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1. Introduction and summary

How cani oine choose, at ranidom, a probability measture oni the Ullit interval?
This paper develops the answer anniiounced in [4]. Section 1, w-hich can be
skipped without logical loss, gives a fairly full but slightly iniformal accounit.
The formalities begini with section 2. All later sections are largely inidepelndent
of one another. Sectioin 10 iiidexes definiitions made in one sectioni but used in
other sections.
A distribution function F on the closed uniit initerxal I is a nonidecreasing,

nonniiegative, real-valued funcetioni onl I, normalized to be 1 at 1 and coIntinuous
from the right. To each F t.here corresponds one anid onily onie probability meas-
ure IFl oni the Borel subsets of I, with F(x) e(qual to the IFI-measure of the
closed interval [0, x], for all x G I. Choosing at ranidom a probability on I is
therefore tantamounlt to choosing at random a distributioni fulnctioll on I.
A random distribution function F is a measurable map from a probability

space (Q, i, Q) to the space A of distribution funictions on the closed unit in-
terval I, where A is endowed with its natural Borel a-field, that is, the a-field
genierated by the customary weak* topology. The distribution of F, namely
QF-', is a prior probability measure on A. Of course, F is essentially the stochastic
process 'Ft, 0 < t < I" on (Q, i, Q), whose sample funcetioiis are distribution
funictionis: F,(w) is F(w) evaluated at, t. T'herefore, t'his paper cani be thought of
as dealinig witlh a class of ranidom distributioni funietionis, with a class of stochastic
processes, or with a class of prior probabilities. Similar priors are treated in.
[9], [11], [16], and [17].

Sinice the indefiniite initegral of a distributioni funetioni is convex, this paper
cani also be thought of as dealinig with a class of ranidom convex funcetioiis, but
we do nlot pursue this idea.
Which class of ranidom distribution funietionis does this paper study? A base

probability j. is a probability ont the Borel subsets of the unlit s(lqlare S, assigling
measure 0 to the cornlers (0, 0) anid (1, 1). Eachi suchl ,u determinies a ranidom
distributioii function F anid so a prior probability P), oni A, which will niow be
described, by explaininig how to select a xvalue of F, that is, a distributionl funic-
tioII F, at random.
ASSUMPTION. For ease of exposition, we assume throughout this section that IA

concentrates on, that is, assigns probability 1 to, the interior of S.
This paper was suppl)orte(l in part l)y the National Science Fotunidatiotn Grant GP-2593, anid

in palrt by a granit to Freedman fromii the Sloan Foundation.
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CONSTRUCTION. To select a value F of F at random, begin by selecting a
point (x, y) from the interior of S according to ,u. The horizontal and vertical
lines through (x, y) divide S into four rectangles. Consider the closed lower
left rectangle L and the upper right one R. The unique (positive, affine) trans-
formation of the form (u, v) -- (aU + ,3, yv + 6), a aInd y positive, which maps
S onto L, carries us into a probability IUL coInceIntrated on L. The probability 11R
is defined similarly. Now select a poiInt (XL, YL) at random from the interior
of L according to AL, and a point (XR, YR) at random from the interior of R
according to MR. As before, (XL, YL) determines four subrectangles of L, and
(XR, YR) determines four subrectangles of R. Consider the lower left subrectangle
LL of L, the upper right subrectangle RL of L, and the analogous subrectangles
LR aind RR of R. The construction may be continued by selecting one point at
random from each of these four rectangles, according to the appropriate affine
image of ,, and so on. This procedure yields a nested decreasing sequence of
closed sets, the n-th one being a uniioIn of 2n closed rectangles, namely, S, L U R,
LL U RL U LR U RR, and so on. The intersection of these closed sets is a
nonempty closed set which, with probability 1, is the graph of a distribution
function. This function is taken as the random value F of F.

Section 2 gives a formal description of this construction, including a proof
that the closed set in question really is the graph of a distribution function.
The idea of the proof is to show that the set has area 0 with probability 1,
because the sets shrinking to it have areas whose expectations shrink to 0.
We do not know an abstract characterization of the set of priors P, as M

ranges over the base probabilities.
Section 3 gives a necessary and sufficienlt condition on uA for P, to assign

positive mass to every nonempty open subset of A. When the support of M (the
smallest closed set of IA-probability 1) contains neither (0, 0) nor (1, 1), the
result is easy to state: the support of P, is then all of A if and only if the graph
of every F e A meets the support of M. We conjecture that unless the support
of P,, is all of A, it has empty interior.
As shown in section 4, P, assigns probability 1 to the continuous and strictly

increasing distribution functions. For at stage n of the construction, there are
2" closed rectangles whose union includes the graph of the distribution function
being constructed. The sum of the squares of the heights (respectively, widths)
of these 2" rectangles decreases, has expectation converging to 0, and therefore
converges to 0 almost everywlhere. Consequently, so does the maximum height
(respectively, width).

Unless MA concentrates oIn the maiii diagonial of S, P,, concenitrates oIn the purely
singular distribution functions. For many M, Kinney and Pitcher [14] have
sharpened this result beautifully (by showing that P,-almost all F have a
Hausdorff dimension which is a constant less than 1). Here is a different sharpen-
ing (section 5). Say F e A is strictly singutlar if F has a finite, positive derivative
nowhere. Unless M coiicentrates on the main diagonal, P,,-almost all F are strictly
singular. The case which we learned from de Rham of a M that assigns measure 1
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to a single off-diagonal point, say (r, w), brings out one of the ideas in the proof.
Clearly, P, then assigns measure 1 to a single distribution function, say S ,,.
(This two-parameter family of distribution functions is studied in ([8], chapters
5 and 6), and the one-parameter family S.,1/2 is studied in [2].) Fix x E I. At
stage n of the construction of S,,,,,, there will be 2n closed rectangles whose
union includes the graph of S, ,r, Of these rectangles, there will be a leftmost
one whose projection on the horizontal axis contains x. Its diagonal dn is a
chord in the graph of S,,,,,, whose projection on the horizontal axis contains x.
The ratio of the slope of dn+1 to the slope of dn is either wlr or (1 - v)/(1- r).
Since both numbers differ from 1, the slope of dn cannot converge to a finiite,
positive limit. Hence, Sw,r does not have a finite, positive derivative at x.
Suppose ,A assigns measure 1 neither to a point, nor to the main diagonal,

and G E/A is not the uniform distribution. Are P,-almost all F singular with
respect to G? In case u assigns measure 2 to each of the points (1, 2) and (2, -)?
The strict singularity of S ,,, has various other generalizations (sections 6,

7, 8). Let K be a subset of the unit square. Say F e A is K-constructible if its
graph can be obtained by the CONSTRUCTION, with this constraint: at each stage,
each point selected from each rectangle is in the positive, affine image of K in
that rectangle. Of course, no base probability is involved in this definition. If,
for every strictly convex F e A, and strictly concave G e A, there is a point
(x, y) e K with F(x) < y < G(x), then K is tangent to the main diagonal. The
main result of section 6 is the following. If K is tanigent to the main diagonal,
then there is a K-constructible distribution function equivalent to Lebesgue
measure; otherwise, every K-constructible distribution function is purely sin-
gular. We do not know necessary and sufficient conditionis on K for each K-con-
structible distribution function to be strictly singular, but as section 7 shows,
this condition is sufficient: for some strictly convex F e A, every poilnt of K is
on or below the graph of F. If K is a compact subset of the interior of S, and is
disjoint from the main diagonal, no K-constructible distribution function has
even a finite, positive, one-sided derivative anywhere (7.2). We do not know
necessary and sufficient conditions on K for this to hold.

Let F and G be distribution functions: F is strictly singular with respect to G
provided there is no x for which the ratio of F(x + h) - F(x) to G(x + h) - G(x)
converges to a finite, positive limit as h tends to 0. Section 8 proves the following.
Let 0 < r < 1, and let u and v be distinct base probabilities, each assigning
measure 1 to the vertical line segment x = r, 0 < y < 1. Then there are Borel
subsets C and D of A, with P,(C) = P,(D) = 1, such that F is strictly singular
with respect to G for all F E C and G e D. In particular, P,, 51 P,. It is likely
that, unless A concentrates on the main diagonal, P, determines JL.
A probability P oIn A determines an average distribution function Fp according

to the relation

(1.1) Fp(z) = JGCA G(z)P(dG).
The average Fs,,, or F,. for short, is a fixed point for T, (section 9), where T, is
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this mapping of A into itself. For G c A, T,G is the (listribution funletion of a
point v chosen from I according to this mechanism: choose a point u at random
from I according to G, and independenitly a point (x, y) at ranidom from S
accordiiig to ,u; theni 1 is xu with probability y, anid iu + x(1 - 'u) with prob-
ability 1-, y. Consequently, as [7] irnplies: T, lhas Fl, foi its unli(quie fixed poinit,
anid for G e A, ( )'G converges to F,,unsiformilly as ii F,,;F, is continmuos,
strictly moniotonie, anid either purely sinigular oi1 ab)solutely contiinuotus.

hlefre is a more special result. Let O(,u, x) be the coniditionial hz-expectation of
the seconid coordiniate given that the first coordinate is x, and let h, be the
projection of A on the horizontal axis. Then F, is Lebesgue measure if anld olnly
if 0(M, x) = x for l,,-almost all x (9.28). We conjectuire that unless F, is the
uiiiiform distributioni, it determines 0(,4, -) anid ,.th

In certaini special cases, it is possible to compute FM explicitly. If A concenltrates
oni the vertical linle segmenit, x = r, 0 < y < 1, and has meami (r, w), theln
F, = S r* If ,u is the unliform distributionu oni S, or on the horizonital line seg-
meiit 0 < x < 1, y = 2, theni FM(z) = 2ii-' arc sill z1/2. This contrasts wvitlh the
fact that F, is the uniiform distribution if ,u is uniiform oni the vertical linie segment

22, 0 < y < 1.
We do niot know which F e A are of the form F, for some base probability ,u,

nior whether distinict F, cani agree oni ani interval, nior wvhemii F,'s are e(luivalent
or singular.

2. The definition of the prior P,

Formalizing the CONTSTRIUTION of '(CtiOTI I seems to re(luiire a fair amounllt of
notationi: I is the closed uniit interval [0, 1], anid S is the closed ullit square
I X J. For any sets X anid Y, XI is the set of all funietions from Y to X. Flor
t = 0, 1, * * , B, is I he set of all n-ttuples of O's anid 1's; the only elemenit of Bo
is the (empty) 0-tuple 0. For eaci 1) e B,,, b followed by 0, iiamely hW, is in
B,+1, as is h)I. Let B = Un=0 B_,.

l'or any closed subinterval J of I, (J) is the linlear mappinig of I onito J which
carries 0 to the left enidpoint of J. F'or t C IB and b e B, definie the real niumber
q(b, t) anid the closed initerval .J(b, t) inductively: J(0, t) is I; q(b, t) is the
image of t(h) under (J(1), t)); J(bO, t) is the image of the closed interval [0, t(b)]
li(lere (J(b, t)); anid .J(bl, t) is the image of [1(b), 1] uinlder (.J(b, t)).

()f course, T e ,SB caim be idenitified witlh a pair (T,, T2) E lB x lB by the
relatioll T(b) = (Ti(b), T2(b)) for all b e B. 1or -rT E 5B anid 1) e B, definie p(l), T) e S
anid r`(h, T), a closed subrectangle of 8, by

(2.1) p(b, T) = (q(1), TI), (/(b, T2)),

(2.2) I (h, T) = .J(1h, T,) X .l(1), T2).

Let

(2.3) M,,() = U {r(l), T): b E B,,].
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anid

(2.4) Mc,(T) = n M,(T)-.
71 =0

I,t A be the set of distributioll fuiictiotis oni I, normllalized to be 1 at I aiid
conitiniiuous fromn the right oni the half-opeii interval [0, 1). If F e A, its solid
yraph -qF is the smallest closed subset of S wvhose initersectioll with every v-ertical
line is conivex, wlhichi conitainis (0, 0), aiid wvhich inicludes the customary graph
of F. Let 7' be the set of all T e SB SUCh that M1(T) is the solid graph of some
F e A, anid let M(T) be this F.

For aniy sets X and Y, if X is enidowed with a topology (u--field), then XI' is
given the product topology (a-field). If u is a probability onl (a u-field of sub-
sets of) X, the power probability sil on (the product a-field of) XI' is defilned by
this property: as y raniges over Y, the coordinate funictionis ?, with 0(w) =
co(y) e X for all cw e X", are iiidepenidenit unider ,ud and have common distribu-
tioni ,. Enidow A with the weak* topology, that is, the smallest topology suC]I
that F -r. f(x)F(dx) is conitiniuous for each conitinuous, real-valued funcetioni f
oni I. Enidow A with the u-field generated by this compact, metrizable topology.
(2.,5) LEMMA. 7' is a Borel salbset of SB, and M is a Borel measurable map
of T into A.

PR1tOOF. lPlainily, -1 is conltiiuous and I - 1 from A into 2S, the set of noll-
empty, closed subsets of S; for a discussioni of 2Q, see ([12], section 28) or ([19],
section 15 and [20], section 38). Consequenitly, t1' is coIntinuous oni its domaill
qA, and therefore Borel measurable. For n < x, each Mn is continuous; so M,
is upper semicontiniuous, and therefore Borel measurable [18]. Fiinally,
7T = Moo lqA and M = +*
(2.6) DEFINITION. If the probability u onl S assignis measure 0 to the corners
(0, 0) anid (1, 1) of S, theni u is a base probablility.
(2.7) LEMIMA. If u is a. base probability, then ,iB(T ) = 1.

PRIIOOF. Let A,,(T) be the planar l,ebesgue measure of M,,(T), n = 0, 1, * *
theni r e 7' if anid ontly if AX(r) = 0, or equiva!ently, the monotonie decreasilng
sequence A.,(T), Al(r), - - contverges to 0. But A7,(T) does converge to 0 for
AB_almost all T because its,,B-expected value is p', with 0 < p < 1. In more

detail, let

(2.8) p Sf '[xy ± (1 - x,)(I -)],(d/ dy).

Tliemi p is the MUB-expectationi of A1l; aind if nt > 1, the coniditionial B -expectatioi
of A,,+,, givell T(b) for b t UJ_') Bj, is pA,,(T).
Each probability Q oll SB is transformed by .l/ into the subprobability QM-'

on A. Plainily, QM-' is a probability if and only if Q(T) = 1. The principal
conicept of this paper cani now\ be initroduced.
(2.9) DEFINITION. For each base probability u oni S, the geonmetric prior P,
is the probability MBM-1 oni A.
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(2.10) NOTATION. Throughout the rest of this paper, except in (9.2) to (9.11),
u is a base probability.
We do not know an abstract characterization of the set of priors P, as u

ranges over the base probabilities.

3. The support of P,
This section gives a necessary and sufficient condition for the support of P,

to be all of A (3.6). Some readers may prefer to skip this section, which is not
relied upon in future sections. As usual, the support of a probability on a com-
pact metric space is the smallest closed subset of probability 1.
(3.1) DEFINITION. A distribution function F is K-constructible if there is a
T E T with 'r(b) E K for all b E B and M(T) = F. If K is the support of a base
probability j., then IA-constructible will mean K-constructible.
(3.2) LEMMA. The support of P, is the closure of the 1A-constructible distributtion
functions.

Because M is continuous on T, lemma (3.2) is an immediate consequelice of
(3.3) and (3.4), whose easy proofs are omitted.
(3.3) LEMMA. Let so be a measurable map of a probability triple (Q, iY, P) into
a compact metric space X. If W s ff has P-measure 1, the closure of o(W) includes
the support of Pop-'.
The next lemma uses the notation pD for the restriction of a function (p to a

part D of its domain.
(3.4) LEMMA. Let Q and X be compact metric spaces, so measurably defined from
part of 0 to X, P a probability on Q, K the support of P, and D a Borel subset of Q
having P-measure 1 such that (PD is continuous. Then <(D n K) is included in the
support of Pp-'.
Of course, (3.2) implies the following.

(3.5) COROLLARY. If the support of a base probability ,u includes that of another v,
then the support of P, includes that of P,.

Plainly, if u and v have the same support, so do P, and P,. If K is any non-
empty compact subset of S which does not contain (0, 0) or (1, 1) as isolated
points, then all base probabilities whose support is K lead to priors with the same
support, F (K). This section gives a necessary and sufficient condition for Fj (K)
to be all of A.
To state the condition, call K horizontal at (0, 0) if for each e > 0 there is an

(x, y) E K with 0 < x < e and x-ly < e. Likewise, K is vertical at (0, 0) if for
each E> 0 there is an (x, y) E K with 0 < y < E and x-'y > e-l. Call F E A
elementary if its solid graph r7F consists of a finite number of line segments, each
of which is horizontal or vertical. If K and r1F are both horizontal or both
vertical at (0, 0), then qF is tangent to K at (0, 0). The analogous definition for
qF to be tangent to K at (1, 1) is omitted.

It is now easy to state a necessary and sufficient condition for Z (K) to be A.
(3.6) THEOREM. Let K be a nonempty compact subset of S which does not contain
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(0, 0) or (1, 1) as isolated points. Then _(K) = A if and only if the solid graph of
every elementary distribution function tangent to K neither at (0, 0) nor at (1, 1)
intersects K at a point other than (0, 0) and (1, 1).
(3.7) COROLLARY. If K is tangent to all elementary distribution functions, then
(K) = A.

(3.8) COROLLARY. If K contains neither (0, 0) nor (1, 1), then Z(K) = A if
and only if K intersects the solid graph of every distribution function.

Write s(l) for the first coordinate of s c S, and s(2) for the second. Here are
five examples of K with 5(K) = A (figures 3.1-3.5).
(3.9) EXAMPLE. The horizontal line segment {s: s e S anid s(2) =
(3.10) EXAMPLE. This union of two line segments: {s: s e S and s(1) =

0 s(2) < '} U {8: s S and s(1) = 2, I < s(2) < 1}.
(3.11) ExAMPLE. This union of two line segments: {s: s E S and s(1) = 0,
8.s(2) < 1} U {s: seSand0 < s(1) < -, s(2) = 0}.

(3.12) EXAMPLE. This union of two line segments: {s: s e S and s(2) = 2s(1)
for 0 < s(1) < '} U {s: s e S and 0 < s(]) < 3, s(2) = 0.
(3.13) EXAMPLE. This union of three line segments: {s: s E S and s(2) =
s(1)} U {s: s e S and 0 < s(1) < 1, s(2) = 0} U {s: s e S and 2 < s(1) < 1,
s(2) = 1}.

t. ~~~~~~~~. .. . . . . . .. . . . . ..

3.1 3.2 3.3 3.4 3.5
FIGURES

The rest of this section is devoted to the proof of the theorem.
PROOF OF (3.6). The "only if" is settled by proving a little more.

(3.14) An elementary distribution function F tangent to K at neither (0, 0) nor
(1, 1), and intersecting K at no points other than (0, 0) and (1, 1), is not in
E(K).
Suppose F horizontal at (0, 0) and (1, 1), for no new difficulty arises in the

other cases.
For G e A, let Ga be the set of points above the graph of G, namely, the set

of s e (S - nG) with s(2) > G(s(1)). Similarly, GI is the set of points below
the graph of G, namely, the set of s e (S - qG) with s(2) < G(s(1)).
By elementary continuity considerations there are positive numbers 3, a1, a2,

b1, b2, C1, C2 less than 1 and continuous distribution functions F1, F2, G1, G2 sat-
isfying (3.15) to (3.19), as depicted in figure 3.6.

(3.15) K C Fa U F2 U {(0, 0)} U {(1, 1)}.
(3.16) b1 < c2 < a2 and a1 < c1 < b2.
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a1 C b2

F1 F G F2

b_ C2 a 2
Fi'lz.u' :).(i

(3.17) F1 is linear with finite, positive slol)e a on [0, d], and F2 is linear w-itIi
slope a onl [I - 0, 1].

(3.18) Fl(al) = G1(cl) = F(1)2) = G2(b19) = 1, anid
G,(b1) = F(b1) = (G2(C2) = F2(02) = (-

(3.19) On (0, a,], F1 > G1 anid is strictly monlotolne;
on (b1, cl], G1 > F anid is strictly moniotonie;
on [c2, b2), G2 < F anid is strictly moniotonie;
oni [a2, 1), F'2 < G2 anid is strictly moniotonie.

For eaclh e > 0, let GI, = max {e, G,' ; anid let G2, = mill 'I - E, G2} on [0, 1),
G2,(1) = 1. Let Ve, = (G', nG2G2,) U rs: s e S ad s(l) = 0, 0 < s(2) < E4 U
{s: sc S anid 0 < s(l) < c2, s(2) = () U Is: s e S anid s(1) = 1, 1 -E <

s(2) < 1} U {s: s e S and cl < s(l) < 1, s(2) = 1' (see figuire 3.7). Let
Ve* = {G: G e A and 1G c V,}. Plainly, ',* is ai Op)en neighhborhood of F. I'le
iiext stel) is to prove:
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I ^ l~~-E

C2
FIGURE :3.7

(:3.20) For stmall enough E, there arc no K-conistruiictible distributotion fnctions it 1'*.
Lemma (3.2) will theii apply an)d give (3.14).

If s anid t are in S with s(i) < t(i), i = 1, 2, tlheni s X t is the closed sul)-
rectanigle of S whose lowver left cornler is s anid upper right coriier is t. The positile ,
a.fline map A,xt of S onito s X t is the map (u, v) - (aat 4- b, ct + d) with a
anid c niotnnegative which seuds 8 onito s X t.

There is a positive p < I stich that for s anid t ini S with s(i) < p aid
-t(i) < p fori = 1, 2:

(:3.21) I., x t I , C I;
(s3.229) *lsxtF'2 C G!;
aiid

(3.23) the image uniider :A,x.t of every linse segmenit has at, le-ist 1 its originaa
lenigth .

Ilecall the niealliigs of a anid firoiii (3.17) anid choose e > 0 so smiall t hat
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(3.24) e < p,

(3.25) 6 < P,

anid
(3.26) e2 + 62 < 412(1 + 2),
where 6 = (e/a(l - 2e)). Let To be the closed triangle with vertices (0, 0), (0, e),
(6, E); and T1 the closed triangle with vertices (1, 1), (1, 1 -e), (1 - 6, 1 -e).
Suppose r E SB has T(b) e K for all b e B and MO,,(T) C V,. Once it is argued

that
(3.27) T,
relation (3.20) will be established. More than (3.27) will be proved:

(3.28) For all n > 0 there is a (necessarily unique) b. e Bn with the lower
left corner of r(b., r) in To and the upper right corner in Ti.

Plainly, (3.28) holds for n = 0 and n = 1. Suppose it holds for n = k. To prove
it for n = k + 1 requires only the verification that p(bk, T) E To U T1. If
r(bk) e FR, it will be seen that p(bk, T) e To. The case r(bk) E F2 is omitted.
Abbreviate R for r(bk, T) and al, for the segment of qF, over [0, ,B] (see (3.17)).

Since p(bk, r) is in ARF?, it is above qG, (see figure 3.8 and use the induction

edge of
pr(bk IT)

(Q,E) >5_ (8,E)

edge of S

lower left cornerIedeo rbkT

of r(bk,r) C / edeo r(,)

(0,O) edge of S

FIGURE 3.8

hypothesis, (3.24), (3.25)). Since it is in V., it must be below the line s(2) = E;
(figures 3.6 and 3.7). But the length of ARTl exceeds the diameter of To (the
induction hypothesis and (3.24) to (3.26)). Thus p(bk, T) is in the closed triangle
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bounded by s(2) = E, the left edge of r(bk, r), and ARo-1. To finish the argument,
it is enough to prove that the slope of ARUi is not less than the slope of the
hypotenuse of To, which is a(l- 2E). Among all rectangles so X si with s0 E To
and si e T1, the slope of A80x,1al is minimized with so = (E, 0) and s, = (1, 1-)
and is then precisely a(l - 2E). This completes the induction, and with it the
proof of the "only if" part of the theorem.
Turn now to the "if" part of (3.6). The order of an elementary F G A is the

minimal number of line segments of which tqF is composed. It will be proved by
induction on the order that every elementary F e A is in _(K). The two
elementary F's of order 2 are in Z_(K) by a relatively easy argument which is
omitted. Suppose that for some k > 3, every elementary F of order less than k
is in _(K). To see that every F of order k is in _(K), consider two cases.

Case 1: F is not tangent to K. Suppose first that k is odd, so the initial and
final segments of i7F are parallel, say vertical. Let Ko = -(s: s e K, s(l) = 0,
s(2) > O} and K1 = {s: s E K, s(l) = 1, s(2) < 1}. Suppose that Ko and K1
are nonempty, for no new difficulty arises in the other case. Let p be the lowest
point of Ko and q the highest point of K,. These points exist because F is not
tangent to K. Suppose that F were not in Y_(K). Then qF cannot intersect K
at an interior point of S. For let s E IF be an interior point of S. The part of
rqF between (0, 0) and s, when rescaled so that s becomes (1, 1), is the solid
graph of an elementary distribution function, namely t-hA 1) ,nF. This dis-
tribution function has order less than k, so is in _(K) by the induction hypoth-
esis. Similarly, ,-qA8x (1,)-F is in _(K). If s were in K, F would plainly be in
,(K). Either p c qF or q E iqF (by the conditioni of the theorem); say p C qF.
It is now convenient to define an element r of KB, and a sequenice Ro, R1, * * -

of subrectangles of S; this requires the simultaneous defilnitioni of a sequence
bo, b1, * * * of elements of S. Let bo = 0. For n > 0, let b,,+, = b,,l and r(b) = p
for b e Bn, as long as p(b., T) is in the initial segment of 7-F for every j < n.
Plainly, this part of the defining procedure cannot continiue indefinitely. Let
no be the last n such that r(b) has been defined for b e Bn, and let Ro =
p(bn,, r) X (1, 1). Since F t 7(K), (i7-1AiQnF)(0) < p(2) and A -',qF does not
intersect K at an interior poinlt of S. Because qF is not tangent to K, neither is
AlqoF. By the condition of the theorem, q c A `7XF. Tlhe definition of r can
now be continued for n > no, by setting bl41 = b,,0 and T(b) = q for b e Bn, as
long as p(bj, r) is in the final segment of qF for no + I < j < n. This part of the
defining procedure also cannot continiue indefinlitely. Leti n1 be the last n such
that T has niow been definied for b c Bn, anid let R, = p(bn,, r) X p(b.,, r).
Now return to selecting p, and so on, thereby defining R2, and so on, complet-
ing the definition of T and the sequence Ro, R1, * * * of rectangles.

Plainly, the height of Rn converges to 0. For k = 3 there is a contradiction,
because r e KB n T and M(r) = F. Also for k > 3 there is a contradiction,
because the height of Rn is bounded below by the F-measture of the open interval
(0, 1).
For evenl k, with the initial segment of -qF vertical anid the finial segment
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horizonital, replace q l)y the riglhtmiiost poinit of -s: s c K, s(l) < 1, .s(2) = 1:,
anid use a similar argument.

Case 2: F is tangent to K; say at (0,(0) where both are horizontal, for deli-
mi teness. Let x be the right enidpoinit of the iniitial segment of 7F; so F(y) > 0
for y > x. If e > 0, there is a G e Z(K) whose graph is wvitlhiln E of 771'. 'o see
his, clhoose ani (r, w) G K suchl that 0 < r < E, anid if n is tlie least natural
lnumb)er with r' > x, theni wv' < miii {E, F(x)} , where r' = 1-(1 - r), and
u"w' = 1-(1-1w')'t. IfF, = ilFU s se S anid s(l) = r', wv' < s(2) < F(')
Iliemii-(n,-'4 ) (ii)Fl is ani elemeiitary distril)ution fuiietiout of order less thani A
so is iii Z(K). Thme balance of the argumlent is routine.

4. Continuity and monotoneity

Call F eG A continuous if F(O) = 0 anid F is continuous on [ in thlie ustal
sense. Tlhlle maii result of this sectioni is the followvinig theorem.
(4.1) THEOREM. P, assignts probability 1 to the set of Continuous afdl(l strictly
increasing distributtion2 Jfunctions if anid only if IA assiysis probabilityJ I to the interior
of the tnit squiare.
The first lemma uses niotationi introduced in sectioIn 2.

(4.2) LENIMA. If a probabl)lity 0 on I assignis positirc probabilitly to the intc(riMro
of I, then

(4.3) lim max lenigth of J(b, t) = 0
P- ° bCEB,

for 0B-alm,ost all t GIe .

l'IIOOF. Each r e I di-ides I inito tvo interxals, of lenigth r and 1- r
respectixely. The 0-expectationt of the sum of the squares of these lengrths is
p = f' [r2 + (1 - r)2]0(dr) < 1. Let L,,(t.) be the sum of the s(luares of the
lenigths of the 2?L initervals J(b, t) for b e B,. T'lhe 0B-expectatioin of L,, is p',
which coniverges to 0. Sinice L,,+1 < L,,,, L,,(t) coniverges to 0 for 0B-almost all t.
For each such t, c(quationi (4.3) holds.
(4.4) LEMMA. A necessar?y andl sufficient coniditiont for 1',-alCnost all distribution
functions to be conitinuous is: (i) ,u assigns probability 0 to the vertical edges oJ 8S',
and(1 (ii) u assigns positive probabi'lity to the interior of S.

IIuOOF. The coniditioni is plainily necessary. To prove sufficicency, apply (4.2)
vith the projection of u oii the vertical axis for 0, anid coiuelude from (ii) that
for,B-almost all T,
(.1.5) t le maximiiumii of tlie lheiglhts of the 2,, rectanigles comprisiig .1l,,(T)

converges to 0.
Ini view of (i), for B-alhnost all T,
(4.6) for each n, each vertical linle init.ersects at most two of the rectanigles

comprising 11,i(T).
For T satisfyinlg (-1.5) amid (4.6), tlie intersection of eaclh vertical linie witlh JM,,(T)
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is ani interval wvhose length shrinks to 0 as ii-t1 x, that is, eaclh vertical linie
intersects M,(T) in at most a single point..
Lemma (4.8) can be giveni a proof similar to that of (4.4), hut it also follows

from (4.4) by a formal use of duality.
Let o-a be the idenitity mappinig of S o00to S; wlhile al is the symmetry of S

wlhich seiids (x, y) to (y, x), andcl O2 sends (x, y) to (I - x, I - y). TI'he four
symmetries a~O, ui, 02, anld OO2 conlstitute the A-group. E'ach a- in the A-group
carries the solid graph of ani F e A inito the solid graplh of a niew elemenit OF
of A. Plainly, o-* is a homileomiiorphism of A.

If (IQ, 1, P) is a probability triple, and .f is a 1-1-Ibimeasurable mapping of Q
onito itself, the probability If is definied by the relationl (Pf)(A) = P(f.l).
With the help of this niotationi, it is easy to state the (tiality printciple.
(4.7) LETMMA. If o- is in the A-groutp, thent P'a-* = P,

PRuOOF. The proof is easy.
(4.8) LE.MMA. A necessary an (I ss ufficicdI condition for 1P,-ahn.ost all (listribuation.
futnctionis to be strictly increasing is that ,u assiignts probability 0 to the horizontal
edges of S, and positive probability to the i?ntcrior of S.

P'IlooF. Ani F e A is strictly increasing if anid onily if a-IF is continuous.
Apply (4.4) anid (4.7).

l'lainly, (4.1) is ani immediate conisequenice of (4.4) alnd (4.8).
(4.9) THEOREXI. .1 necessary and( sufficict cou(l'ition for P,-almost all distriibui-
tion functionts to be puzreely (liscrete is: either the horizontal e(lges of S hare ,u-prol)-
ability 1 or a vertical edge has positive ji-probability.

PROOF. 'Necessity is obvious by (1.4). Turni to sufficienlcy. If the horizonital
edges of S have ,-probability 1, P,M-almost all F obviously have a jump of size ].
Suppose a vertical edge haas positiv-c ,-probability. For each F e A, let (1(F) be
the sum of the jumps of F; let D be the P,-expectation of d1, or equivalently the
AB_expectatioii of d(M); antd let E(.s) be the conditionial AB_expectation. of d(AI)
giVen. T(0) = s. Plainly,
(4.10) D = f E(s),,(ds) < 1;

(4.11) EF(s) = s(2) + (1 - s(2))D for s(l) = 0

= -s(2) + s(2)D for s(l) = I

D for 0 < s(l) < 1,
wxhele s = (s(l), s(2)).

Therefore D < l(s) for all s G S. Hence (4.10) implies D) = F(s) for,-almost
all s, anid in particular for at least onie s othel tliaii (0, 0) or (1, 1) oni a vertical
edge of S. Therefore D = 1, so d(F) = 1 for P,-almnost all F.
A distributioni funictioni is purely flat if its support has Lebesgue measure 0.

(4.12) THEOlRENM. A necessary an(l su.fficient co1dition for P,'-almost all dis-
tribiution functions to be plurely flat is that either the vwertical ed(ges of S har e l-prob)-
ability 1 or a horizontal edge has positive( M-probability.

PROOF. Apply (4.7) and (4.9).
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The following lemma is probably known.
(4.13) LEMMA. Let (un, en): n > 1 be a sequence of pairs of positive real num-
bers with un -O 0, en-- 0, and -Un = oo. There is a subset N of natural numbers
with ,neN Un = oX and _nEN Enun < 00.
PROOF. Find a sequence of positive integers ji, ki, j2, k2, * with

(4.14) jj+j > is + ki,

(4.15) 2i<
and

(4.16) sup en <.
n 2ji

where

(4.17) Ui= E un.
n=ji

Let Ni be the set of ki + 1 numbers {ji, ji + 1, ji,ji + kQ}, aiid let
N = U J= lAli. Then

(4.18) Un Ui > E = x 2
neN i=i i=1 2

and

(4.19) E un = Z Z I
nEv i=l n=ji

< E(SUPsp E)UTiiln>ji
1 2

<
E

<oo.

(4.20) THEOREM. Let K be a compact subset of S containing no point of the
boundary of S, except possibly (0, 0) or (1, 1). If K is tangent to a vertical edge
of S, some K-constructible distribution function is purely flat; otherwise each
K-constructible distribution function is strictly increasing.

For the definition of "K-constructible," see (3.1).
PROOF. Suppose that K is tangent to the left edge of S. That is, there are

points (xn, yn) e K with xn -O 0 and xn1yn -X oo. By (4.13), suppose without
loss of generality that E xn < oo and E yn = o°. Define r E SB by the relation
r(b) = (Xn, yn) for all b E Bn.

Since II (1 - yn) is 0 and Yn -> 0, Tr e T. Moreover, the distribution func-
tion M(T) is flat at least on the interval of length ITnH-o (1 - xn) whose right
endpoint is 1.
Apply this reasoning to the rectangles comprising Mn(r). If one of these

rectangles R has width w, then MA,(r) includes a horizontal line segment of
length w H7..,n (1 - xi), at the extreme right of the upper edge of R. The sum
of the widths of the rectangles comprising Mn(r) is 1; so MOO(r) includes a set
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of horizontal line segments of total length If7.., (1 - xj). This expression con-
verges to 1 as n -+ oc, which proves the first assertion.

Suppose K is not tangent to a vertical edge of S. Then there is a positive,
finite c such that y < cx for all (x, y) E K. If (xi, yi) E K and E yi = oo, then
E xi = oo. Consequently,
(4.21) II (1-yi) = 0 and all yi < 1 imply II (1-xi) = 0.

Likewise,

(4.22) II yi = Oand all yi > Oimply II xi = 0.

Suppose for all b e B that T(b) e K and r(b) is neither (0, 0) nor (1, 1). Let
{b.: n > 0} be a path through B; that is, bo is 0 and bn+1 is bn0 or bnl. If the
height of r(bn, T) converges to 0, so does its width, by (4.21) and (4.22). That
is, M.(T) includes no horizontal line segments. Moreover,

(4.23) If K is a subset of S, and F is a K-constructible distribution function,
there is a r e SB with F = M(T) and, for all b E B, T(b) is in K but
is neither (0, 0) nor (1, 1).

(4.24) THEOREM. Let K be a compact subset of S containing no point of the
boundary of S, except possibly (0, 0) or (1, 1). If K is tangent to a horizontal
edge of S, some K-constructible distribution function is purely discrete; otherwise,
each K-constructible distribution function is continuous.
PROOF. Apply (4.7) and (4.20).

5. Almost all distribution functions are strictly singular

A distribution function is strictly singular if it has a finite, positive derivative
nowhere. This section is devoted to proving the following theorem.
(5.1) THEOREM. Unless Iu assigns measure 1 to the main diagonal of the unit
square, P,.-almost all distribution functions are strictly singular.

Of course, if F e A is strictly singular, it is singular with respect to Lebesgue
measure. Thus, if IM does not assign measure 1 to the main diagonal, P,-almost
all F e A are singular with respect to Lebesgue measure. If G e A, when are
PA-almost all F singular with respect to G? If uA assigns mass to each of the
points (3, 2) and (2, 2)?
Some of the ideas behind the proof of (5.1) will be brought out in the proof

of the next theorem.
(5.2) THEOREM. If K is a compact su1bset of S disjoint from the main diagonal,
then each K-constructible distribution function is strictly singular.
(5.3) DEFINITION. Suppose r E SB has r(b) in the interior of S for all b e B.
If n is a nonnegative integer, there are 2n rectangles comprising M.(r); there
are 2n - 1 exceptional poiInts in I; for each other x in I, there is a unique one
of these rectangles, call it the n-th T-rectangle over x, whose projection on the
horizontal axis contains x. This rectangle is r(b, T) for a unique b in Bn; call it
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b(nt, .', T). It is conivenienit to definie these objects (somiewhat aibitirairily) for all
T £ 8B and x e /:

(i) b)(0, x, r) = 0;
(ii) b(n +I1, x, T) = b(n, x, r)0 if X <(<(b(n, X, T), Tr);
(iii) b(it + 1, X, T) = b(n, x, T)l if X > q(t)(b1, X, T), Ti).

("all r(b(n, .r, 7), T) the n-th T-recta'ngle over x.
The n-tih r-rectanigle over x inieludes the n + 1st; anid its projectioii oil the

hiorizonital axis conttainis x. For each x anid T, {b('n, x, r): n > 0}- is a patl
through B.
A distributioni fuinetioni is singtlar at a poi)lt if it does niot have a finiite, positive

derivative there. Theorem (5.2) is ant immediate conise(luenice of
(5.4) LEMMA. If K is a comipact su1)set of S (disjoint fromii the main (liagonal,
T e T, x C I, and T(b(j;, x, T)) e K for ifirtitely m(an)y nonngcative integers ,j, thcen
(11(r) is singldar at x.

1ROOFr. Join each poinlt of K b)y a line segmentt to (0, 0) alnd by a line seg-
ieit to (1, 1). Ani easy compactniess argumenit proves there is a 6 > 0 stuel

that all the r-esultiiio linle segmenits have slopes differinig from I by 6 ol more.
Suppose M1(r) is contituotus at X, anid Mll(r)(x - E) < M(7)(X) < M(T)(X + e)
for all E > 0; otlherwise the coilIusioni is obvious. For each n, the n1-th r-rec-
tanigle ov-er x has aii interior. I'lie diagonials of these rectanlgles form a se(luenice
of chords iniscribed ill M,(T), whose projectionis on the horizonital axis shrinik
to x, such that inifiniitely ofteni the r-atio of the slopes of the successive chords
differs froml 1 by 6 or more.
The first step ini provinig (5.1) is to genieralize (5.4), for wh-ichl additiolnal

notationi is nieeded.
(5.,5) 'NOTATION. For b E Bi antd b' e Bj, let bb' be the elemenit of B1+1j w-hiichl
agrees w-itli b ini its first i coordiniates, anid with 1' ini its last j. 1'or b e B and
T e SR definie 7T[/) G SB l)y the relatioii

(5.6) 'r [h' (1))= T(11)) for all 1V e B.

Let

(5.7) B(ii) = U B1.
j =()

If E is a subset of N an(l n. is a iionniegative initeger, let

(5.8) E(n) = -iTr: r SB anid r(b) e E for- all 1) e B(n),,
aild let

(5.9) E,, = {T: T B aIl(l T7()) e E foi- at least onie )b B(n)-
(5.10) LEMMINA. If K is a conip(ct suibset oJ S (di.sjoint from the maint diagonal,
C is a comwpact sulbset of the nain diagonial (lisjoint Jromn (0, 0) anld (1, 1), T C T,
x C I, n is a nonnegeative integer, and( T[b(j, X, T)] e (K U (i)(t) n Kn for in-

finitely many nonnegative iitegers.j, theni Al(r) is singular at x.

Lemma (5.4) is the special case: n = 0 aid (C is empty.
1l'IOOF. There is a 6 > 0 with this property: if T' C (K U C')(n) n K,,, anild
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k is the least nonnegative integel < n with T'(b') G K for a b' e Bk, the line
segments joining p(b', T') to (0, 0) aind (1, 1) have slopes differing from 1 by 6
or more. The rest of the proof is similar to that of (5.4).
(5.11) NOTATION. For each subset A of SB and inonniiegative integers / anid
j, let:
(5.12) {A; k;j} = fT: r c SB and for each path -lb,,: it > 0)) throug-h B

there are k or more n's with r[b)n] c A and n <..j'
(5.13) {A; 14 = U ;A ; j)

(5).1I4-I ) {A;x = n ,At; k,
If A is Borel in SB so is -'A ;4.

(By E-6nig's lemma [15], {A; k4 is just thc set of all 7-e SB su1cII that each
path {b,,: n > 0} through B has k or more n's with T[b,,] c A. If this less
cumbersome definiitioni had been used, it would have been necessary to appeal
to KnIIig's lemma in the proof of (.5.18) below.)

Plainly, (5.1) is implied by (5.10) and (5.23). The balanice of this sectioni is
occtupied with proving (5.23). This will be easy with the help of (5.18), whose
pr oof uises lemma (5.15).
(5.15) LEMNIMA. S'uppose 0 < a < 1 and b > 1 with b(l - a) < 1. If 0 in I
satisfies

(5.16) 6 > a + (1 - a)6b;
then 0 = 1.

lI>IOOF. The ftunction x a + (t -a)xb is positive at x = 0, convex on I,
and has derivative < I at x = 1. Therefore, its graph lies wholly above the main
diagonal of S oni the half-openi interval [0, 1).
(5.17) DEFINITIoN. For eachi subset B* of B, a sub)set A1 of SB is B*-depe)l(denlt
if T G Ai r' e SB anid T(b) = r'(b) for all b c B* imply T c A. I or example, the
set (K U C)(n) n Kr, of (5.23) is B(n)-dependeint.
(5.18) LEMXIA. If n is a nonnegatire integer, A a B(n)-dcpecdelnt Borel siibset
of S , and

(5.19) b(n)(1- B(4)) < 1,
where b(t) = 2n+, then {A ; x) has ,MB-probability I.

11tOoF. It is einouiglh to prove that thle ,B_probability of 'A; I; , call it 0, is l.
I'lainly,
(5.20) A C {.A; 1-

and
(5.21) the coinditionial B_probal)bi1ity of -'A ; l' given that A does Inot oeetur

is at least 6b¼(1).
In view of (5.20) and (5.21),
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(5.22) 0 > At(A) + (1 - AB(A ))0b(n),
and (5.15) applies.

(The proof of (5.18) is a variant of a standard argument in the theory of
branching processes ([10], XII.5). The lemma itself can be widely generalized.)
(5.23) LEMMA. Unless u assigns probability 1 to the main diagonal, there exists
a compact subset C of the main diagonal containing neither (0, 0) nor (1, 1), a
compact subset K of S (lisjoint from the main diagonal, and a nonnegative integer n,
such that {(K U C)(n) n Kn; o°} has ,AB-probability 1.

PROOF. Let D be all of S except the main diagonal. Since ,(D) > 0, there
is a positive integer n so large that

(5.24) b(n)(1 - 1A(D))b(fl)-1 < 1.

Since ,u assigns measure 0 to the corners (0, 0) aind (1, 1) of S, there is a compact
subset K of D, and a compact subset C of the main diagonal disjoint from (0, 0)
and (1, 1), with ,(C) + Iu(K) so close to 1 that (5.24) implies
(5.25) b(n)[l - Al((K U C)(n) n Kn)]

< b(n)j{T: T- t (K U C) (n)} + b(n), {r: T J Kn}
= b(n) [1- (Mu(K) + ,(C))b(n)-l] + b(n) [1 - (K) Ib(n)-l

<1.
Apply (5.18).

6. When are all constructible distribution functions purely singular?

A subset K of S is tangent to the main diagonal if, for every strictly convex
F e A and strictly concave G e A, with F(O) = G(O) = 0, there is a point
(x, y) E K with F(x) < y < G(x).
(6.1) THEOREM. Let K be a subset of S. If K is tangent to the main diagonal,
then there is a K-constructible distribution function equivalent to Lebesgue measure;
otherwise every K-construtctible distributtion function is purely singular.

Preliminaries to the proof. Let 2 be the two-point set {0, 1}, and 2- the
space of infinite sequences of O's and I's. Let {1, 42, * * * be the coordinate process
oIn 2X. Each t E IB determines a unique probability p(t) on 2- by the relation:
the p(t)-probability that (l = 0 is t(0); the conditional p(t) probability that
in+i = 0 given t1, , , is t(l ... {). Let r E SB. These four facts are easily
verified:
(6.2) r is not inl T if and only if there is a poillt in 2x to which p(ri) and

p(T2) both assign positive mass.

(6.3) If T E T and F = MA(), then F(x) = F2(F1-'(x)), where Fi is the
p(r7)-distribution function of El (n/2n for Z = 1, 2 (at least if F, and
F2 are continiuous and strictly increasinig).

(6.4) If 7- e T anid p(Ti) is eqjuivaleint to p(72), theIn M(T) is equivalent to
Lebesgue measure.
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(6.5) If p(Ti) and p(,r2) are mutually singular, then M(T) is purely singular.
PROOF OF THE FIRST PART OF (6.1). Suppose (xn, yn) E K, 0 < x,, y. < 1,

x- 0, xn; ly. -* 1. No new difficulty arises in other cases. By repeating terms,
suppose

(6.6) EX,, = Co.0

By (4.13), suppose also

(6.7) E x. (1 _ < 00-

Define T E KB by

(6.8) T(b) = (xx, yJn) for all b c Bn and n > 0.

Since x. -- 0, (6.2) and (6.6) imply r e T.
Under p(Ti) (respectively, p(T2)) the coordinate process is independent, and

(n+i is 0 with probability xn (respectively, yn). It now follows from (6.7), a
calculation, and [13] that

(6.9) p(Ti) is equivalent to p(T2);

but a direct proof is easy and will be sketched here.
Let Rj = (1 - xj)-'(1 - yj)j+ + xp'yj(l- j+). By a familiar martingale

argument, (1 + Ho' fj)-' Io' Dj is a version of the Radon-Nikodym derivative
of p(T2) with respect to (p(T&) + p(r2)), SO (6.9) follows from

(6.10) II0H j > 0 with p(Tl)-probability 1,
and

(6.11) IIof j < oo with p(T2)-probability 1,
which in turn follow from (6.7) aInd ([3], theorem 2.3, p. 108), because log Rj
has p(Ti)-mean essentially -(-1)ixj(1 -xj-lyj)2, and p(ri)-mean-square essen-
tially xj(l - Xlyj)2, for i = 1, 2. In view of (6.4) and (6.9), the proof of the
first part of (6.1) is complete.
PROOF OF THE SECOND PART OF (6.1). It will be shown that if r e KB, the

continuous parts of p(ri) and p('r2) are mutually singular. The second part of
(6.1) then follows from (6.2) and (6.5). There is an x with 0 < x < 2 such that
K does not intersect the interior of the parallelogram whose vertices are (0, 0),
(x, 1 - x), (1, 1), and (1 - x, x). Let G be the part of K included in the union
of the two closed triangles with vertices (0, 0), (1 - x, x), (1, 0), and (0, 1),
(1, 1), (x, 1 - x). (Several annoying difficulties in the rest of the argument
disappear if K is the line segment joining (0, 0) and (1 - x, x).) Let H be
K - G (see figure 6.1). Let r;n = {n if T( *... is above the cross diagonal,
that is, the set of all s e S with s(l) + s(2) = 1; otherwise, t;n = 1 - t. Let
R be the (countable) set of w E 2x such that r;n(c) = 0 for all except finitely
many n. It will be shown that p(ri) and p(T2) are mutually singular when
restricted to 2x- R.
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(0,1) (1,1)

G

.-(x, I-x)

H~~~~~

(0,0) (1,O)
FIGURE 6. 1

Iindeed, 2- -_ R is the uniioIn of GI, aiid II,,, wvhere G1, (respectively, III,) is
the set of all w G 2- such that T[%i(w) .,(co)] e G (respectively, H) aiid

= 1 for inifiniitely many n. Oii GI,, let Pj(w) be the j-th ii > 0 witl
T[ri(w) ...**(w)] E G, for j = 1, 2, * and let -qj = , Off G1,, let n7 be 0.
Let aj be the a--field generated by all the Borel subsets of 21 - Gl,, and by
those Borel subsets of Gl . which depend on 4I, ...-,,I, for j = 0, 1, *--. Let
qij be the conditional p(ri)-probability that -qj = 1, giveni Fj-l. By (1) of [6],

(6.12) lim '71 + 7 = 1 p(r1)-almost everywhere ohi G1x.
But

(6.13) (i1 + * *q*+ > I- r > I 011 1(121+ + q2n~
s') p(rI) aiid p(T2), wvhleni restricted to Gl,, are iiutually singular. A simiiilar
argument applies to IIo.

7. When are all constructible distribution functions strictly singular?
There is a compact subset K of S such that every K-constructible distribution

fut ictioni is purely sinigular, yet some K-conistructible distribution funietioni is niot
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strictly singular (7.4). We do not know a necessary and sufficient conidition oni
K for every K-constructible distribution function to be strictly singular, but
here is a sufficient condition.
(7.1) THEOREM. Let K be a subset of S such that, for some strictly convex F e A
with F(O) = 0 every point o.fK is on or below the graph of F. Then there is a strictly
convex U E A with U(0) = 0 such that each K-constructible distribution function is
everywhere less than or equtal to U. Moreover, each K-constructible distribution func-
tion is strictly singular.

r(b(n,xIT), T)
FIGURE 7.1

P1ROOF. Let t be the infimunm of 1 - [(t - x)F(x)]1[x(( - F(x))] over all x,

with 0 < x < 1. Since F is convex, t > 0. Let, U(x) = x( - t),'(t-t).
Plainly, U c A is strictly convex, and F(x) > U(.x) for all x E I.
From ([8], theorems 9.2.2 and 4.2.1), if p and q are poinits on the graplh of U,

and S is nmapped in a positive, affine way onto p X q (as defined in the paragrapl
following (3.20)), then the image of the graph of U is nowhere above the graplh
of U. Conseqluenitly, if p and q are points of S not above thle graplh of IT, and S
is mapped in a positive, affine way onto p X q, the image of the graplh of U is
nowhere above the graph of U. This property of U, together w-ith the fact that
every poinit of K is on or below the graph of U, easily implies the first conClUsion
of the theorem.

Sinice U is strictly convex, there is an E > 0 stichi that: if p G AS is neitlher
(0, 0) nor (1, 1), and is not above the graph of U, then the slope of at least one
of the two line segments joininOg p to (0, 0) aiid to (1, 1) (liffers from I by more
than E.

Let r e T n KB anid x E I. Suppose (X, M(T)(x)) is in the interior of the n-tli
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r-rectangle over x, r(b(n, x, r), r), for all n > 0 (no new difficulty arises in other
cases). If S is mapped in a positive, affine way onto r(b(n, x, T), T), by the first
conclusion of (7.1), the point (x, M(T)(x)) is not above the image of the graph
of U. By the preceding paragraph, of the two line segments joining (x, M(T)(x))
to the lower left corner and to the upper right corner of r(b(n, x, T), r), at least
one has a slope whose ratio to the slope of the diagonal of r(b(n, x, r), T) differs
from 1 by more than E (see figure 7.1). Consequently, the right and left deriv-
atives of M(r) at x cannot both exist and be equal to the same finite, positive
iiumber.
We thank Georges De Rham for a proof of the interesting special case of the

next theorem where K consists of a single point.
(7.2) THEOREM. If K is a compact subset of S disjoint from the boundary and
from the main diagonal, then no I-constructible distribution function has a finite,
positive, one-sided derivative anywhere.
PROOF. Let r E KB, and 0 < x < 1. It will be argued that M(T) has no

finite, positive, right derivative at x. Suppose (x, M(T)(x)) is in the interior of
the n-th r-rectangle over x, for all n > 0 (no new difficulty arises in other cases).
Let N be the set of n = 0, 1, * * * for which the point p(b(n, x, r), r) is to the
right of the vertical line through x. Plainly, N is infinite. By an easy compactness
argument, there is an e> 0 such that if n E N, and any point of r(b(n, x, r)O, T)
is joined by line segments (as in figure 7.2) to the upper right corner of
r(b(n, x, T), r), to p(b(n, x, T), T), and to p(b(n, x, T)1, T-), then at least one pair
of these three line segments have slopes whose ratio differs from 1 by more
than e.

Sp(b(n,x,T), T)

(X, M(T)(X))

r(b(n,xj,T) ,T)
FIGURE 7.2
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(7.3) EXAMPLE. Let K consist of the line segments joining (2, 1) to (0, 0)
and to (1,1). Then K satisfies the hypotheses of (7.1), but not the conclusion
of (7.2).
PROOF. Definie Tn E S and b. E B.: bo = 0, b2n+1 = b2J1, aind b2n+2 = b2.+10;

T2n = (2/(n + 10), 1/(n + 10)), and T2+1 = (1- 1/(n + 10), 1 - 2/(n + 10)).
If rcKBfT hasT(bn) = Tr for n = 0, 1, *-- and x eI has b(n,x,T) = bn,
n = 0, 1, * * *, then M(r) has finite, positive one-sided derivatives at x. Indeed,
let An be the width of r(b(n, x, T), T). Then So = 1, 62n+1 = (1 - 2/(n + 10))62n,
and b2n+2 = (1 - 1/(n + 10))32n+l+ Moreover, if the lower left corner of
r(b(n, x, r), T) iS (x., yn), then xo = 0, x2n+1 = x2n + 252n/(n + 10), and X2X+2 =
x2f+l; similarly for y. Thus, one can estimate the chordal slope from (xn, y") to
(x, M(T)(x)). It converges to a finite, positive number X. Since the ratio of
x - x. to x - x1+ and of M(T)(X) - yn to M(T)(X) - yn+' converge to 1, X is
in fact the left derivative of M(T) at x. Proceed similarly for the right derivative.

(7.4) EXAMPLE. Let K consist of the line segments joininig (2, 3) to (0, 0) and
to (1, 1), and of the line segments joining (3, 2) to (0, 0) and to (1, 1). Then K
satisfies the hypotheses of (6.1), but not the second conclusion of (7.1).
PROOF. Define bn E B. and Tn E S: bo = 0,

(7.5) T4n = (2/(n + 10), 1/(n + 10)), b4.+I = b4nl,
T4n+l = (1 - 1/(n + 10), 1 -2/(n + 10)), b4n+2 = b4n+10y
T4n+2 = (1/(n + 10), 2/(n + 10)), b4n+3 =b4n+21
T4n+3 = (1 - 2/(n + 10), 1 - 1/(n + 10)), b4n+4 = b4n+30-

If T E KB n T has T(bn) = Tn, and x E I has b(n, x, r) = bn, for all n, then
M(T) has a finite, positive derivative at x. The reasoning for (7.3) applies.

8. Mutual singularity of priors

If F and G are distribution functions, and there is no x for which the ratio
of F(x + h) - F(x) to G(x + h) - G(x) converges to a finite, positive limit as
h -- 0, then F is strictly singular with respect to G. If P and Q are probabilities
on A, and there are Borel subsets C and D of A such that P(C) = Q(D) = 1
and every F E C is strictly singular with respect to every G E D, then P is
strictly singular with respect to Q.
(8.1) THEOREM. Let 0 < r < 1 and ,u and v be distinct base probabilities
assigning measure 1 to the vertical line segment {s: s c S, s(1) = r, 0 < s(2) < 1}.
Then P, is strictly singular with respect to P,.
In particular, P, 76 P,. We do not know when more general A and v lead to

distinct P, and Pp.
There is no real loss in setting r equal to 2 in (8.1), the essential ideas of the

proof already appearing when IA and v assign measure 1 to the same two-point
subset of the vertical segment {s: s E S, s(l) = 2, 0 < s(2) < 1} (case 3,
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below). The proof is easier if also ,u is a one-poinit measure (case 2), anid is
easiest in case 1.
Throughout this sectioni, let c aiid d be positive niumbers less than 1 with

c 5 d, anid 6(z) the probability measure coincenitrated on the onie-point set -z'
('ase 1. , = 6(Q, c) anid v = p6(4, d) + (1 - p)6(4, c), with 2 < p < 1.
PROOF FOR CASE 1. Let D* = {r: T SB, b e B implies r(b) is (4, c) or

(2, d), anld for each path bl, b *, through B, there are inifinitely maniy n with
T(b,,) = (4, d)} , and let D = M(D*). As is clear from (3.18), or from ([10],
XI1.5), VB(D*) = 1, so P,(D) = 1. Let x G I anid r G D*. Let a(b) = (4, c) for
b e B, so M(of) is the coin-tossing distributioni funictioni Qc. As wvill nIow be
argued, the ratio of M(a)(x + h) - M(a-)(x) to M(T)(x + h) - M(T)(x) does
niot converge to a finiite, positive limit as h -O 0. The n-th a-rectangle r(b(n, x, u), o-)
over x (definlitioni (5.3)) projects onito the same initerval of the horizontal axis
as does r(b(n, x, T), T), namely, the leftmost of the intervals [0, (1/2'))], [(1/2'),
(2/2'1)], *--, [I - (1/211), 1] which cointainis x. T'his interval shriniks to x as
i -x What must be seeni, therefore, is that the ratio r,, of the height of
r(h(n, x, o-), a-) to the height of r(b(n,7x, T), T) does niot converge to a finiite,
positive limit as n -* x. Indeed, it is apparenit that r,, 'r,, does niot converge
to 1; for wheniever T(b(n, x, T)) = (4, d), r,,'1,r is c,l'd or (I - c)/(1 - d),
accordinig as the (it + 1)-st digit in the nionterminiatinig binary expanision of x
is 0 or 1. +

Case 2. ,u = 6(4, c) and v = p6(4, d) + (1 - p)b(4, c), with 0 < p < 1.
PR11OOF FOR CASE 2. Let E be the one-poinit set {(2, d)'. F'or every positive

initeger k, the subsets Ek and (Ek; OC ) of SB are defined by (3.9) anid (5.14). By
(3.18), there is a positive k so large that (Ek; x ) lhas probability 1 under ,B, as
does D*, the initersectioni of (Ek; x) wvith the set of r G SB such that r(b) is
(4, c) or (4, d) for all b c B. So the P,-probability of M(D*) is 1. T'he rest of
the proof is similar to that for case 1, or is immediate from (8.2) below. *

Case 3. ,u q6( (1) + (1 -()6(1, c) anid v = p6(4, (d) + (1 - p)6(!, c),
wvith p X q anid 0 < p, q < 1.

Case 3 uses (8.2) to (8.3), anid this definiitioni: F e A is strictly singular with
respect to G c A at x if the ratio of F'(x + h) - F(x) to G(x + h) - G(x) does
not converge to a finiite, positive limit as h -- 0.
The first lemma uses (3.3), (3.6), anid (3.7). Of course, if x E I, r e SB, anld

r1(b) = 4 for all b e B, then bl(n, x, r) is simply the first ni digits in the nioll-
terminiatinig binary expanisioni of x.
(8.2) LEMMA. Let o- and 7T be junctions fromn B to the twto-poinit set {(4, c),
(4, d)1, let x e I, and let k be a noinnegative integer. IJ Jor infinitely many n there
is a b' c B(k) such that o[b(n, r, o-)] and r[b('n, x, T)] differ at b', then M(a) is
strictly singular with respect to M(r) at x.

PROOF. The proof is easy.
For real numbers p and a with 0 < p < I anid 0 < a < 1, let,

(8.3) m (p, a) = () I
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An interesting fact in [1] is recorded here as
(8.4) LEMMA. Let Xi, X2, * .. be indepenident randonm variables, each assumning
the value 1 with probability p, and 0 with probability 1- p. Let p < a < 1, and
let n be a positive inteJer. Then X1 + + X, > na with probability no mlOle
than [m(p, a)]t.

lor prol)abilities P anid Q ont a a-field ;Y of subsets of a set 52, let P)i anld Qt'
be the power probabilities oIn 52, as definied iii sectioni 2, allnd let VI - Qfl =
sup 'P(A) - Q(A): A e - .
(8.5) LEMMA. For any pair J' anSd Q oJ distinct probabilities o0l a measturable
space (Q, T), there is a positive p < 1 such that for all nt > 1,2Pll'n- Qfl > 1 - p-.

PROOF. Iet A c 5 and a satisfy P(A) < a < Q(,l). I`or i = 1, . .. , n and(l
c e Q,,, let Xj(co) be 1 or 0, accordinig as the i-th coordiniate of w is or is not in 1.
As (8.4) implies

(8.6) P`(Xi + + X,, > tla) < [mn(Q(A), a)]",

anid

(8.7) Q" (Xi + -+ X, >, na) > I - [in(Q(A), a)],I.
Let Xb be inidepenidenit, idenitically distributed ranidom v-ariables, Xb= I

with probability p, Xb = 0 with probability 1 - p, wlhere the inidex b raniges
over B, the set of all finiite se(quenlces of O's anid I's, inicludinig the empty se(luenlec
0. Of course, each infiniite se(qtuenice of O's anid I's, y = (My, Y2 , -), determilnes
the sequence of nt-tuples of O's anid l's, bo(y), b(y), *- , where b,,(y) =
(y1, - - , y,). The stronig lawv of large numbers plainily implies that for
every y, the sequenice of ranidom variables Z,,(y) = Xb,(,) satisfies (ZI(y) +
. . . + Z,,(y))/n - p, except for ani event N, of probability 0. The iiull evelnt
N,, cannot be independenit of y. Inideed, with probability 1, there are y for which
lim sup (Z1(y) + * + Z,,(y))/n exceeds p. However, for p < 4, there is ani a,
p < a < 1, such that with probability 1, for every y, lim sup (Z1(y) +
.. . + Z,,(y))/n is no more than a. This fact will be proved in a sharper and
more general form (8.8), although we were unable to find the best a. Incidentally,
if p > 4, Ino such a exists.

Preliminaries to (8.8). Let j be a positive initeger. For each nonlnegatixe
initeger n, let J,, be the set of all n-tuples formed with thej integers 0, .. . , j - 1.
The onily elemenit of Jo is the (empty) 0-tuple 0. For b e .J,,, anid i = 0, * * * ,

j - 1, b followed by i, niainely bi, is in J,,±+. Let J = Ul =o J_. A path through J
is a sequenice bo, b1, * * * suclh that bo, = 0 anid for all n, there is aln i = O,
j -1 with b,,n+ = bJi. Let P be the probability oni the two-poinit set {O, 1
which assignis probability p to 1. The power probability P'' oni the set of ftimic-
tions from J to {O, 1I was defined in section 2 and m(p, a) in (8.3).
(8.8) LJEMMA. If 0 < p < a < 1, and m(p, a) < j-1, then for PJ-almost all
futnctions f fromn J to -10, 1'-, there is an n(f) < x siuch that: for each n > ni(f)
and path bo, b1, . . . through J, f(bo) + * * + f(b,_,) < nta.

IPIROOF. Let F,, be the set of all ftuietionis g from J to 0, I' suichi that, for
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some path b0, b1, * through J, g(bo) + * + g(bn_-) > na. By (8.4), PJ(En) <
jn-1[m(p, a)]n, which is summable in n.
PROOF FOR CASE 3. By (8.5), there is a positive p < 1 with j|un - v"|| >

1 - pn for all positive integers n. Let

(8.9) pk = P

For each nonnegative integer k, there is a B(k)-dependent (as defined by (5.7)
and (5.17)) subset A of SB such that:

(i) if T e A and b e B(k), then T(b) is (4, c) or (1, d);
(ii) AB(A) > 1 - pk;

and
(iii) vB(A) < Pk.

Choose k so large that 2k+lm(pk, 3) < 1.
Let C* be the set of all r E SB for which:
(i) r(b) is (4, c) or (4, d) for all b E B;

and
(ii) there is a positive integer nA(r) such that, for each n > n(r) anld path

bo, b1, * * * through B, the number of noinegative iintegers i < n - 1 with
r[bi(k+l)] E A is greater than 2n/3.

Let D* be the set of all T e SB for which:
(i) T(b) is (, c) or (4, d) for all b e B;

and
(ii) there is a positive iinteger n(1r) such that, for each n > n(r) and path

bo, b1, * - * through B, the number of nonnegative integers i < n - 1 with
T[bi(k+l)] e A is less than n/3.
Use (8.8), with j = 2k+l, a = 3, p = 1 - tB(A) and p = pB(A), to see that

AB(C*) = vB(D*) = 1. By (8.2), a E C* and T c D* implies that M(a) is strictly
singular with respect to M(r).
The proof for case 3 can easily be transformed into a proof of the full (8.1),

especially with the aid of the following lemma, which though cumbersome to
state, is easy to prove.
(8.10) LEMMA. Let x E I and k be a nonnegative integer. Let V and W be dis-
joint, compact, B(k)-dependent subsets of SB, such that T E V U W and b E B(k)
implies ri(b) = 4 and 0 < T2(b) < 1. Let a E SB and T SB, with ai(b) = Ti(b) = 2
and 0 <o2(b), T2(b) < 1 for all b E B. If a[b(n, x, a)] e V and r[b(n, x, T)] E TV
for infinitely many n, then M(a) is strictly singular with respect to M(r) at x.

One of us (Freedman, Ann. Math. Statist., Vol. 37 (1966), pp. 375-381) has
extended (8.1) so as to permit ,u and v to assign positive measure to the two
points (r, 0) and (r, 1).

9. The average distribution function
A probability P on A determines an average distribution function Fp e A,

namely,
(9.1) Fp(z) = fGEA G(z)P(dG).
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This sectioni studies Fp>,, or F, for short, where , is a base probability. We do
not know which F e A are of the form F, for some base probability p.
(9.2) DEFINITION. If ,u is a probability on S, then T,, is this mapping of A
into itself. If G e A, then T,,,G is the distribution function of a point v chosen
from I according to this mechanism: choose a point ui at random from Iaccording
lo G, and indepenidenitly a poinit (r, y) at ranidom from S according to ,; thet
v is XaI with probability yi, and it, + x(1- u) with probability 1 - y.

For 0 < z < I,

(9.3) (TAG)(z) = x)<x<Z,<y<i [/ + ( y] p(dx, dy)

+ <X<1,0< y. (z) A(dx, (ly);

anid (7',G)(1) = 1.
(9.4) DEFINITION. If , is a probability on S, then L, a probability on the
linlear functions fromii I to I, is the distribution of a linear functioni chosen
according to this mechanism: clhoose (x, y) at random from S according to p;
theni choose the funiction t -c xu with probability y, and the functiol it - i. +
x(1 - u) with probability 1 - y.
(9.5) DEFINITION. Let A,i be that subprobability oIn I for which i1[0, x] is
the L,-probability of the set of liniear functions for whichf(0) = 0 andf(l) < x.
Similarly, LAO[, x] is the L,-probability that f(1) = 1 and f(0) < x.
(9.6) DEFINITION. If P is a probabilit,y oin the liniear fuinetions froiml I to I,
theni, in conformity with ([7], section 5), 1)* is this mapping of A into itself.
If G E A, theni P*G is the distribution function of f(u), where f and u are chosenl
inidependenitly, the linear functioni f according to P and the point u according
to G.
(9.7) DEFINITION. If pA is a probability oIn S, thell ph is the projectioni of pA
on the horizontal axis, and 0(pu, x) is the coniditional pA-expectation of s -s(2),
given s(l) = x.
(9.8) LEMMA. For probabilities pu an(d v otn S, the following conditionls are
equivalent:

(i) Ph =PhE aidl O(p, 0)= (v, *);
(ii) T,.=
(iii) L,IM
(iv) A0 = vo and p1A = vi.
PROOF. Condition (i) implies (ii). If G G A and 0 < z < 1,

(9.9) (T.G)(z) = O(p, x)p1h(dx)
O<z <2

+ fx [1- (,x)]G Z X) ,h(dlX)

+ xO(p, x)(-) ,,(dx).
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Condition (ii) implies (iii). Apply ([7], (6.2)) and the identity

(9.10) T, = (LM)*-
Condition (iii) implies (iv). This is clear.
Condition (iv) implies (i). V'erify that ,u, = /.L( + jAl, anid that 0(p, x) is the

Radoni-\Nikodym derivative of yi with respect to ,u, at x; that is,

(93.11) 6(M, v) = (ddx)*
wAh(dx)

From inow onl, as usual, IA is a base probability.
(9.12) THEOREM. F, is the unique fixed point of T, and F e A implies
(T)nF F,.
PROOF. If 0 < z < 1, then F,(z) is the IB-expectation of the function r

M(r)(z). If z < 1, the conditionial AB_expectation of M(.)(z) given T(0) = (x, 1/)
is

(9.13) y + (I -Y)M (1 -
x provided x. < ;

and

(9.14) yFM, (z), provided x > z.

Integratinig with respect to ,(dx, dy) proves T,F, = F,. Apply (9.10) alnd
([7], (4.4)).
(9.15) COROLLARY. If , and v are base probabilities wvith ,uh = Vh and O(u, ) =
0(v, .), theni F, = FV.
1ROOF. I-se (9.12) and the relation (i) implies (ii) in (9.8).
We guess that unless F,(z) = z for all z e I, or F, assigns measure 0 to the

interior of I, F, determines J'h and 0(,U, .).
(9.16) DEFINITION. In coIIformity with the niotationi in ([8], chapters 5 anid 6),
for 0 < w < 1, let Qw e A be the distributiorn functioni of _l Xj12¾, the Xi
being inidependenit, 0 with probability uw, anid 1 with probability 1 - w; for
0 < r < 1, let Sw,r e A be Qu(Q 1).
(9.17) THEOREM. IJ (r, w) is an interior point of S, ,u assigns measure 1 to the
rertical line segment {s: s c S, s(l) = r- and has mean (r, wv), then FM = Su,,,r

P)ROOF. Apply (9.15).
(9.18) LEMMA. If 0(,p, -) has k continuous deriratiVes on I, and /h has a density
with k continuous derivatives on I, then FM has k continutolts derivatives on the
interior oJ I.

PIROOF. From (9.9), for(0 < x < 1, wvith m? for the density of Ah,:

(9.19) FM(z) f O(-j.)(x') (hr

+ f[- (u) z

n. (zzz) z(7F,M)di,

+ (-o F,MGv) (dr.
Iindictively oni k~, differenitiate wvithi respect to z.
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(9.20) THEOREM. F, is conitinuous if and only iJ A assigns measure 0 to the
Vertical edges of S, and me6tsure less than 1 to each oJ the horizontal edges.

PROOF. Apply ([7], (4.5) or (6.1)), usinig (9.10) anid (9.12).
(9.21) THEOREM. If 0 < w < 1, and ,u is the uniform probability on the
horizontal line segment {s: s e S, s(2) = w,, then F, is absolutely continuous,
with density on (0, 1) proportional to

(9.22) Z(1I

PROOF. By (9.19),

(9.23) F,(z) = wcz + (I - ) JF(I1) (Iv

I- F1' f , (') (11'.

By (9.18), F,. is absolutely conitiniuous oni (0, 1), with inifinitely differenitiable
density fM, anid by (9.20), F, is continuous; so F, is absolutely conitilluous oni I.
Differentiatinig (9.23) twice with respect to z gives

(9.24) f,,(z) =JfM(z)G z_ ) for 0 < z <.

(9.25) THEOREM. If ,u assigns measure 0 to the vertical e(lges oj S, then F, is
either purely singutlar or absoluttely contintutouis.

PROOF. In view of (9.10) and (9.12), ([7], (2.5)) applies.
(9.26) LEMMA. If Ih is not purely singutlar, and F C A assigns posititve measure
to the interior of I, then T,F is ntot putrely singular.

PROOF. Let F2 be the distribution futnctioii assigniiiig measure 1 to z. Sinice
7'AF = f (T,Fz)F(dz), it is enough to check the special case, F = F2, 0 < z < 1.
As (9.10) plainily implies, 7,Fz restricted to [0, z] is an affine image of Al; similarly
for [z, 1]. So, if Ah = /o + Al is not purely singular, neither is 7'IFZ.
(9.27) THEOREM. IJf A assigns measure 0 to the Vertical edges of S, measure
less than 1 to each of the horizontal edges, and /Ah is not purely singular, then F,
is absolutely continuous.
PROOF. By (9.20), F, is conitnluous, so it assigns nmeasure 1 to the interior

of I, aind F, = ',F, is niot purely singular by (9.26). But F, is pure by (9.25).

(9.28) THEOREMT. FM is the unijfor-in (listributtiout If allo(oily iJ O(A, .T) = x Jfo
yj,-almost all x.
PROOF. F,or "if," supl)ose without loss of genlerality by (9.15) that ,u assigns

probability 1 to the main diagonial.
For "only if," by (9.10), the image of Lebesgue measure under T, has density

at z eqlual to:

(9.29) d,21; 1 > p.(d.i) + 1 11(dX)
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Sinice Lebesgue measure is fixed under T,., (9.29) is 1 for Lebesgue almost all
z c I. Sinice (9.29) is continuous from the right, it is 1 for all z with 0 < z < 1.
By (9.20), ,A assigns measure 0 to 0 and to 1. Therefore, settinig z = 0 in (9.29),

(9.30) J(1 1-xi(dx) = 1;x

so

(9.31) JEoz01 x Mo(dx) = A, l (dx)
that is,

(9.32) 1- oo(dx) = x- (dx).x ~~x
Consequently,

(9.33) Al (dx) _ Al(dx)
X

/h(dx) Mo(dx) + Mi(dx)
Apply (9.11).
(9.34) THEOREM. If ,. assigns positive measure to the interior of 8, then Fr, is
strictly increasing. More generally, F, is strictly increasing if and only if there are
points xo and x1 in the supports of iAo and Atl respectively with xo < xl.
PROOF. The proof is easy, for example with the help of ([7], (5.17) and

(6.1)).
(9.35) DEFINITION. A mapping T of A into itself is a uniformly strict contrac-
tion if there is a nonnegative X < 1, with
(9.36) sup !(TF)(z) - (TG)(z)I < X sup !F(z) - G(z)f,

EZG zeI
for all F e A and G c A.
(9.37) THEOREM. If ;s assigns positive measure to the interior of S or to a vertical
edge of S, then T,, is a uniformly strict contraction of A.

If ,A assigns measure 0 to the vertical edges of S and the interior of S, then
(i) T,, is a uniformly strict contraction of A if and only if for some x

with 0 < x < 1, go[x, 1] > 0 and Al[L, x] > 0;
and

(ii) some power of T, is a uniformly strict contraction of A if and only if A

assigns positive measure to each of the horizontal edges of S.
PROOF. The result ([7], (5.10)) applies.

10. Index of definitions

Term Page Term Page
I 183 B,l B 186
S 183 0 186
X Y 186 bO, 1)1 18(;
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Term Page Termn Page
q(b, 1) 186 s(1), s(2) 191
J(b, t) 186 s X t 191
T1, T2 186 positive, affine map 191
p(b), T) 186 continuous 194
?'(l), T) 18(; path 197
M,,(T), 31(T) 186-7 strictly siiigular 197
'A 187 n-th r-rectangle over x 197
-IF 187 b(n, X, T) 198
7 187 r[bl 198
M(T) 187 B1(n) 198

187 E(n) 198
hase probability 187 E,, 198
P1 187 {A;x-} 199
/A 187 B*-dependent 199
stupport 188 Q,. 210
K-constructible 188 51,, 210
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