgative integer < n with 7/(b’) € K for a V' € By, the line
segments joining p(b’, 7') to (0, 0) and (1, 1) have slopes differing from 1 by &
or more. The rest of the proof is similar to that of (5.4). ¢
(5.11) NorarioN. For each subset A of S® and nonnegative integers k and
7, let:

(».12) {A;k;5y = {r: + € 8% and for each path {b,: n > 0} through B
there are k or more n’s with 7[b,] € A and n < j};

(5.13) Wik = U kg
J

and

(5.14) fA; ) =N {A; k).

3
If 4 is Borel in S8, sois {4;L}.

(By Koénig's lemma [15], {4;k} is just the set of all + € S® such that each
path {b,: n > 0} through B has k or more n’s with 7[b,] € A. If this less
cumbersome definition had been used, it would have been neeessary to appeal
to Konig’s lemma in the proof of (5.18) below.)

Plainly, (5.1) is implied by (5.10) and (5.23). The balance of this section is
occupied with proving (5.23). This will be easy with the help of (5.18), whose
proof uses lemma (5.15).

(5.15) LeEmMA. Suppose 0 < a<land b > 1 with b(1 —a) < 1. If 6in T
satisfies

(5.16) 0>a—+ (1 —a)d;

then 6 = 1.

Proor. The function 2 — a 4 (1 — a)a?® is positive at x = 0, convex on 7,
and has derivative <1 at x = 1. Therefore, its graph lies wholly above the main
diagonal of S on the half-open interval [0, 1). ¢
(5.17) DerriNiTion.  For each subset B* of B, a subset A of S is B*-dependent
ifred, " €8%and r(b) = 7/(b) for all b € B* imply 7' € A. IFor example, the
set (K U C)(n) N K, of (5.23) is B(n)-dependent.

(5.18) LemMA. [f n is a nonnegative integer, A a B(n)-dependent Borel subset
of SB, and

(5.19) b(n)(1 — wB(1)) < 1,

where b(n) = 21 then {A; =} has pB-probability 1.
Proor. Tt is enough to prove that the u®-probability of (41}, call it 4, is 1.
Plainly,

(5.20) A C L,
and
(5.21) the conditional uP-probability of {4;1} given that A does not occur

is at least %00,
In view of (3.20) and (5.21),
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(5.22) 0 2 uP(A) + (1 — uP(4))0°™,

and (5.15) applies. ¢

(The proof of (5.18) is a variant of a standard argument in the theory of
branching processes ({10], XI1.5). The lemma itself can be widely generalized.)
(5.23) LeMMA. Unless p assigns probability 1 to the main diagonal, there exists
a compact subset C of the main diagonal containing neither (0,0) nor (1,1), a
compact subset K of S disjoint from the main diagonal, and a nonnegative inleger n,
such that {(K \U C)(n) N K,; =} has uB-probability 1.

Proor. Let D be all of S except the main diagonal. Since u(D) > 0, there
is a positive integer n so large that

(5.24) b(n)(1 — u(D))P™ < 1.

Since u assigns measure 0 to the corners (0, 0) and (1, 1) of S, there is a compact
subset K of D, and a compact subset C of the main diagonal disjoint from (0, 0)
and (1, 1), with u(C) + u(K) so elose to 1 that (5.24) implies

(5.25)  b()[1 — pP(K U C)(n) N Ka)]
Sb@pB{r: 1 ¢ (KU CY(n)} + b(n)uB{r: 7 ¢ K,}
= b(n)[1 — (w(K) + w(C)*P7] + b)[1 — u(K)1PW!
< 1.

Apply (5.18). ¢

6. When are all constructible distribution functions purely singular?

A subset K of S is tangent to the main diagonal if, for every strictly convex
F € A and strictly concave G € A, with F(0) = G(0) = 0, there is a point
(z,y) € K with F(z) < y < G((z).

(6.1) TurEOREM. Let K be a subset of S. If K is tangent to the main diagonal,
then there 1s a K-constructible distribution function equivalent to Lebesgue measure;
otherwise every K-constructible distribution function is purely singular.

Preliminaries to the proof. lLet 2 be the two-point set {0, 1}, and 2* the
space of infinite sequences of 0’s and 1’s. Let &, &, - - - be the coordinate process
on 2*. Fach ¢ € I? determines a unique probability p(f) on 2= by the relation:
the p(f)-probability that & = 0 is {(&f); the conditional p(¢) probability that
Enpr = 0 given &, -+, £, 15 t(& - - - £.). Let 7 € SB. These four facts are easily
verified :

6.2) r is not in 7" if and only if there is a point in 2% to which p(r1) and
p(7s) both assign positive mass.

6.3) If re T and F = M(s), then F(x) = Fo(Fr'(z)), where F; is the
p(r;)-distribution function of Y7 £./2" for 7 = 1, 2 (at least if F; and
F» are contlinuous and strictly increasing).

(6.4) If r € T and p(ry) is equivalent to p(re), then M(7) is equivalent to
Lebesgue measure.
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(6.5) If p(r1) and p(rz) are mutually singular, then M(r) is purely singular.

PROOF OF THE FIRST PART OF (6.1). Suppose (T, y») €K, 0 < x,, ¥, <1,
z, — 0, 2; 'y, — 1. No new difficulty arises in other cases. By repeating terms,
suppose

(6.6) > Xy = .
0

By (4.13), suppose also

o 2
6.7) zx,,( —&) < .

0 Tn
Define 7 € K2 by
(6.8) 7(b) = (x4, yn) forall be B, and n > 0.

Since 2, — 0, (6.2) and (6.6) imply r € T.

Under p(r1) (respectively, p(r2)) the coordinate process is independent, and
£241 1s 0 with probability z, (respectively, y.). It now follows from (6.7), a
calculation, and [13] that

(6.9) p(71) is equivalent to p(r);

but a direct proof is easy and will be sketched here.

Let &= (1 — 2;)"Y(1 — y;)&+1 + 2 'y;(1 — &4+1). By a familiar martingale
argument, (1 + II3 ¢;) ' IIS ¢; is a version of the Radon-Nikodym derivative
of p(rs) with respect to (p(r1) + p(72)), so (6.9) follows from

(6.10) IIo ¢ > 0 with p(r)-probability 1,
and
(6.11) II¢ ¢ < o« with p(r,)-probability 1,

which in turn follow from (6.7) and ([3], theorem 2.3, p. 108), because log ¢;
has p(r;)-mean essentially 3(—1)iz;(1 — z; 'y;)?, and p(r;)-mean-square essen-
tially z;(1 — z;7'y;)?, for ¢ = 1, 2. In view of (6.4) and (6.9), the proof of the
first part of (6.1) is complete.

PROOF OF THE SECOND PART OF (6.1). It will be shown that if r € KB, the
continuous parts of p(r;) and p(r;) are mutually singular. The second part of
(6.1) then follows from (6.2) and (6.5). There is an x with 0 < x < % such that
K does not intersect the interior of the parallelogram whose vertices are (0, 0),
(x,1—1x), (1,1),and (1 — z, z). Let G be the part of K included in the union
of the two closed triangles with vertices (0,0), (1 — z, z), (1,0), and (0, 1),
(1, 1), (x,1 — z). (Several annoying difficulties in the rest of the argument
disappear if K is the line segment joining (0, 0) and (1 — z, z).) Let H be
K — @ (see figure 6.1). Let ¢, = &, if 7(& - - - £.1) is above the cross diagonal,
that is, the set of all s € S with s(1) + s(2) = 1; otherwise, ¢, = 1 — £,. Let
R be the (countable) set of w € 2® such that {.(w) = O for all except finitely
many n. It will be shown that p(r;) and p(r;) are mutually singular when
restricted to 2° — R.



202 FIFTH BERKELEY SYMPOSIUM: DUBINS AND FREEDMAN

(0, 1)

(r,n

(0,0) (1,0)

I1GURE 6.1

Indeed, 2% — R is the union of Gy, and I1,,,, where Gy, (respectively, Hy,) is
the set of all w € 2* such that r[&(w) --- &.(w)] € G (respectively, H) and
Cupi{w) = 1 for infinitely many n. On Gy, let vj(w) be the j-th n > 0 with
(&) - E(w)] €G, for j =1,2, -+ and let 9; = ¢,,,,. Off Gy, let 4; be 0.
Let F; be the o-field generated by all the Borel subsets of 2* — (71, and by

those Borel subsets of G, which depend on &, --- , &, for j =0, 1, ---. Let
¢i; be the conditional p(r;)-probability that n; = 1, given ¥;,_,. By (1) of [6],
. . + -+ 1
6.12 lim 2T T g ;)-almost everywhere on G...
( ) n—o i1 + ct + Qin p(T) mos yw i
But
N 911+"‘+([1n 11—z v
. >
(6.13) ¥ x > 1 on (i,

=9 p(r1) and p(r), when restricted to Gy, are mutually singular. A similar
argument applies to H,,. ¢

7. When are all constructible distribution functions strictly singular?

There is a compact subset A of S such that every K-constructible distribution
fuietion is purely singular, yet some K-construetible distribution function is not



RANDOM DISTRIBUTION FUNCTIONS 203

strictly singular (7.4). We do not know a necessary and sufficient condition on
K for every K-constructible distribution function to be strictly singular, but
here is a sufficient condition.

(7.1) THrEOREM. Let K be a subset of S such that, for some strictly convex I' € A
with F(0) = 0 every point of K is on or below the graph of F. Then there is a strictly
convex U € A with U(0) = 0 such that each K-constructible distribution function s
everywhere less than or equal to U. Moreover, each K-constructible distribution func-
tion 1is strictly singular.

(x, M(r)(x))

r(b(n,x,T), )

J'1Gure 7.1

Proor. Lettbe the infimum of 1 — [(1 — a)F(x)]/[x(1 — F(x))] over all
with 0 <2 < 1. Since F is convex, t > 0. Let U(x) = a(1 — /(1 — ta).
Plainly, U € A is strictly convex, and F(zx) > U(x) forallz € /.

Irom ([8], theorems 9.2.2 and 4.2.1), if p and ¢ are points on the graph of U,
and S is mapped in a positive, affine way onto p X ¢ (as defined in the paragraph
following (3.20)), then the image of the graph of U is nowhere above the graph
of U. Consequently, if p and g arc points of S not above the graph of U, and S
is mapped in a positive, affine way onto p X ¢, the image of the graph of U is
nowhere above the graph of U. This property of {7, together with the fact that
every point of K is on or below the graph of U, easily implies the first eonclusion
of the theorem.

Since U is strictly convex, there is an ¢ > 0 such that: if p € S is neither
(0, 0) nor (1, 1), and is not above the graph of U, then the slope of at least one
of the two line segments joining p to (0, 0) and to (1, 1) differs from 1 by more
than e.

TLet r € T N KB and x € I. Suppose (x, M(r)(x)) is in the interior of the n-th
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r-rectangle over z, r(b(n, z, 7), 7), for all n > 0 (no new difficulty arises in other
cases). If S is mapped in a positive, affine way onto r(b(n, z, 7), 7), by the first
conclusion of (7.1), the point (x, M (r)(z)) is not above the image of the graph
of U. By the preceding paragraph, of the two line segments joining (z, M (7)(x))
to the lower left corner and to the upper right corner of r(b(n, z, r), 7), at least
one has a slope whose ratio to the slope of the diagonal of 7(b(n, x, 7), 7) differs
from 1 by more than e (see figure 7.1). Consequently, the right and left deriv-
atives of M (7) at x cannot both exist and be equal to the same finite, positive
number. ¢

We thank Georges De Rham for a proof of the interesting special case of the
next theorem where K consists of a single point.

(7.2) Taeorem. If K is a compact subset of S disjoint from the boundary and
from the main diagonal, then no K-constructible distribution function has a finite,
positive, one-sided derivative anywhere.

Proor. Let r € KB, and 0 < z < 1. It will be argued that M(r) has no
finite, positive, right derivative at x. Suppose (x, M(7)(z)) is in the interior of
the n-th r-rectangle over z, for all n > 0 (no new difficulty arises in other cases).
Let N be the set of n = 0, 1, - - - for which the point p(b(n, z, 7), 7) is to the
right of the vertical line through z. Plainly, N is infinite. By an easy compactness
argument, there is an ¢ > 0 such that if » € N, and any point of r(b(n, z, 7)0, 7)
is joined by line segments (as in figure 7.2) to the upper right corner of
r(b(n, z, 1), 7), to p(b(n, x, 7), 7), and to p(b(n, z, 7)1, 7), then at least one pair
of these three line segments have slopes whose ratio differs from 1 by more
than e. ¢

p(b(n,x,7), )

\p(bin,x,7), 7)

(x, /M(-r)(x))

r(b(n,x,7) ,7)

Ficure 7.2
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(7.3) Exampre. Let K consist of the line segments joining (%, 1) to (0,0)
and to (1, 1). Then K satisfies the hypotheses of (7.1), but not the conclusion
of (7.2).

Proor. Definer, € Sand b, € B,: by = &, bany1 = baal, and benye = b2,410;
Ton = (2/(n + 10), 1/(n + 10)), and 7anps = (1 — 1/(n + 10),1 — 2/(n + 10)).
Ifre KN T has 7(b,) = forn=0,1,--- and z € I has b(n, z, 7) = b,
n=20,1, ---, then M(r) has finite, positive one-sided derivatives at x. Indeed,
let 8, be the width of r(b(n, z, 7), 7). Then & = 1, dops = (I — 2/(n + 10))8z,,
and 842 = (1 — 1/(n + 10))82,13. Moreover, if the lower left corner of
r(b(n, x, 1), 7) is (T4, Y»), then zo = 0, Tony1 = Ton + 2082,/ (n + 10), and xg,y0 =
Zont1; Similarly for y. Thus, one can estimate the chordal slope from (z,, y.) to
(z, M()(z)). It converges to a finite, positive number \. Since the ratio of
T — %, 10 2 — Znq1 and of M(7)(x) — y» to M(7)(x) — ynp1 converge to 1, \ is
in fact the left derivative of M (7) at z. Proceed similarly for the right derivative.

¢
(7.4) ExamprLE. Let K consist of the line segments joining (%, 1) to (0, 0) and
to (1, 1), and of the line segments joining (%, 2) to (0, 0) and to (1, 1). Then K
satisfies the hypotheses of (6.1), but not the second conclusion of (7.1).
Proor. Define b, € B,and r, € 8: by = &,

(7.5) i = (2/(n + 10), 1/(n + 10)), banyr = bunl,
Tingl = (1 bl 1/(n + 10), 1— 2/(n + 10)), b4n+2 = b4n+10,
Tint2 = (1/(n + 10), 2/(n + 10)), bints = bunyel,

Tings = (1 — 2/(n + 10),1 — 1/(n + 10)), Dints = banys0.

If re KEN T has 7(b,) = 7, and z € I has b(n, z, ) = b,, for all n, then
M () has a finite, positive derivative at x. The reasoning for (7.3) applies. ¢

8. Mutual singularity of priors

If F and G are distribution functions, and there is no z for which the ratio
of F(x + h) — F(z) to G(x + h) — G(zx) converges to a finite, positive limit as
h— 0, then F is strictly singular with respect to G. If P and @ are probabilities
on A, and there are Borel subsets C and D of A such that P(C) = QD) =1
and every F € C is strictly singular with respect to every G € D, then P is
strictly singular with respect to Q.

(8.1) TueorREM. Let 0 <r <1 and u and v be distinct base probabilities
assigning measure 1 to the vertical line segment {s: s € S, s(1) = r,0 < s(2) < 1}.
Then P, is strictly singular with respect to P,.

In particular, P, # P,. We do not know when more general u and » lead to
distinct P, and P,.

There is no real loss in setting r equal to % in (8.1), the essential ideas of the
proof already appearing when p and » assign measure 1 to the same two-point
subset of the vertical segment {s: s€ S, s(1) = 3, 0 < s(2) < 1} (case 3,
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below). The proof is easier if also u is a one-point measure (case 2), and is
easiest in case 1.

Throughout this section, let ¢ and d be positive numbers less than 1 with
¢ # d, and 6(z) the probability measure concentrated on the one-point set {2z}

Casel. p=08(3c)and v = pé(3,d) + (1 — p)é3,¢), with 3 < p < 1.

Proor ror case 1. Let D* = {r: 1 € S8, b € B implies 7(b) is (},¢) or
(3, d), and for each path by, by, - - - through B, there are infinitely many n with
r(h.) = (3,d)}, and let D = M(D*). As is clear from (5.18), or from ([10],
XIL5), vB(D*) = 1,50 P,(D) = 1. Let x € I and r € D*. Let o(b) = (3, ¢) for
b e B, so M(s) is the coin-tossing distribution function Q.. As will now be
argued, the ratio of M(o)(x + h) — M(o)(x) to M(+){x + h) — M()(z) does
not converge o a finite, positive limit as A — 0. The n-th e-rectangle r(b(n, z, ¢), o)
over x (definition (5.3)) projects onto the same interval of the horizontal axis
as does r(b(n, 2, 7), 7), namely, the lefimost of the intervals [0, (1/27)], [(1/2"),
2/2m7, ---, [1 — (1/2%), 1] which contains x. This interval shrinks to a as
n — «. What must be seen, therefore, is that the ratio r, of the height of
r(b(n, x, @), o) to the height of r(b(n, x, 7), 7) does not converge to a finite,
positive limit as n — «. Indeed, it is apparent that r,.,r, does not converge
to 1; for whenever 7(b(n, z, 7)) = (3,d), rup1/ra is ¢/d or (1 —¢)/(1 — d),
according as the (n 4 1)-st digit in the nonterminating binary expansion of x
is 0 or 1. ¢

Case 2. u=26(c)and v =ps(3,d)+ (1 —p)di,c), witho < p < 1.

Proor For case 2. Let E be the one-point set {(3, d)}. IFor every positive
integer k, the subsets K and (Ky; <) of S? are defined by (5.9) and (5.14). By
(5.18), there is a positive k£ so large that (/;; ) has probability 1 under »2, as
does D¥*, the intersection of (Fy; <) with the set of 7 € SB such that 7(b) is
(3, ¢) or (4, d) for all b € B. So the P,-probability of M(D*) is 1. The rest of
the proof is similar 1o that for case 1, or ix immediate from (8.2) below. ¢

Case 3. p= (15(}; d) + (1 - (I>5(%y C) and » = P‘S(%’ d) + (l - p)é(%, 6)7
withp # ¢gand 0 < p, ¢ < 1.

Case 3 uses (8.2) to (8.5), and this definition: F € A is striclly singular with
respect to G € A at x if the ratio of F(x 4+ h) — F(x) to G(x + h) — G(x) does
not converge to a finite, positive limit as h — 0.

The first lemma uses (5.3), (5.6), and (5.7). Of course, if x € I, r € SB, and

r(b) = § for all b € B, then b(n, x, ) is simply the first n digits in the non-
terminating binary expansion of a.
(8.2) Lemma. ILet ¢ and 7 be functions from B lo the two-point set {(%, ¢),
&, d)}, let x € I, and let k be a nonnegative integer. If for infinitely many n there
is a b’ € B(k) such that a[b(n, x, 0)] and 7[b(n, x, 7)] differ at V', then M(c) s
strictly singular with respect to M (r) at .

Proor. The proof is easy. ¢

Tor real numbers pand a with 0 < p < Tand 0 < a < 1, let

(8.3) m(p, o) = <§>a <E—£>l_a-
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An interesting fact in [1] is recorded here as
(8.4) LemMA. Let X, X3, - -+ be independent random variables, each assuming
the value 1 with probability p, and 0 with probability 1 — p. Let p < a < 1, and
let n be a positive integer. Then X; + - -+ + X, 2 na with probability no more
than [m(p, a)]".

Ifor probabilities P and @ on a o-ficld F of subsets of a set @, let P and @~
be the power probabilities on @7, as defined in section 2, and let [|[? — Q| =
sup {(P(4) — Q(A): A €5).

(8.5) LemMmA. For any pair I’ and Q of distinct probabilitics on a measurable
space (2, F), there is a positive p < 1 such that for alln > 1, || P — Q]| > 1 — p~.

Proor. let A € F and «a satisfy P(4d) < o« < Q(A). Forz =1, --- ,n and
w € Q" let X,;(w) be 1 or 0, according as the i-th coordinate of w is or is not in 1.
As (8.4) implies

(8.6) PXi+ - 4+ X0 2 na) < [m(Q(A), )],
and
(8.7) QX1+ -+ Xu 2 na) 21— [m(Q(A), )] ¢

Let X, be independent, identically distributed random variables, X, = 1
with probability p, X» = 0 with probability 1 — p, where the index b ranges
over B, the set of all finite sequences of 0’s and 1’s, including the empty sequence
. Of course, each infinite sequence of 0’s and 1’s, y = (p, y2, - - ), determines
the sequence of n-tuples of (’s and 1’s, bo(y), bi(y), ---, where b.(y) =
(y1, -+ , ¥2). The strong law of large numbers plainly implies that for
every y, the sequence of random variables Z,(y) = X, satisfies (Z,(y) +
«eo 4+ Z,(y))/n — p, except for an event N, of probability 0. The null event
N, cannot be independent of y. Indeed, with probability 1, there are y for which
lim sup (Z:(y) + --- + Z.(y))/n exceeds p. However, for p < %, there is an ¢,
p < a < 1, such that with probability 1, for every y, lim sup (Zi(y) +
«oo 4+ Z.())/n is no more than «. This fact will be proved in a sharper and
more general form (8.8), although we were unable to find the best «. Incidentally,
if p > 3, no such « exists.

Preliminaries to (8.8). Let j be a positive integer. l'or each nonnegative
integer n, let J, be the set of all n-tuples formed with the j integers 0, --- , 7 — 1.
The only element of J, is the (empty) O-tuple &. Forbe J,,and¢ =0, ---,
j — 1, b followed by 7, namely bi, is in J,q1. Let J = U7-o . A path through J
is a sequence by, by, - - - such that by = & and for all n, thereisané¢ =0, ---,
j — 1 with b,y = b,i. Let P be the probability on the two-point set {0, 1}
which assigns probability p to 1. The power probability I/ on the set of func-
tions from J to {0, 1} was defined in section 2 and m(p, ) in (8.3).

(88) Lemma. If 0 <p < a <1, and m(p, a) < j, then for P/-almost all
functions f from J to {0, 1}, there is an n(f) < = such that: for each n = n(f)
and path by, b, . . . through J, f(by) + -+ + f(bur) < na.

Proor. Let F, be the set of all functions g from J to {0, 1} such that, for
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some path by, by, - - - through J, g(bo) + -+ + g(bn—y) > ne. By (8.4), P/(E,) <
7 [m(p, @)]?, which is summable in n.

Proor For case 3. By (8.5), there is a positive p < 1 with [[u» — »*|| >
1 — p» for all positive integers n. Let

(8.9) pr = p?"L,

Tor each nonnegative integer k, there is a B(k)-dependent (as defined by (5.7)
and (5.17)) subset A of SB such that:

(1) if r € A and b € B(k), then 7(b) is (},¢) or (3, d);

(i) pP(4) > 1 — o;
and

(iii) »B(4) < ps.
Choose k so large that 2¢t'm(p, 1) < 1.

Let C* be the set of all r € S for which:

(i) () is (3, ¢) or (4, d) for all b € B;

and
(1) there is a positive integer n(r) such that, for each n > n() and path
bo, by, -+ through B, the number of nonnegative integers 7 < n — 1 with

7[biw+y] € A is greater than 2n/3.
Let D* be the set of all 7 € S? for which:
(i) 7(b) is (3, ¢) or (3,d) for allb € B;

and
(ii) there is a positive integer n(r) such that, for each n > n(r) and path
bo, by, - -+ through B, the number of nonnegative integers 1 < n — 1 with

T[b,‘(k+1)] € A is less than n/3.

Use (8.8), with j = 2¥1 a =% p =1 — uB(A4) and p = vB(4), to see that
pB(C*) = vB(D*) = 1. By (8.2), ¢ € C* and r € D* implies that M (o) is strictly
singular with respect to M (7).

The proof for case 3 can easily be transformed into a proof of the full (8.1),

especially with the aid of the following lemma, which though cumbersome to
state, is easy to prove.
(8.10) LemMA. Let z € I and k be a nonnegative integer. Let V and W be dis-
Jjoint, compact, B(k)-dependent subsets of SB, such that r € V \U W and b € B(k)
implies 11(b) = 3 and 0 < r2(b) < 1. Let o € SB and + € SB, with 61(b) = 7 (b) = &
and 0 < o3(b), 72(b) < 1forallb € B. If o[b(n, z, 0)] € V and r[b(n,z,7)] € W
Jor infinitely many n, then M (o) 1s strictly singular with respect to M(r) at x.

One of us (Freedman, Ann. Math. Statist., Vol. 37 (1966), pp. 375-381) has
extended (8.1) so as to permit x and v to assign positive measure to the two
points (r, 0) and (r, 1).

9. The average distribution function

A probability P on A determines an average distribution function Fp € A,
namely,

(9.1) Fo(z) = fGEA G()PdG).
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This section studies Fp,, or F, for short, where u is a base probability. We do
not know which F € A are of the form F, for some base probability u.

(9.2) DeriniTION. If 1 is a probability on S, then 7T, is this mapping of A
into itself. If G € A, then T,G is the distribution function of a point v chosen
from I according to this mechanism: choose a point « at random from I according
to (7, and independently a point (x, y) at random from S aceording to u; then
v is 2w with probability y, and « 4+ «(1 — «) with probability 1 — .

For0 <z <1,

z

I:U + (1 — )G <1 — f)] w(dz, dy)

©.3) (1)) = /

0<Lx<70<y<1

+ / y6s (2) utde, d;
2<z<1,0<y<1 x

and (7.G)(1) = 1.
(9.4) DerinitionN. If u is a probability on S, then L,, a probability on the
lincar functions from [ to 7, is the distribution of a linecar function chosen
according to this mechanism: choose (z, y) at random from S according to u;
then choose the funetion v — xu with probability y, and the function v — u +
x(1 — w) with probability 1 — .
(9.5) DeEFINITION. Let up be that subprobability on I for which [0, 2] is
the L,-probability of the set of linear functions for which f(0) = 0 and f(1) < x.
Similarly, [0, 2] is the L,-probability that f(1) = 1 and f(0) < =z.
(9.6) DerinirioN. If P is a probability on the linear functions from I to 7,
then, in conformity with ([7], section 5), I’* is this mapping of A into itself.
1If G € A, then P*@ is the distribution function of f(u), where f and « are chosen
independently, the linear function f according to P and the point u according
to G.
(9.7) DeriNiTiON. If 4 is a probability on S, then g, is the projection of u
on the horizontal axis, and 6(y, 2) is the conditional u-cxpectation of s — s(2),
given s(1) = x.
(9.8) Lemma. For probabilities u and v on S, the following conditions are
equivalent:

(1) pn = v and 6y, ) = 6(», -);

(i) Ty =T

(iii) L, = L,;

(iv) po = wo and p; = 1.

Proor. Condition (1) implies (il). If GeAand 0 <z <1,

9.9) (T () = _/(;<,<, 0(u, 2)un(dr)

+ [l — 6(u, 2)]G (j - jj) ()

0<zr<z -

y[? ]
+ ,/z<151 0(u, 2)G (;) ().
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Condition (ii) tmplies (iii). Apply ([7], (6.2)) and the identity
(9.10) T, = (L)*
Condition (iil) ¢mplies (iv). This is clear.
Condition (iv) implies (i). Verify that w, = gy + w1, and that 8(u, x) is the
Radon-Nikodym derivative of u; with respect to w, at a; that ix,
( N Ml((l"l').
©.11) o, 1) = 110 ¢
From now on, as usual, u is a base probability.
(9.12) THEOREM. F, is the unique fixed point of T,, and F € A implies
(T"F — F,.
Proor. If 0 £z <1, then F,(2) is the uB-expectation of the function r —
M(7)(z). If z < 1, the conditional uB-expectation of M (-)(2) given () = (x, y)
is

(9.13) y+ (= ypF, (7 : :)» provided 2o <z¢;
and
(9.14) yF, <§>’ provided x > z.

Integrating with respect to wu(dx, dy) proves T.F, = F,. Apply (9.10) and
([7), (4.4)). ¢
(9.15) CoroLLARY. If uand v are base probabilities with uy, = vy and 0(u, ) =
6(v, +), then F, = F,.
Proor. Use (9.12) and the relation (i) implies (ii) in (9.8). ¢
We guess that unless F,(z) = 2z for all z € I, or F, assigns measure 0 to the
interior of I, F, determines w; and 6(y, ).
(9.16) DErrFiNITION. . In conformity with the notation in ([8], chapters 5 and 6),
for 0 <w < 1, let Q, € A be the distribution funection of >.7 X,/2¢, the X,
being independent, 0 with probability w, and 1 with probability 1 — w; for
0<r<l1,letS,,cAbe@, Q™).
(9.17) TwuroreM. If (r, w) is an interior point of S, u assigns measure 1 to the
vertical line segment {s: s € S, s(1) = r} and has mean (r, w), then F, = S, ..
Proor. Apply (9.15). ¢
(9.18) LemMMA. [If 6(y, -) has k continuous derivatives on I, and ux has a density
with k continuous derivatives on I, then F, has k continuous derivatives on the
interior of 1.
Proor. Irom (9.9), for 0 < x < 1, with m for the density of u;:

(9.19) Fu(z) = / 0(u, x)m(x) dx
0
z z — 0 z—v\ L—z 0
ST P RE
1 ~
+ /z 0 (u, ;) m (;) 1% F.(v) dv.

Inductively on k, differentiate with respecet to z. ¢
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(9.20) THrOREM. F, s continuous if and only if u assigns measure O to the
vertical edges of S, and measure less than 1 to each of the horizontal edges.

Proor. Apply ([7], (4.5) or (6.1)), using (9.10) and (9.12). ¢
(9.21) THEOREM. If 0 < w <1, and u is the uniform probability on the
horizontal line segment {s: s € S, s(2) = w), then F, is absolutely continuous,
with density on (0, 1) proportional to

1
©:22) SR
Proor. By (9.19),
(9.23) Fuz) = wze 4+ (1 — u')/ —1:—;, F. () dv
o (1 —uv)?

1
+ wﬁ 1—‘251’,‘(2') de.

By (9.18), F, is absolutely continuous on (0, 1), with infinitely differentiable
density f,, and by (9.20), F, is continuous; o F, is absolutely econtinuous on /.
Differentiating (9.23) twice with respect to z gives

w w

9.24) 1) = 1z )( —w_ 2—) for 0<z<I. .
(9.25) THEOREM. - If u assigns measure 0 to the vertical edges of S, then F, s
esther purely singular or absolutely continuous.

Proor. In view of (9.10) and (9.12), ({7], (2.5)) applics. ¢
(9.26) LEMMA. If us is not purely singular, and F € A assigns posztwe measure
to the interior of I, then T,F s not purely singular.

PROOF Let F, be the distribution function assigning measure 1 to z. Since

= [ (T,F.)F(dz), it is enough to check the special case, F = F,, 0 <z < 1.
Ab (9.10) plalnly implies, T',F . restricted to [0, z] is an affine image of y;; similarly
for [z, 1]. So, if ux = wo + w1 is not purely singular, neither is 7,F.. 2
(9.27) THEOREM. If u assigns measure 0 to the vertical edges of S, measure
less than 1 to each of the horizontal edges, and uy s not purely singular, then F,
18 absolutely continuous.

Proor. By (9.20), F, is continuous, so it assigns mecasure 1 to the interior

of I, and F, = T,F, is not purely singular by (9.26). But F, is pure by (9.253),

¢
(9.28) THEOREM. F, is the uniform distribution if and only if 8(u, x) = x for
wp-almost all x.

Proor. Tor “if,”” suppose without loss of gencrality by (9.15) that u assigns
probability 1 to the main diagonal.

Tor “only if,”” by (9.10), the image of Lebesgue measure under 7', has density
at z equal to:

(9.29) / — ;.u,((iz —f—/ ~u(da).
I

0,z] 1 —
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Since Lebesgue measure is fixed under 7', (9.29) is 1 for Lebesgue almost all
2 € I. Since (9.29) is continuous from the right, it is 1 for all z with 0 < 2z < 1.
By (9.20), us assigns measure 0 to 0 and to 1. Therefore, setting z = 0 in (9.29),

(9.30) f —1—m(dx) =1;
©11%

S0
©9.31) / L (do) = / L dz)

al—2z 0T ’
that is,

1

(9.32) = xuo(dx) =~ m(da).
Consequently,

wm(dx) _ m(dx) .
(9:38) n(dz) ~ o) + wldz) "
Apply (9.11). ¢

(9.34) THEOREM. If u assigns posilive measure to the interior of S, then I, s
strictly increasing. More generally, F, is strictly increasing if and only if there are
points xo and xy in the supports of ue and p, respectively with xo < 1.

Proor. The proof is easy, for example with the help of ([7], (5.17) and
(6.1)). *
(9.35) DerFiNiTION. A mapping T of A into itself is a uniformly strict contrac-
tion if there is a nonnegative A < 1, with '

(9.36) sup |(TF)(2) — (TG)()| < Asup IF(2) — G(2)l,
zel z€l

forall F € Aand G € A.
(9.37) THEOREM. If u assigns positive measure to the interior of S or to a vertical
edge of S, then T, 1s a uniformly strict contraction of A.

If u assigns measure 0 to the vertical edges of S and the inlerior of S, then

(i) T, is a uniformly strict contraction of A if and only if for some x

with 0 < x < 1, wlz, 1] > 0 and m[0, z] > 0;
and )

(ii) some power of T, is a uniformly strict contraction of A if and only if u
assigns positive measure to each of the horizontal edges of S.

Proor. The result ([7], (5.10)) applies. ¢

10. Index of definitions

Term Page Term . Page
I 183 B., B 186
S 183 g 186

XY 186 00, b1 186
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Term Page Term Page
q(b, 1) 186 s(1), s(2) 191
J(b, t) 186 s Xt 191
T1, T2 186 positive, affine map 191
p(b, 7) 186 continuous 194
(b, 7) 186 path 197
M., (), M (7) 186-7 strictly singular 197
A 187 n-th r-rcetangle over z 197
l’ 187 b(n, x, 7) 198
T 187 7[b] 198
M(r) 187 B(n) 198
u¥ 187 En) 198
base probability 187 E, 198
P, 187 {A4; 0} 199
Q 187 B*-dependent 199
support 188 Q. 210
K-constructible 188 Seerr 210
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