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1. Introduction

The main purpose of this paper is to establish the existence of a lifting com-
muting with the left translations of an arbitrary locally compact group. The
material is divided into nine sections and two appendices. The second section
contains the notations and terminology used throughout the paper. The third
one contains several preliminary results and remarks. In sections 4 and 5 we
define and study the conditional expectation Py arising from a quotient group.
In sections 6 and 7 we give various results concerning liftings, and in particular,
we study the problem of extending a lifting ‘“from a quotient group to the group.”
The main results of this paper are given in sections 8 and 9. Appendix I contains
various remarks on adequate families of measures. In appendix II we prove a
maximal crgodic theorem.

2. Notations and terminology

Let Z be a locally compact space. As usual, we denote by C*(Z) the algebra
of all bounded real-valued continuous functions on Z and by X(Z), the sub-
algebra of C*(Z) consisting of all f € C*(Z) having compact support. We use
the notation 9M(Z) for the vector space of all real Radon measures on Z and the
notation 9, (Z) for the cone of all positive Radon measures on Z.

Now let € M (Z), u # 0. As usual, we denote by £(Z, ) the algebra of
all real-valued p-measurable functions on Z and by 9U(Z, ), the ideal of all
f e £(Z, w) which are locally u-negligible. I'or f, g € £(Z, u) we write f = g(u),
if f and ¢ coincide locally almost everywhere with respect to p, that is, if
J — g e N(Z u. We denote by f— f the canonical mapping of £(Z, u) onto
the quotient algebra £(Z, u)/9U(Z, u).

Ifor a real-valued function g which is defined on the complement of a locally
u-negligible set and is u-measurable, we agree to call equivalence class of g and
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use the notation § for the equivalence class of any function belonging to £(Z, u)
and coinciding with g(z) at the points z where g is defined. We use a similar
convention and notation in the case when g takes values in E, but is finite-
valued locally almost everywhere with respect to .

As usual we denote by £1(Z, u) the vector space of all real-valued essentially
u-integrable functions on Z, and by L*(Z, x) the image of £(Z, u) under the
canonical mapping f — f.

We denote by M=(Z, 1) the algebra of all bounded real-valued p-measurable
functions on Z. In what follows we shall often consider M*(Z, u) endowed with
the supremum norm f — ||f|l, = sup.ez |f(2)!.

We denote by 91°(Z, u) the ideal of all f € M=(Z, ) which are locally u-neg-
ligible, that is, 9=(Z, p) = 9UZ, u) N\ M=(Z, u), and by L*(Z, x) the image of
M=(Z, u) under the mapping f — f; obviously, L*(Z, u) can be identified with
the quotient algebra M=(Z, u)/91*(Z, ). Finally, we denote by N, the essential
supremum norm on L*(Z, u).

Let us recall that a mapping p: M*(Z, u) — M=(Z, u) is called a lifting of
M=(Z, u) (linear lifting of M=(Z, u), respectively), if it satisfies the axioms
(D~(VD) ((I)—(V), respectively) below:

D o(f) =1;
(II) f = g implies p(f) = po(g);
(IL1) f > 0 implies p(f) > 0;
(IV) p(1) = 1;
(V) olaf + bg) = ap(f) + be(g);
(VD) o(fg) = p(f)r(g)-
Let us recall that if p is a lifting (linear lifting) of M*(Z, u), then

2.1) le(Nlle < 1l for every fe& M=(Z, u);

hence, p: M>(Z, u) — M>(Z, u) is continuous when M=(Z, u) is endowed with
the supremum norm (see also [10]).
Let us also recall that a lifting (linear lifting) p of M=(Z, u) is called strong if:
(VII) p(f) = f forevery fe (C=(Z)
(see also [12] and [13]).

Suppose now that Z is a locally compact group and that u is a left Haar
measure on Z. If s € Z and f: Z — R, we define the left translate vy(s)f of f by
(v(s)f)(z) = f(s7%2) for all z € Z.

We shall say that a lifting (linear lifting) p of M*(Z, u) commutes with the
left translations of Z if:

(VIII) p(x(s)f) = v(s)p(f) for all s € Z and f € M=(Z, u)

(see also [8], [9]).

We shall need a few more notations which will be consistently used in what
follows.

If X is a locally compact group, we shall denote by px a left Haar measure
on X. Whenever X is compact, we shall assume pux normalized, so that ux(1) = 1.

If X is a locally compact group and H C X a compact distinguished sub-
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group of X, we denote by IIy: ¢ — Hy(z) = £ the canonical mapping of X onto
the quotient group X/H. Since f € X(X/H) implies f - Iy € X(X), Uylux) is
a well-defined Radon measure on X/H (see [2], chapters V and VII); in fact
My (ux) is a left Haar measure on X/H, which we shall denote in what follows
by uxm. Now for each z € X, let u, be the mapping of H into X defined by
uz(t) = at for t € H. Since f € X(X) implies fou, € K(H) = C*(H), u.(un) is
a well-defined positive Radon measure on X which we shall denote by 8.; hence
B: is defined by the equations

2.2) B:) = [, 7(et) duu(®) for fe ®(X).

It is clear that if £ = y (mod H), then 8, = 8,; hence, we may unambiguously
define B; by the equation

(23) B: = B
It is obvious that for each & € X/H, §; is a positive Radon measure on X, that
(2.4) Supp B: = u.(H) = zH = Nz' (%),

and that 8;(1) = 1 (see [2], chapter V).

Finally we note that for each f € %(X), the mapping # — B:(f) belongs to
X(X/H); in particular, the mapping £ — 8; of X/H into 9 (X) is vaguely
continuous (here M(X) is endowed with the topology «(M(X), %(X))). Hence
& — B; is an adequate family with respect to uxn (see [2], chapter V, pp. 17-18),
and therefore, we may define [x/u 8: dux/n (%) as a positive Radon measure on X.
It is well known that this leads back to the original Haar measure on X (see [2],
chapter VII, paragraph 2),

(2.5) px = f;,/H Bz dux/u ().

Let us also remark here that the adequate family & — B; satisfies condition (C)
of appendiz 1 (for K C X/H compact we take K(1) = Iz (K)).

We now make use of the theory of adequate families (see [2], chapter V)
and of the results in appendix I:

If f € £Y(X, px), then f € £1(X, B;) for locally almost every # € X/H (with
respect to px,u); the function fP¥ defined locally almost everywhere on X/H
with respect to ux;#) by

b P) = .

(2.0) o) = [ fdss,
belongs to £Y(X/H, ux,u) and satisfies the equation
@) Jod dux = [, 2@ duxu@).

From (2.6) and (2.7) we easily deduce

(2.8) [ (PP @@ dusun@ < [ 1f] dux.
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3. Some preliminary results and remarks

Throughout this section, G will be a locally compact group with left Haar
measure pg.

ProrositioN 1. Let 5 be a linzar lifting of M*(G, ng) commuting with the
left translations of G. Then 4 s strong.

Proor. To prove that 7 is strong, it is enough to verify that 4(f) = f for
every f € X(G) (see the method of proof of theorem 1 in ([13], pp. 447-448)).

Then let f € X(G) be fixed. The mappings s — s~ of ¢ into G and t — y(t)f
of @ into M=(G, pe) (here M>(@G, ne) is endowed with the topology defined by
the supremum norm) are continuous. Combining this with (2.1), we deducc
that s — 9(y(s™!)f) is a continuous mapping of G into M>(@G, ug); in particular,
s = q(y(s ) {e) = 5(f)(s) is continuous. Since f and 5(f) are continuous and
coincide locally almost everywhere (with respect to p¢), it follows that n(f) = f.
Hence 7 is strong, and the proposition is proved.

If Gy C @ is an open subgroup of G and ug, a left Haar measure on Gy, then
ke, is equivalent with the restriction of ug to Go.

ProrosiTioN 2.  Let Gy C G be an open subgroup of G and let n be a lifting of
M=(Gy, ua,) commuting with the left translations of Go. For f € M*(G, ug), define
8(f) on G by the equations

(3.1) 3(f)(x) = n(v(@N)f|Go)(e), z€G.
Then the mapping &: f — 6(f) is a lfting of M=(Q, ue) commuting with the left

translations of G.
Proor. It is clear that & is well-defined and that & verifies the axioms

(ID)—-(VI) of a lifting.
Let us show that & verifies axiom (I). Let f € M*(G, ug). For each s € G,
denote by N, the locally us-negligible set consisting of all y € Gy for which

(3.2) n(v(TDf|Go)(y) # (v(s)f |Go) ().
Let now x € sGy such that §(f)(x) = f(x). Note that

(3.3) f@) = (y(sf)(s7x) = (v(s7)fGo) (s7'x)
and that

7(y (& D)f|Go)(e) = n(y(x~1s)y(s7)f|Go(e)

(y(@ ) (v (s7D)f |Go)) (e) = n(y(s™)f|Go)(s71a),
whence x € sN,. It follows that

(3.5) w8 (f)(x) #= f(x)} N sGy C sN,,

and therefore the set {z|6(f)(x) # f(x)} N sGo is locally ug-negligible. Since
s € G was arbitrary, we deduce that the set {z|3(f) = f(z)} is locally pe-neg-
ligible. Hence & is a lifting of M>(G, u¢).

It remains to show that § commutes with the left translations of G (axiom
(VIII)). For this let f € M=((, ue), u € G, and x € ¢. We have

(34) 8(f) (=)
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1(y (@) (v (W)f)|Go) ()
n(y(@ ) f[Go) (e) = 8(f)(w'x) = (v(w)s(f))(x),

and hence, the assertion is proved. This completes the proof of proposition 2.

Using the classical terminology (see [17]), we shall say that a locally compact
group X can be approximated by Lie groups if given any neighborhood V of the
identity element e, there is a compact distinguished subgroup H of X such that
H C Vand X/H is a Lie group.

REMark. The main approximation theorem by Lie groups (see [17], chapter
IV) tells us that if G is an arbitrary locally compact group, then there is an
open subgroup Gy of G (which is in fact generated by a compact symmetric
neighborhood of e, and therefore is countable at infinity (= s-compact)), such
that Gy can be approximated by Lie groups. We deduce from proposition 2 above,
that in order to prove the existence of a lifting commulting with the left translations
Jor an arbitrary locally compact group, it is enough to consider the case of a locally
compact group which is countable at infinity and can be approrimated by Lie groups.

If ¢’ is a locally compact group and u: G — G’ an isomorphism of G onto ',
then it is clear that u(ug) = ue is a left Haar measure on (/ and that f —>f-u
is an isomorphism of the algebra 3=(G’, ue) onto the algebra M =(G, ue).

ProposiTioN 3. Let u: G — G be an isomorphism of the locally compact
group G onto the locally compact group G'. If p is a lifting (linear lifting, respec-
tively) of M=(G, ug) commuting with the left translations of (1, then the mapping &
defined on M*((', ue) by the equalions

(3.7) 8(f) = p(fow)ou™, €M, pe)

is a lifting (lincar lifting, respectively) of M*((¥', ug) commuting with the left trans-
lations of G'.
Proor. The proof is straightforward.

(3.6)  a(v(w)f)(x)

It

4. The conditional expectation Py

Let X be a locally compact group and I C X a compact distinguished sub-
group of X.
For f € €1(X, ux) define (see also formulas (2.6) and (2.7))

(4.1) uf = TP o 11y,

(in the right-hand side of this formula, the symhol ~ was written on f instead
of on f7UD oIl for the printer’s convenience; we shall continue this convention
throughout the rest of the paper). The definition is meaningful; if ¢ € £1(X, ux)
and § = J, then f°® and g>® coincide locally almost everywhere with respect
to wx/r, and hence f>® o Il and g>® . II; coincide locally almost everywhere
with respect to ux.

It is clear that Py maps LY(X, ux) into L'(X, ux), that Py is a positive linear
operator, and that ||Pgll < 1 (see also formula (2.8)).
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ProrosiTioN 4. (i) If H and L are compact distinguished subgroups of X and
2fH D L, then PHPL = PLPH = PH.

(i) For § € LMX/H, pxm), Pu(§ - Ta) = § o On.

Proor. (i) Since X(X) is dense in £(X, ux), it is enough to verify the
equalities in (i) for functions belonging to XK(X). Let fe X(X): for g =
@ o Ty, we have

(42)  ¢OLE) = [ g@w) du) = [, Malew)) dusw)

= fbf”‘”)(HH(z)) dpr(u) = fP®Ily(x)) = g(x)

for each z € X. We deduce P.(Pyf) = Prj = § = Puf. For k = > o I, we
have

43)  ROW@) = [, kas) duas) = [, dun(s) [, flosu) dus(v)
= [ dusew) [, SCasu) du(s)
= [, duew) [, r(@f) (s0) dun(s)
= [, dur@) [, @90 dun(s)
= [, dusw) [ (xs) dun(s)

= fH f(.’l'S) d;.t]{(S) = fb(H)(HH(x))

for each 2 € X. We deduce Py(P.f) = Puk = Pxf.

(ii) To prove this assertion, we remark first that there is a set A C X/H,
locally pxm-negligible, such that g - Iy belongs to £1(X, ;) if £ ¢ A. We then
use the formula 8; = u.(uy) (see (2.2)). Hence, the proposition is proved.

Below we denote by LY(X/H, pxm) » Iy the set

(4.4) {f - Iu|f € LNX/H, pxm))} -

CoroLLARY 1. If H is a compact distinguished subgroup of X, then PyPy = Ppy;
hence, Py 1s a positive projection of LY(X, ux) into itself with range

LY X/H, pxm) - lu

and norm equal to one.

Proor. The corollary is an immediate consequence of proposition 4, the
definition of Py, and formula (2.8).

Let again H C X be a compact distinguished subgroup of X. We shall now
extend the definition of Py to functions that are locally ux-integrable. Let f:
X — R be a locally ux-integrable function. By proposition (I.5) in the appendix,
f e £1(X, 8;:) for locally almost every & € X/H with respect to ux;z, and the
function *@ defined locally almost everywhere on X/H with respect to uxur by
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(4.5) Fren@) = [ 7 dgs

is locally ux/m-integrable. Whenever f > 0, we shall (sometimes) define f>¢
everywhere on X/H by the equations

(4.6) Fren) = [ 8.

By proposition (I.2) in the appendix, if g = f(ux), then fPUD = ght (uy 4),
and hence, f>® o Iy = g™ o Iy (ux). We may then unambiguously define

(4.7) Ppf = jo¢ o Iy,

RemaRks. (1) It is clear that for f € M=(X, ux), Puf € L*(X, ux). Hence
f — Pyf is a positive linear mapping of L*(X, ux) into L*(X, ux) taking Tonto1.

(2) From corollary 1 and remark (1) above, it follows that foreach1 < p < =,
J — Pyf is a positive linear mapping of L?(X, ux) into LP(X, ux) of norm equal
to one.

(3) If g: X/H — R is locally pxm-integrable, then Py(§ - lIg) = § o Ig.

4) If g: X — R islocally ux-integrable and if E C X/H is a ux;m-measurable
set, then PH((QZUE ° Hy)g) = ((;E ° HH)Pyﬁ.

From remark (4) above and formula (2.7), we deduce, in particular, that if
§ € LY(X, ux) and if E C X/H is a px,z-measurable set, then

4.8 Pyj dux = § dux.
(4.8) [ugl(E) Hf dpx /nglw)g Mx

This shows that Py is in fact the “conditional expectation ([6], [16]) with respect
to the tribe (= o-algebra) of all ux-measurable subsets of X that are cosets of H,”
and thus justifies the terminology used in the title of section 4.

Before stating our next result, let us note that for an arbifrary mapping ¢:
X/H — E and any s € X we have

(4.9) (v(8)g) « Oy = v(s)(g - x).

In fact, for each x € X we have

4.10)  (v(9)g) - Ma(@) = (v(H9) (@) = g(§7'2) = g(Ia(s) "' Mu(z))

= g(Ix(s7'2)) = (g - Mn)(s7'2) = (v(s)(g - M) (@),
and (4.9) is proved.
ProrosiTioN 5. Let H C X be a compact distinguished subgroup of X. If f:
X — R is a locally ux-integrable function, them for every s€ X we have

PH('Y(S)f) = v(s) (PH.?)'

Proor. It is obviously enough to consider the case f > 0. Let now s € X.
For each & € X/H we have

@1)  ENP®@ = [} (&N (@) dun(w) = [, 75 2u) dua(u)
= P (718) = (v(OFP®)(@),

whence (combining with formula (4.9)),
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(12) GENP® Ty = GESPE) o M = () (P « ),

We deduce (y(s)]))*® « Iy = v(s)(J?® < IIy), that is, Pu(y(s)]) = v(s)(L’uf).
Thus the proposition is proved.

6. Convergence properties of the conditional expectations Py

In this section we present several results due (essentially) to M. Jerison and
G. Rabson (see [14]); these results lead to theorem 2 which will be used later
on. Since these results were given in [14] in a different setting, and since we
want to preserve the unity of this paper, we shall sketch their proofs below
(see also [2], chapter VII, p. 113, and [7], paragraph 4).

Except for several propositions previously given, the main part of the proof
of the existence of a lifting commuting with the left {ranslations of an arbitrary
locally compact group starts in the next section.

Throughout this section X will be a locally compact group and (I ;);cs a
directed family (j' < j' implies I D ;) of compact distinguished subgroups of
X. Let
(».1) H.= N H,

JEJ

Let us remark here that if ¥ is a compact subset of X/H, then

(5.2) Hae(E) = QJ Iz} (I, (M ().
7

Let A and B be two sets and p: 4 — B. If  is a set of functions on B to R,
we denote by F o p the set {f - p|f € F.
Let now

(5.3) Q@ = U R(X/I,) - Uy,
ieJ

With these notations we have the following proposition.

ProrosiTioN 6. Letf € X(X/H,) o Uy, and U an open set containing Supp f.
There is then a sequence (u.) of functions belonging to @, which converges uniformly
to f and satisfies Supp u, C U for each n.

Proor. We first prove the existence of a function h € @ such that h(xr) = 1
for z € Supp f and Supp 2 C U. This can be obtained as follows, since J €
®(X/H,) » g, f has the form f; - 1l;, for some f; € X(X/H,). Let C =
Supp f1; then TI72(C) = Supp f. There is then a compact neighborhood 1/ of (!
such that 117 1(F) C U. Using (5.2) above, we deduce the existence of a j € J
such that
(5.4) 10! (1, (It (1)) C U
By Urysohn’s theorem, there is then h € X(X/H;) such that hy(z) = 1 if
i € Mg, (Supp f) and Supp i C Mg, (;7L(E)). Tt follows that h = hye I, is

the desired funection.
Once the function h is obtained, the proof is completed by showing the
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existence of a sequence (v.) of functions in @ converging uniformly to f. For
this we reason as follows: to every u € @ there corresponds a unique function
Us € K(X/H,) such that u = U, - Hy,. Clearly, @, = {u,ju € @} is a sub-
algebra of X(X/H.); it is easily seen that Q. separates the points of X/H,,
and that for each point in X/H, there is a function in @, which does not vanish
at that point. An application of the Weierstrass-Stone theorem yields the se-
quence (v,); hence the proof is completed (see also [2], chapter VII, p. 24).

COROLLARY 2. Foreachl < p < « the set Qisdense th £*(X/H o, ux/n,,) ° Ui,

Proor. Let f = f; - Iy, with fy € £2(X/H,, px/n.) and let € > 0. There
is then g1 € X(X/H,) such that

(5.5) [Y/Hx i — ¢iP dux/m, < (e/2)7.

By proposition 6, there is g» € @ such that

(5.6) [Y

Combining these two inequalities, we get

- - 1/ 1/
(5.7 (felF = gir duc)"™ = ([ 1o i, = gulr dux) ™" <

Thus the corollary is proved.
Remark. For H and L compact distinguished subgroups of X with I1 D L,
and 1 < p < o, we have

(5.8) Er(X/H, pxm) o Uy C E7(X/L, pxz) o 11

THEOREM 1. For cach 1 < p < o, the directed family (I’y)jcs converges
strongly in L?»(X, ux) to Pg,.

Proor. If f e @, then it is clear that Py f = J = Py,f for all j € J large
cnough (use the remark preceding theorem 1 and remark (3) in section 4). By
remark (2) in section 4 and corollary 2 above, we deduce that (Pg.f);es con-
verges to Py, f for every

(5.9) [ € &(X/He, px/n.) ° Ny,
For an arbitrary element f € L7(X, ux), we may write

(5.10) J=PuJ+ I Pr

The proof is concluded by noting that

(5.11) Pu.Je€ Lr(X/Hy, ux/n.,) » N,

and that Py;((I — Py.)f) = 0 for all j € J (make use of proposition 4).
Assume now that J = N = {0,1,2, ---}. In what follows the notation Pf
will be used to designate a representative of the equivalence class Prf.
THEOREM 2. For every f: X — R locally px-integrable, the sequence (P, f)rex
converges to Py f locally almost everywhere with respect to ux.
Proor. Consider a compact set K in X; K is contained in the compact set

g1 o Mp, — gol? dux < (¢/2)7.
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K, = Og'(Ilg,(K)), and hence it is enough to show that (P, f(z)).cx converges
to Pp.f(x) almost everywhere on K, with respect to ux.

Consider now the bounded measure v = ¢g,-px. During this proof only, we
shall use the notation ¢ for the equivalence class of an element g € £1(X, »).
For each n € N define the operator P, on L!(X, v) as follows:

. e
(512) Png = @'PHn(goKog)y for g€ Ll(X: ");
define also

. /'\
(5.13) P.g = o Pu.(?x4), for ¢ e LYX,»).

It is clear that P,(P., respectively) is well-defined, maps L!(X, ») into L}(X, »),
L=(X, ») into L*(X, »), and that as a linear operator in each one of these spaces
it has norm inferior to one; hence, P,(P,, respectively) is a Dunford-Schwartz
operator. Finally it is easily verified that (P.),.e~ is “an increasing sequence
of projections” (use (i), proposition 1 and remark (4) in section 4) and that
(Ps)nen converges strongly in L(X,») to I, (use theorem 1 above). By the
pointwise convergence theorem for increasing sequences of Dunford-Schwartz
projections (see [11] and [18]), we know that for each g € £(X, »), the sequence
(Pag(x))nen converges to P,g(x) almost everywhere on X with respect to ».

Let now f: X — R be a locally ux-integrable function; the function ¢ = ¢x.f
belongs to £1(X, »), and we have (use remark (4) in section 4)

(5.14) Pr(?kef) = ¢k Prf  and  Po(Pxf) = k0 Praf.

We deduce that the set of all z € K, for which (Py,f(2)).en does not converge
to Ppg.f(x) is px-negligible. This completes the proof of the theorem.

6. Liftings of M= (X/H, px/u) and of M® (X,H, ux)

Let X be a locally compact group and D C M>(X, ux) a subalgebra of
M=(X, ux) which contains 1 and is “saturated’’ for the equivalence relation
“= (ux)” in M>(X, ux). In what follows we shall use a relativization of the
notion of lifting (linear lifting, respectively). We shall say that a mapping é:
D — D is a lifting (linear lifting) of D if & satisfies the axioms (I)—(VI) ((I)-(V))
of section 2. Moreover, if D is invariant under the left translations of X (that is,
the relations f € D and s € X imply v(s)f € D), then we say that the lifting
(linear lifting) & of D commutes with the left translations of X if ¢ satisfies also
axiom (VIII) of section 1.

Let now H C X be a compact distinguished subgroup of X. It is clear that

(6.1) M>(X/H, px/n) - Ou

is a subalgebra of M>(X, ux) and that this subalgebra contains 1 and is closed
for the pointwise convergence of bounded sequences.

Denote by M*(X, H, ux) the “saturated” of (6.1) for the equivalence relation
“= (ux)” in M*=(X, ux). Then
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(6.2) M>(X, H, ux) = M>(X/H, pxm) - Mg + N°(X, px).

Note that M=(X, H, ux) is also a subalgebra of M <(X, ux) containing 1 and
closed for the pointwise convergence of bounded sequences. The first assertion
is obvious. The second one can be proved as follows. Let (f.),ecny be a sequence
of functions in M=(X, H, ux); then f, = g, + h, with g, € M*(X/H, pxu) - Uy
and h, € N=(X, ux) for each n € N. Suppose that (f.).en converges pointwise
to f, and that sup,en [|falle = L < . Denote by A the set of all z € X such
that sup,en lg.()] < L and such that the sequence (g.(z))nen is convergent.
Since the functions in 9*(X, ux) are locally ux-negligible we deduce that the
complement of A is locally ux-negligible. Since the functions in the sequence
(gn)nen belong to M*(X/H, uxu) - Iy we deduce that A = II7'(4’) for some
A’ C X/H, whence ¢ag, € M*(X/H, px;u) - Iy for all n € N. The sequence
(¢agn)nen is bounded and pointwise convergent to some function

(63) Up € Mw(X/H, [J.X/H) o Iy.

For every n € N, let k. = f. — @ags. Then k, € 91*(X, ux) for every n € N,
the sequence (k.),en is bounded and pointwise convergent to some function
Ve € N*(X, ux). Since f, = U, + v,, we conclude that the function f, €
A[w(X, H: V'X)'

Let us remark here that if K and L are compact distinguished subgroups of

X and K D L, then
R(X/K) - TIx C R(X/L) - I,
(6.4) M>(X/K, pxx) - g C M*(X/L, px1) - Ly,
M=(X, K, px) C M>(X, L, px).

Finally let us note that each of the algebras M*(X/H, uxm) - Iy and
M=(X, H, ux) is tnvariant under the left translations of X. It is obviously enough
to verify the assertion for the algebra MM=(X/H, uxu) o Hy. Let then fe
M=*(X/H, uxm) - Iy and s € X; we have f = g o Iy with ¢ € M*(X/H, pxm),
and hence (use formula (4.9)),

(6.5) Y(&)f = v(s)(g - M) = (v(8)g) » U € M=(X/H, uxu) > Ua.

Let now p be a linear lifting of M>(X/H, uxu) commuting with the left transla-
tions of X/H. Define the mapping w: M*(X,H, ux) > M=(X, H, ux) as follows:
let fe M=(X, H, ux). Then f = ¢ - l1;(ux) for some g € M*(X/H, px,u); write

(6.6) w(f) = plg) - M.
It is clear that w is well-defined and that
(6.7) w: M>(X, H, ux) = M=>(X/H, pxu) - .

It is also easily verified that o is a linear lifting of M=(X, H, ux) and that w
commutes with the left translations of X. We shall only verify this last assertion:
let f € M*(X, H, ux) and let s € X. Then f = g - Iy(ux) with

(6.8) g € M>(X/H, uxm),

and we have (use formula (4.9))
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(6.9) v($)(w(f)) = v()(p(g) W) = (v($)p(g)) = Iy
= p(v(9)g) « llx = w(v(s)f).

Hence, to every linear lifting p of M>=(X/H, ux;;) commuting with the left
translations of X/H, we can associate a linear lifting w of M*(X, H, ux) satisfy-
ing (6.7) and ecommuting with the left translations of X, via formula (6.6); it is
clear that the mapping p — » which we just defined is #njective.

Conversely, let w be a linear lifting of M=(X, H, ux) satisfying (6.7) and
commuting with the left translations of X. TFor each ¢ € M*(X/H, ux;n) define
p(g) by the equation p(g) - Iy = w(g - IIy). Tt is easily seen that p is a linear
lifting of M*(X/H, ux,;) commuting with the left translations of X/H; it is
clear that the mapping w — p defined here is the inverse of the mapping p — w
defined above.

Thus the mapping p — w is a bijection of the set of all linear liftings of
M=(X/H, px;u) commuting with the left translations of X/H onto the set of
all linear liftings of M=(X, H, ux) satisfying (6.7) and commuting with the left
translations of X. Clearly, w is “multiplicative” (that is, it satisfies (VI)) if
and only if p is.

Before we state our next result we need several remarks.

Remarks. (1) Let f: X/H — R; then f is a characteristic function if and
only if f - 15 is a characteristie funetion.

(2) Let 8 C M=(X, H, ux) be a subalgebra conlaining 1 and closed for the
pointwise convergence of bounded sequences. Let 3 = {A|ps € & . Then J is
a tribe (use the fact that & is closed for the pointwise convergence of bounded
sequences and sec ([2], chapter IV, p. 160), and f € if and only if f is 3-meas-
urable. Moreover, if g, and 7, are linear liftings of M =(X, H, ux) satisfying
mpa) = mes) for every 4 € 3, then 9,/& = 9,/&. To prove this last assertion,
we remark first that », and #, coincide on the simple functions constructed with
sets in 3, and then use the fact that these functions are dense in & for the topology
defined by the supremum norm.

(3) Let p’ be a linear lifting of M=(X/H, ux,;) commuting with the left
translations of X/H. YFor every ux,s-measurable set B C X/H, define

(6.10)  8'(B) = (Eo'(en)(@) = 1} and 0"(B) = (o' (en)(&) > 0}.

Let © be the set of all linear liftings p of M=(XN/II, uxu) commuting with the
left translations of X /Il and satislying
(6.11) e < oplen) < ey
for every uy-measurable set B C X/ /. Then © is convex, compacet and every
catremal element of © 15 multiplicative (sce remarks (2) and (3) following theorem
1 in [8]).

In the proposition below, o’ and wy correspond to p’ and py; respectively under
the mapping p — w (given by formula (6.6)).

Prorosiriox 7. Let p' be a linear lifting of M*(X/'H, ux,u) commuling with
the left translations of X/, Let D be the convex set corresponding to p' (defined in
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remark (3) above), and let py be an extremal element of D. Then (i) pu is a lifting
of M*(X/H, ux;) commuting with the left translations of X/H; (ii) +f & C
M=(X, H, ux) is a subalgebra containing 1, closed for the pointwise convergence
of bounded sequences and such that '|& is multiplicative, then wn|& = '|8.

Proor. (i) The fact that pg is a lifting of M*(X/H, ux,x) commuting with
the left translations of X/H follows from remark (3) above.

(i1) Let 8 C M=(X, H, px) be a subalgebra containing 1, closed for the point-
wise convergence of bounded sequences and such that «'[& is multiplicative.
Let 3 = {A|gs € &}. By remark (2) above, to prove that wy|& = |8, it is
enough to show that wy(ps) = w'(¢4) for every A € 3.

Let A € 3; it is clear that w’(¢4) is a characteristic function and that w'(¢4) €
M=*(X/H, px i) - Ox. There is then (use remark (1) above) a uxm-measurable
set B C X/H such that ¢4 = ¢p - IIg(ux). Now w'(04) = p'(¢s) o Iy, and there-
fore, p’(¢s) is a characteristic function. We deduce (with the notations of remark
(3) above) that 6'(B) = 6”(B), and hence that py(es) = p'(¢s). Consequently,

(6.12) wn(pa) = pules) « g = p'(¢s) » My = w'(4).

This completes the proof of the proposition.

For further reference, we state here (with somewhat modified notations) the
following corollary.

CoROLLARY 3. Let 8: f — 8; be a linear lifting of M>(X, ux) commulting with
the left translations of X. There is then a lifting n of M=(X, ux) with the following
properties: (1) n commutes with the left translations of X; (ii) if &8 C M=(X, ux)
s a subalgebra containing 1, closed for the pointwise convergence of bounded se-
quences, and such that S|& is multiplicative, then |8 = S|&.

7. Extension of a lifting ‘from a quotient group to the group”

Let Z be a locally compact space and let u € 9, (Z), u % 0. We shall denote
by Mg (Z, p) the set of all functions f which are defined on the complement of
a locally p-negligible set and coincide where defined with a function belonging
to M=(Z, p). It is clear that a lifting (linear lifting) of M>(Z, u) can be extended
in a natural way to a lifting (linear lifting) of Mg (Z, ). In fact, if f € Mg (Z, u),
then f coincides where defined with some function ¢ € M*(Z, u) and we may
define p(f) = p(g). We shall also define p(f) by the equation p(f) = p(f) for
fe Mg (Z,p).

Let us also remark that if Z is a locally compact group and p = uz a left
Haar measure on Z, then Mg (Z, uz) is “invariant” under the left translations
of Z (let z€ Z and f € Mg (Z, uz); if f is defined on the set E, then ~(2)f is
defined on zE, and thus v(z)f belongs also to M§ (Z, uz)).

Throughout this section, G will be a locally compact group which is countable
at infinity, F C G will be a compact distinguished subgroup of G which is also a
Lie group, and é will be a lifting of M*(G/F, per) commuling with the left transla-
tions of G/F.
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For every couple (g, k) € M=(G, pg) X X(G) we denote by [g, h] the mapping
*— fg gh dBz; it is clear that [g, k] is well-defined with the exception of a ug/p-
negligible set, and that for each & € G/F for which [g, h] is defined we have:

(7.1) Ilg, R1@)| < llgllBz(R) < llgllollhll.

When ¢ > 0, h > 0 we shall (sometimes) set [g, h](Z) = f; gh dB: for every
z € G/F. In any case, formula (7.1) shows that [g, k] € Mg (G/F, ug;r). Let
us also note that if g; € M*(G, pe), go € M*(G, ug), g1 = ¢g2{ue) and h € XK(G),
then (with obvious notations) we have [g1, k] = [gs, ] (ug/r).

For each couple (g, h) € M=(G, pe¢) X K(G), we may then define

(7.2) B(G, k) = &([g, h]).

We shall now establish several important properties of the mapping
(@, k) — B, ).

(7.3) The mapping (§, h) — B(§, h) is a bilinear mapping of
L*(@G, pe) X K(G) into M=(G/F, par);

(7.4) B@G, )20 i ¢20, h20;
(7.5) B(v(8)§, v(s)h) = v(§)B(G, h) for all s€@.

To prove (7.5) we may without loss of generality assume that g > 0,2 > 0.
Let s € G; for each & € G/F we then have

(7.6) (v(&) g, kD (&) = [g, R](s7'2)
= f; gh dBs-; = ﬁ g(s~'zy)h(s~'zy) dur(y)

= [ (@) E@) GO @) dur@) = [r(s)g, Y(SRIE);
hence,
(7.7) v(8)[g, k] = [v(s)g, v(s)h].
Applying 6 to both sides of this equation and using the fact that the lifting 6
commutes with the left translations of G/F, we obtain (7.5).
(7.8) If g and h belong to X(G) then B(§, h)(&) = fa gh dB; for every & € G/F.
To prove this assertion it is enough to remark that the mapping £ — f(; gh dB:
belongs to 3(G/F) and that & is strong (see proposition 1).
(7.9 For every # € G/F, g € M*(G, u¢), h € X(G) we have
|B(@, k) (@)] < Nu(@)B:z(|R]);

in particular, for each & € G/F and each § € L*(G, pg), h — B, h)(2) is a
continuous linear form on X(G) C £YG, Bz).
To prove (7.9), let g € M*(@, ug). For each k € X(G) consider |h|’®. Let
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us recall that |h|>® (£) = B;(|h|) for each # € G/F and that |[h|P® € XK(G/F).
By (7.1) we have almost everywhere on G/F (with respect to pe/r)

(7.10) I[g, 1@ < llglll[P® ().

Now we apply the lifting § to this inequality and use the fact that 8 is strong;
we obtain

(7.11) 18([g, 2D = 8(l[g, A1) < 8(llgllwl2[P®) = llglllR]>®,
whence :
(7.12) IB@, h)(@)| < lgllBz({h])

for each # € G/F. Thus the assertion (7.9) is proved.

(7.13) Let g € M=°(G, ug). There exists then a g r-negligible set A(g) C G/ F
such that if & & A(g) then g € £1(G, B:) and |B(§, h) ()| < ||k]lw fo |g| dBs for all
h € %(@).

Let Ai(g) be the pgp-negligible set of all £ € G/F such that g is not B;-meas-
urable. If £ ¢ Ai(g), we have

(7.14) g, W@ = | [, ok d6s| < Ikllo [, lol 8

for all h € X(@). Obviously the mapping u: :i;-—)fa lg| dB: (defined on the
complement of the set Ai(g)) belongs to Mg (G/F, ug,r). Hence, there is a
per-negligible set A(g) D Ai(g) such that

(7.15) 5(u) (%) = fG lg| dB: for & ¢ A(g).
Applying é to both sides of (7.14) we obtain
(7.16) B, H)@)| < k5@ @) = |ik]. [, lo] db:

for all & ¢ A(g) and all » € X(G). Hence, (7.13) is proved.

(7.17) Let g € M*(G, u¢). There is then a ugr-negligible set A’(g) D A(g)
such that if © ¢ A'(g) we have

(7.18) B@, h) (&) = fG gh dB; forall ke x(G).
Let (g.)nen be a bounded sequence of functions belonging to X(G) which

converges almost everywhere to g, with respect to pg. There is then a pgr-

negligible et A; C G/F such that

(7.19) lim Jolg = gal dg: = 0 it & ¢ A

By (7.13) there is a pgr-negligible set A C G/F such that

(7.20) |B(@, h)(#) — B(Ga, N)#)| = |BG — §a, N(@)] < |kl fG lg — gx| dB:

for all & ¢ A, all h € X(G), and all n € N.
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Let A'(g) = A1 U A2 U A(g) (A(g) is the set introduced in (7.13)). We
deduce, for all £ ¢ A’(g) and h € X(G) (use also (7.8)),
(721)  B@W@ = lm B, m)&) = lim [ ghds: = [, oh des;

hence (7.17) is completely proved.
Let ¢ € G/F and § € L*(G, pe); let us recall (see (7.9)) that k — B(F, h)(x)
18 a continuous linear form on X(G) C £1(G, B;:). Hence, there is

(7.22) V(#,9) € M=(G, 82),
uniquely determined modulo B;, such that
(7.23) B(g, b)(2) = fG V&, §)(y)h(y) dB:(y)

for all h € ®(G). By the inequality in (7.9) we may obviously suppose that
V(z, P < No(@-

ProrosiTionN 8. (i) For every g € M*(G, ue) there is a upgr-negligible set
A'(g) C G/F (here A’(g) is the set introduced in (7.17)) such that for each & & A'(g),

(7.24) V(z,§) = g(Bs).
(i) Let & € G/F. Then
V("i:) I) = 1(ﬂz‘)7
(7.25) g >0 implies V(z, §) > 0(8:),
V (&, ey + aofe) = aiV (2, §ir) + a2V (2, §2)(82),

Sor every ay, as € R, and ¢, ge € M=(G, pe)-
(iii) If g = g1 Op with g1 € M=(G/F, ug,r) and 6(g1) = g1, then for each
i € G/F we may take

(7.26) V (&, §) = constant = g,(£)(B:).

Proor. (i) follows from (7.17), (7.18), (7.22), and (7.23).
(i) Fix & € G/F.
Tor each h € X(G) we have (use the fact that § is strong)

@21) [ hdgs = [ 1hdss = BA, W@ = [, V& D@hG) ds:w);

since h € X (G) is arbitrary, we deduce V(z, 1) = 1(8;).
Let now g € M3 (G, ue). For each b € X,(G) we have (use (7.4))

(7.28) 0 < B(g, h)(2) = fG Vi, ) W)h(y) dB:(y);

this implies V (&, §) = 0(Bz).
Finally, let a;, a; € R, and ¢y, g» € M=(G, pe). For each h € X(G) we have
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(20) [,V o + asi) GRG) d8s) = Blads + aafi, (@)
@B, H)(&) + aB@, b))
a [, V&, @A) d8:0) + as [, Vo, 3 0)h() dBa(y)

= [, @V, 5 + @V, §2)@)h() dBs);

since h € X(G) was arbitrary, we deduce
(7.30) V(&, s + asfe) = aiV (3, §1) + @V (4, §2)(B2).

(iii) Let g = g1 - IIp with g, € M*(G/F, uer) and 8(g;) = ¢1.. For & & A'(g)
and every h € X(G) we have
@3) [ ghds = [, oue(ey)h(ey) duey) = 9u(@) [, D de.
On the other hand, by (7.17), for every & ¢ A’(¢) and h € X(G) we have
B(§, k) (&) = [ ghdB:. Since & — B(§, h)(#) and & — gy(d) [¢hdB: are both

invariant under 3, we deduce B(F, h)(2) = g:(#) [¢ h dB: for all € G/F and
all h € R(G). It follows that for each fixed # € G/F,

(7.32) [, V@& D@h) d6:) = 0:(3) [, h(y) dBaw)
for all h € X(@G); this shows that we may take
(7.33) V (&, §) = constant = ¢,(2)(8;).

This completes the proof of proposition 8.
(7.34) Let U C F be a compact set with up(U) > 0. For each f € M*(G, ug)
the mapping x — fG T W) eu(y) dB:(y) s defined almost everywhere on
G with respect to ug and belongs to Mg (G, ug).
In fact, suppose first that f € %(G). Then

(7.35) F@) = [,1@)ea() ds:(y)
exists for every z € (; note also that
@36)  F@ = [ fa)oatey) dur) = [,5@n)ou(y) dur(y)

for every x € G. Given € > 0, there is a neighborhood V of ¢ in G such that
the relations s€ @, te€ G, st7'e V imply |f(st) — f{y)| < ¢/ur(U) for all
y € G. We deduce that s, t € G, st7' € V imply

(7.37) |F(s) — FO)| £ (¢/ur(U)pr(U) = e
Hence z — F(x) is continuous and the assertion is proved in the case when
fe x@).

Let now f € M*(G, pg). There is then a bounded sequence (f.) of funections
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belonging to 3 (G), which converges to f almost everywhere with respect to ue.
Denote by A the set of all z € G for which (f,(z)) does not converge to f(z);
then ueg(4) = 0, and there is a set B C G/F, ugr-negligible such that for each
Z ¢ B, the set A is B;-negligible and f is B;-measurable. It follows that IT7'(B)
is pe-negligible and that for each x ¢ II; '(B) we have

(7.38) Jo o) dBity) = lim [ Fu@)u ) dB:().

Hence the mapping z — fG JW) e (y) dB:(y) defined on the complement of the
set Iz '(B) is ug-measurable; as it is obviously bounded, it belongs to /§ (G, ue).
Let us recall that a sequence (U,) of parts of F is a compact D’-sequence in
Fif:
(i) (U,) is a decreasing sequence of compact sets;
(1i) every neighborhood of e contains some set Uy;
(iii) there exists a constant C > 0 such that

(7.39) 0 < pp(UU7") < Cup(Uy) for all .
Since F is a Lie group, there exists a compact D’-scquence in F (see [7],
theorem 2.10; see also [4]).
Let now (U,) be a fired compact D’-scquence in F. By the main derivation

theorem, for every f € L1(F, pr) (in particular, for every f € M=(F, up)) there
is a set C(f) C F with pp(C(f)) = 0 such that

: 1 o
(7.40) lim =575 L}”f dur = [(s)

for each s ¢ C'(f) (see [7], theorem 2.5, and appendix II).

Let now g € M=(G, pe). Since g is ue-measurable, there is a set 4, C G/F,
uer-negligible, such that for each £ ¢ A4,, ¢ is B;-measurable. The set ITz'(4,)
is then pg-negligible. For each n define the function F{® on the complement of
Iz '(4,) by the equation

L4 (n) — 1 / .

7.41) Fy () wr (U Gg(y)wvn(y) dB:(y).
Let

(7.42) A, = C({z € Gllim F{” (z) exists and = g(2)}).

With the notations introduced in (7.41) and (7.42), we have the following
proposition.

ProposiTioN 9. The set A, is ug-measurable and ug(A,) = 0.

Proor. Since F{” is ug-measurable for each n (see (7.34)), the measurability
of the set 4, is obvious.

Let us recall that g is 8;-measurable if and only if the mapping y — g(xy) of
F into R is up-measurable. It follows that:

(a) For each z ¢ IIz'(4,), the mapping y — g(xy) of F into R is up-meas-
urable.
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Let now z ¢ Iz '(4,). Define:

(7.43) B, = Cr ({s € F[li;n-‘;(—ll—/."—) j; " g(zy) dup(y) exists and = g(xs)}).

Since the mapping y — g(zy) belongs to M=(F, ur) by (e), the derivation the-
orem implies that B, is ur-measurable and pr(B,;) = 0 (note that yB = 2B,
if 4 = ). Since

(7.44) BiaB) = [ oen.dB: = [ ean(ey) dus(y)

= f; ¢8.(y) dur(y) = pp(B.),

it follows that for each z ¢ Iz !(4,),

(B) B:(xBz) = 0.

We shall show now that for each # ¢ A; we have

(v) 4, N O7'(&) C zB..

Letz€ A, N II7 (). Since z € Iz (&), z = at for some ¢ € F. On the other
hand, since z = xt € A, and z ¢ II7'(A,), the sequence (F{®(xt)) does not con-
verge to g(xt). But we have

(7.45) Fo (xf)

;;(I—U;j Lg(y)souv,(y) dBa(y)
= WIU,.) /Gg(y)soxw.(y) dB:(y)
= mlU—) fF 9(xy) ezt (xy) dur(y)
= ,;(%—) ﬁ g(@y)ew.(y) dur(y)

1
N wr(U) [U g(xy) dur(y);

we deduce that { € B, and thus z = af € xB,. Hence the inclusion (v) is proved.
Since Supp 8; C Iz (&) for cach & € G/F (see (2.4)), the relations (8) and
(v) above show that for each & ¢ A,,

(6) B:(4,) = 0.
Since we already know that the set 4, is ug-measurable, the relations (5) and
(2.7) imply that pe(4,) = 0. Therefore, proposition 9 is proved.

Let g € M>(G, u¢). For each n € N define the function 7%” on G by the
equations (see also formula (7.23)),

(7.46) T (x) = ;;(I—U—) L V&, §)@)e.v.(y) dB:(y), z€G.

Since V (i, §) € M*(G, B:) and |V(%, §)! < N, (§) for each & € G/F, T is
well-defined everywhere on G and |73 ||, < N,(§).
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We shall establish below several important properties of the mapping T™:
g — T”. We shall first list them completely, and afterwards we shall proceed
to prove them.

(7.47) For cach g € M>(G, ug), T = FP(ug). In particular
T™: M=(G, pe) > M=(G, ue);

(7.48) f = glue) implies T/ = Ty";

(7.49) g >0 implies T > 0;

(7.50) "M = 1;

(7.51) TPvy = aTfP + bTP;

(7.52) T®y = v(8)T®  forall s € G;

(7.53) T = 8(f) « MIp  for every f& M=>(G/F, ugr).

Proors. Tirst, we will prove (7.47). By (i), proposition 8, there is a set
A’(g) C G/F, ug-negligible, such that for each = ¢ A’(g), g is Bi;-measurable
and ¢ = V (&, §)(B:). The set I17'(4’(g)) is ue-negligible and for x ¢ Iz (4'(g)),
we obviously have

(7.54) TP = L Y, )W) eev(y) dB:v)

= ———M(lUn) /G 9W)ev.(y) dBi(y) = FP ().

Hence (7.47) is proved.

Statement (7.48) is obvious from the definition of 7, and statements (7.49),
(7.50), and (7.51) are immediate consequences of the corresponding properties
of the kernel V (4, §) (see (ii), proposition 8).

To prove (7.52), it is obviously enough to consider the case g > 0. Let, there-
fore, g € ML (G, pe), s € G, and z € G. By (7.5) we have for cach h € X(G),

@55 [, V& vOD@hG) ds:y) = B W@
= BO(9)f, YOG @) = (()BE, vHh)(@)
= B@ v E) = [ VEE D) () dins).

This shows that the positive Radon measures

(7.56) o h= [ V&, v©D W) dB:(y)
and
(7.57) 0: h— [ V(4 @) (v(s)hy) dBinaly)

on G are identical. It follows that for every bounded “universally measurable”
function h: G — R,
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(7.58) /G hde = fG h d6.

In particular, for A = ¢,y, we obtain

(7.59) fG V&, v(9)§) @) ezv.(y) dB:(y) = j; V(7' §) (W) erva(sy) dBi-a(y)

= [, Vs, D@ erav.(y) dBin;
we deduce
(7.60) T30(x) = TP (s72) = (v()TE")(2),
and hence (7.52) is proved.

For (7.53), let f € M*(G/F, ug,r). Then fo IIp = 8(f) - Hp(ue), and hence,
by (7.48), and taking into account (iil), proposition 8, we have for each z € G,

(7.61)  Tfhe(2) = Tilhns(z) = ,7(1(]—0 [G V@, 5(7) » ) () eev(v) dB:(y)

= —#F(lUn) 8()(@) L 2:0.(y) dBs(y) = 5(f)(&) = (3(f) » Ir) (x).

Therefore, (7.53) is also proved.

Let now U be an ultrafilter on N finer than the Fréchetfilter. Let g € M= (G, ue)
and z € G. Let us recall that sup,en |15 (x)] < N,(§) (see the remark follow-
ing formula (7.46)); hence we may define (the use of the ultrafilter U was
suggested by [5])

(7.62) T,(x) = lim T (x) for zegG.
U

On the basis of (7.46)—(7.53) and (7.62), we may then state the following
proposition.

ProrositionN 10. (i) The mapping T: g — T, is a linear lifting of M*(G, ug).

(i) The linear lifting T commutes with the left translations of G.

(i) Further, Trn, = 8(f) o p for every f € M=(G/F, pgr)-

Proor. (i) We shall only verify axiom (I). The verification of the other
axioms of a linear lifting (namely (II)-(V)) follows from the corresponding
properties ((7.48)—(7.51)) of T™, Let then g € M>(G, u¢). Since T\” = F{®
(ng), for each n € N (see (7.47)), and since the sequence (F{(z)) converges
to g(z) almost everywhere with respect to ug (see (7.42) and proposition 9), we
conclude that T, = g(ug).

(ii) Let g € M=(G, ug), s € G, and r € G. We have

(7.63) Tyen(z) = li‘{n T5%6(x)
= lim T{® (s~'x) (by (7.52))
U

= T,(s7'x) = (v(8)T\)(x).
Hence (ii) is proved.
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(iif) Let f& M*(G/F, ugr) and x € G. Using (7.53), we can write
(7.64) Tyne () = lim Tfg.(x) = (8(f) - 1Lx)(x).
a

This completes the proof of proposition 10.

Combining proposition 10 with corollary 3 of section 6, we obtain the follow-
ing theorem (which we state with complete hypotheses in order to facilitate
further references).

ToEOREM 3. Let G e a locally compact group which is countable at infinity,
F C G a compact distinguished subgroup of G which is also a Lie group, and § a
bfting of M=(G/F, uer) commuting with the left translations of G/F. There is
then a lfting n of M=(G, pe) commuting with the left translations of G and such
that 9(f - Tly) = 6(f) o Iy for every f € M*(G/F, ua ).

Proor. Consider the linear lifting 7" of M*((, u¢) given by proposition 10.
Since T' commutes with the left translations of G we may apply corollary 3
(with X = (G and S = 7). There is then a lifting 5 of M *((/, u) with the follow-
ing properties: the lifting n commuies with the left translations of G, and if
& C M=(G, ug) 1= a subalgebra containing 1, cloxed for the pointwise convergence
of bounded sequences, and such that 78 is multiplicative, then .6 = T|&. Now
the subalgebra M=(G/F, pgp) « Hp of M*=(G, 1) has the required properties. It
follows that for each f € M=(G/F, pe ),

(7.65) 7(f e Up) = Ty = 8(f) o 1.

Heuceforth, theorem 3 ix completely proved.

8. The set g; proof of the main theorem

As we already remarked in section 3 (zee the remark following proposition 2),
in order to prove the existence of a lifting commuting with the left translations
of an arbitrary locally compact group, it is sufficient {o consider the case of a
locally compact group which is countable at infinity and which can be approx-
imated by Lie groups.

Throughout this section we shall assume therefore that X s a locally compact
group which is countable at infinity and which can be approximated by Lic groups.

Denote by 9 the set of all couples (71, py) where

8.1) H is a compact distinguished subgroup of X;
(8.2) oir is a lifting of M>(X/II, ux ) commuting with the left translations of
X/H.

We shall order the set 9 as follows: we write (H, pir) < (K, px) if (we use
here the correspondence p — w defined in section 6)

(8.3) HDOK;
(8.4) wrlM=(X, H, px) = wn.

In connection with (8.4), sec also formulas (6.4).
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The relation “<” is obviously reflexive. If (H, pg) < (K, px) and (K, px) <
(H, pyr), then of course Il = K; thercfore M=(X, H, ux) = M=*(X, K, ux),
wx = wy and finally px = py. Hence, the relation “<” is antisymmetric.

1f (H, pn) < (K, px) and (K, px) < (L, p), then H D K, K D L, and hence
H D L. Further,

(8-.)) wL]ﬂl”(X, }], [.Lx)

I

(leﬂIw(X! Ky #X))Iﬂ[m(Xy ]{7 F‘-\')
meI“(X, H, ux) = wp.

It follows that (H, pn) < (L, p1.), and therefore the relation “ <’ is transitive.
Hence “<’’ defines an order relation in 4.

REMARKS. (1) For two couples (H, pr) € 9 and (K, px) € § with H D K,
the equation (8.4) is equivalent with

(8.4") wr(feMy) = wu(f - Oy) forevery f& M=(X/H, uxm).

This is an immediate consequence of the definition of M*=(X, H, ux) as the
“saturated” of the algebra M=(X/H, ux,u) - Uy (sce (6.2)).

(2) Let H C X, H # {e} be a compact distinguished subgroup of X. There
is then a compact distinguished subgroup K of X such that

(8.6) K CH,K # Hand H/K is a Lie group;
(8.7) H/K is isomorphic with A = IIx(H) C IIx(X) = X/K;

(8.8) the groups X/H and (X/K)/A are isomorphic. The canonical isomor-
phism of X/H onto (X/K)/A is given by u: IIy(x) — ILi(ITx (x)). The inverse
of u is denoted by v.

In fact, let V be a neighborhood of ¢ that does not contain H. Take L C V,
a compact distinguished subgroup of X, such that X/L is a Lie group. Let
K = H N L; then K is a compact distinguished subgroupof X, K C H, K C V,
and hence K # H. Also H/K is isomorphic with 11,(H) C I1.(X) = X/L (sce
[3], chapter 3, p. 48). Since II.(H) is a compact subgroup of the Lie group X/L,
it follows that (see [17], p. 186) IT.(H), and therefore, also H/K are Lie groups.
In connection with the isomorphisms in (8.7) and (8.8), see ([3], chapter 3,
p. 48) and ([3], chapter 3, pp. 28-29).

TueoreM 4. (i) The sct 9 is inductive for the order relation “ <"’ defined above.

(i) If (H, pu) € 9 is a maximal element, then H = {e}.

Proor. (i) Let ((Hj, pu,))jes be a totally ordered family of elements of
(we suppose that j° < j is equivalent with (Hj, puy) < (Hj», puy7). We may
assume without loss of generality that all H; are contained in some compact
distinguished subgroup H of X. Let H, = N;es H;; then H, is a compact dis-
tinguished subgroup of X.

We shall now construet a lifting pp, of M=(X/H,, ux/n,) such that
(I]oc, p}{w) > (Hj, PH,') for allj elJ.

Let f € M*(X, ux), and consider the family (Py.J);es. For each j € J we
shall choose a definite representative of the equivalence class Py, f, by applying
the lifting wpy,. In fact, for each j € J we may definc
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(8.9) fi = o, (Puf)

(it is clear what the notation wg,(§) means).
We shall list below several properties of the mapping f — f;. Suppose j € J
fixed; then we have

(8.10) Ji€ M=(X/Hj, px/u;) » g, and  |f}] < No(f)
(see (6.6) and (6.7) in section 6, and remark (1) in section 4, respectively);
(8.11) = g(ux) implies f; = g;;
(8.12) J > 0 dmplies f; > 0 (since Py,f > 0);
(8.13) 1, =1 (since Py, (1) = 1);
(8.14) the mapping [ — f; 1s linear;
(8.15) the mapping [ — f; commutes with the left translations of X.
We shall verify here only (8.15). In faet, let f & M*(X, ux) and s € X.

Since Py, commutes with the left translations of X (see proposition 5 in section 4)
and wy, commutes with the left translations of X (see section 6), we have

(8.16) ()i = wg,(Pa,(v()])) = wu,(v(s)Pn,f)
'Y('S)“’Hi(PHif) = v(8)(f7).

There are now two possibilities:

(A) there is a countable cofinal sequence (j(n)),en in J;

(B) there is no countable cofinal sequence in J.

Case (A). Ttisobvious that H, = Naeny Hjw. Let now f e M>(X, H,, ux);
then f = f, - Oy, (ux), with fy € M*(X/H,, ux/u,)- By theorem 2 in section 5
and remark (3) in section 4, the sequence (g, f).cny converges to Py, f =
/1 » Iz, almost everywhere with respect to ux. We deduce that

(8.17) the sequence (fimy(x))nen converges to f(x) almost everywhere with
respect to px.

Let us also remark that (use (8.10) and (6.4)) we have
(8.18) fiy € M*(X/H o, ux/n,) ° Uy for every n e N.

Let now U be an ultrafilter on N finer than the Fréchet filter on N; since
supnen |fiom (@) < N (f) for each z € X (see (8.10)), we may define

(8.19) fol@) = liqurlfj(n)(.r), for re X.

It is clear that f, € M=(X, H,, ux). Actually, we have
(820) fw € Alw(X/Hwy “X/Hao) ° HHw;

in fact, if Oy, (x) = Mz, (¥), then fim(x) = figm(y) forall n e N (use (8.18)),
whence f,.(z) = f.(y). It is also clear (use (8.17)) that f, = f(ux).
Denote by «’ the mapping f — f.; hence o’'(f) = f,. Then

(8.21) o': M=(X, Hy, ux) — M>(X/He, px/m.) o .,
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whence o’ satisfies condition (6.7) of section 6. It is easily verified that o’ s a
linear lifting of M=(X, H,, ux) commuting with the left translations of X (use
(8.11)—(8.15)). Let us also remark that

(8.22) o' |M=(X, Hyoy, 1x) = 0t for each n & N.

In fact, fix n € N. Let f € M>(X, H;(,, px). For m > n we have (use the fact
that f = Pu,,,f (see remark (3) in section 4) and the equation

(8.23) PH,'(,,.)PH;'!-;) = PHi(n)
(see (i), proposition 4))
(8.24) Jiemy = wHi(m)(I)Hj(rn)f) = wi]i(m)(])Hi(m)(P}Ii(n)f))

= wHi(ﬂ-)(PHi(n)f) = wf]i!n)(PHi(n)f) = fit-
Since this is true for all m > n, we deduce that f, = fim = wn,m(f), that is
w'(f) = wn,wm(f) and hence (8.22) is proved.

Let p’ be the linear lifting of M=(X/H,, px/u.,) corresponding to o’ (under
the correspondence w — p); o’ commutes with the left translations of X/H.,.
Applying proposition 7 (with H = H,), we get a lifting pg., of M*(X/H o, ux/H.)
with the following properties: the lifting pg., commutes with the left translations
of X/H,, and if 8§ C M*(X, H,, ux) is a subalgebra containing 1, closed for the
pointwise convergence of bounded sequences and such that «'|& is multiplicative,
then wp,|8 = «’|8. Tor fixed n € N, M*(X, Hjwy, ux) 1s a subalgebra of
M=(X, H,, px) with the required properties (use (8.22)); we deduce

(825) wHao!]l'[w(X: Hj(n): l""X) = w'[ﬂ[“’(X, II,'("), /-‘X) = WHjemy.
Formula (8.25) shows that
(8.26) (Hyy pri) = (Hjoo, PHiw)

for each n € N. Since the sequence (j(n)),en is cofinal in J, this completes the
proof of case (A).
Case (B). We shall show first that

(8.27) M>(X, Hy, px) = ,kEJJ M>(X, Hj, px).
J
For this purpose, let (K,),ex be an increasing sequence of compact subsets

of X/H such that U,ey K, = X/H. Let now L, = Iz (K.); then (Lu)yen is
an increasing sequence of compact subsets of X such that U,enx L. = X. Since

(8.28) ¢L, = ¢k, o llp € M=*(X/H, px/n) - g
for every n € N, and since H O H,, we deduce
(829) ¢L, € Mw(X/Hw, /.Lx/Hw) o Iy, forall ne N.

To prove the equality (8.27) it is obviously enough to show that every func-
tion in the algebra M*(X/H., px/n.) - Ux, belongs to some M=(X, Hj, ux)
(for a suitable j € J). Let then

(8.30) f & M(X/Huy pxyi) * Wit.;
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we have

(8.31) oS € Y X/H,, ux/ue) ° Uug for every n & N.

By corollary 2 in section 5, for each n € N there is a sequence (u,,p)pen of
functions belonging to

(8.32) @= U XX/Hj) -1
jed
such that
(8.33) or.f = lim wu, ,
pEN

almost everywhere with respect to px; we may also assume that
(8.34) [tn,n] < /1] forall ne N, pe N.

Define now w, = lim sup,en .., for each n € N, and u = lim sup,ey u.; we
obviously have u, = ¢r,f(ux) for all n € N, whence

(8.35) u = flux).
But for each (n, p) € N X N, there is j(n, p) € J such that
(8-36) Un,p € JC(X/Hj('l.I/)) ° HH;(,.,,,) - ﬂIac(}(,”}{j(mp); P'X/Hi(n.p)) ° H1l,~(,.,,,)-

The set {j(n, p)|(n, p) € N X N} is countalle. Hence, there is jo € J such that
jo is a majorant of the set {j(n, p)|(n, p) € N X N;. Since j, > j(n, p) for all
(n, p) € N X N, we decduce

(837) Un,p € ﬂ1x<1\r//,1]juy ;.l_\'/yju) ° H]/ju for all (‘N, p) € N X N.
But
(8.38) M=(X/ Hjoy x/110) © Wit

is closed under taking lim sup of bounded sequences (this follows from the fact
that (8.38) is a lattice and is closed under limits of bounded pointwise conver-
gent sequences); it follows that

(8.39) u € M*(X/Hj, px/mjo) ° Wijee

From (8.35) and (8.39) we obtain f € M=(X, Hj,, px), and thus formula (8.27)
is proved.

We shall now define wy. on M=(X, H., px) as follows. Let f € M=(X, I, px).
There is then j € J such that f € M=(X, H}, ux); define

(8.40) wir(f) = wu(f).

Nofe that ey (f) is well-defined by the equation (8.40). In fact, suppose f &
M=(X, H;, ux) for some other 7 € J. Since the set J is totally ordered, we have
either ¢ < j (hence (H;, pu) < (Hj, pny)), or j < 4 (hence (H;, pr) < (Hy, pn.))-
In cither case we deduce

(8.41) o (f) = wn(f);

thus wyy,, is well-defined. Formula (8.40) also shows that
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(842)  wu,(f) = wu,(f) € M*(X/H;, px/u;) - Wy C M*(X/He, px/8.) © Hig,
and hence, wy,, satisfies condition (6.7):
(8.43) wire: M*(X, Hy,y ux) — M*(X/H oy px/ty) ° HHeye

Tt is also casily verified that wg, is a lfting of M*>(X, I, ux) commuting with
the left translations of X (make use of the corresponding properties of the liftings
wg;, and the fact that the set J is totally ordered).

Let py,, be the lifting of M*(X/H ., ux/n,) corresponding to wy, (under the
correspondence w — p). The lifting py,, of M*(X/H,, ux/u.,) commutes with the
left translations of X/H,.. Moreover, the formula (8.40) of definition of wy,
shows that

(8.44) wir | M=(X, H}, px) = wp, for each jeJ.
It follows that (H., pn.) = (Hj, pn;) for cach j € J; this completes the proof
for case (B).

(i) Let (H, pr) be a maximal element of 9 and suppose H = {e}. By remark
(2) preceding theorem 4, there is a compact distinguished subgroup K of X
«atisfying the conditions (8.6), (8.7) and (8.8). We shall use below the notations

of these conditions; in particular, we shall use the isomorphisms u and v. Define
don M*((X/K)/A, ucxky4) by the equations

(8.45) 8(f) =pu(foru) v for fe M=*((X/K)/A, uixms).
By proposition 3 in section 3, § is a lifting of M=(X/K)/A, ux,x)4), com-
muting with the left translations of (X/K)/A. Since X /K is countable at
infinity, and since the compact distinguished subgroup 4 of X/K is a Lie group
(vee (8.6), (8.7)), we may apply theorem 3 (with ¢ = X/K and F = A, of
course). We deduce the existence of a lifting px of /(X /K, ux,x) commuting
with the left translations of X/K and such that

(8.46) pr(feTl4) = 6(f) - T4 for fe M>((X/K)/A, puix/m).a)-
We shall show that
(8.47) wk(g o M) = wn(g ° 1) for every g€ M>(X/H, uxu).

In fact, let ¢ € M*(X/H, px,u). Using (8.46), (8.45), and the explicit form
of the canonical isomorphisms u and » (see (8.8)), we can write the following:
(8.48)

wr(goIy) = wx((geov) cuoIly) = wr((gorv) o Iy Ilk)
pr((gov) o TIy) o Mg (since (g o v) o 1y € M*(X/K, uxx))
(8(g ov) o I4) o Ik = ((pu((g o v) o w) o) o M4) o Mk
= (pu(g) o v) o Wy o Mx = (on(g) o v) o u oIy

= Pll(g) o Il = wll((/ o Iyp).

Hence (8.47) is verified. This shows that (sec also remark (1) preceding theorem
4) (K, px) > (I, py); since K # H, this means (K, px) > (H, py). The inequal-
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ity contradicts the maximality of the element (H, py) and thus completes the
proof of (ii).
Therefore, theorem 4 is completely proved.

9. Conclusions

As an immediate consequence of theorem 4 we deduce (see also the remark
following proposition 2 in section 3, or the comment at the beginning of sec-
tion 8).

TaEOREM 5. Let X be an arbitrary locally compact group. There exists a lifting
of M>(X, ux) commuting with the left translations of X.

Before ending we wish to make one more remark. Again let X be a locally
compact group with left Haar measure px. Denote by 3 the tribe of all ux-
measurable subsets of X. Let us recall that a mapping 6: 3 — 3 is called a
lower density of 3 if it satisfies the following axioms (for 4 € 3, B € J we write
A=Bif AAB = (A — B) U (B — A) is locally ux-negligible):

Iy ed)=4;
(I') A = B implies 6(4) = 6(B);

) o) = & and (X)) = X;

(IV’) 6(4 N B) = 6(4) N 6(B).

The lower density 8 of 3 is said to commute with the group of left translations of
X if
9.1) (V') 6(sA) = s6(A) forevery s€X and A €3.

It was already known (see [8], theorem 1, p. 823) that for an arbitrary
locally compact group X, the existence of a lifting of M=(X, ux) commuting
with the left translations of X is equivalent with the existence of a lower density
of 3 commuting with the left translations of X (the implication “=" is obvious;
the implication ‘<" was proved in [8] using the “topology on X induced by
the lower density” and considerations of maximal ideals of L*®).

We now know (by theorem 5 above) that for an arbitrary locally compact
group X there always exists a lower density of 3 commuting with the left transla-
tions of X: we shall call such a lower density of 3 (for obvious reasons) a Haar
lower density.

It should be pointed out here that, in contrast to the Haar measure, a Haar
lower density is by no means unique, not even in the case of the real line. In
fact, let I (x) = [x — 1/n, z], I (z) = [z, 2 + 1/n] for each z € R and each
n € N*. For every A € 3 define
9.2) D2 (z) = lim (ur(4 N I (x))/er( (z))

whenever this limit exists; similarly define
9.3) . DY (x) = lim (pe(4 N I (@)/p(I3 (x)).
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Let now

(9.4) 0P(A) = {x € R|D? (xr) exists and = 1}
and

9.5) 67(A) = {x € R|IDP(x) exists and = 1}.

It is clear that 6%V and 6 are lower densities commuting with the translations
of R. However ([0, 1]) = (0, 1] and 6®([0,1]) = [0, 1); hence ® = 40,
In the case of the real line, or more generally in R", we do have, however, a
canonical Haar lower density—namely the classical “Lebesgue lower density’’;
this is defined at a given point z € R* using all intervals containing z (see [19]).

For further remarks connected with the subject of this paper, see ([9],

section 4).
o0 00 O

APPENDIX I. REMARKS ON ADEQUATE FAMILIES

Let T and X be locally compact spaces and p € M. (T). Let A: ¢ — X\, be a
u-adequate family of Radon measures on X and » = fT A du(t) (for the ter-
minology and results used in this appendix, (see [2], chapter V, paragraph 3,
pp. 17-24). We suppose that the following condition (C) is satisfied.

(C) For every compact K C T there is a compact set K(1) C X such that, for
each t € K, we have Supp N C K(1).

The following assertions are then valid.

Frorosition (1.1). For every numerical function f > 0 on X we have

T* T* *
M [erar = [ du [(7an.
Let K C T be a compact set. Then
2)

[y ox® du®) [(f D= [ ox®) du® [] oxwf dr

< /7; du(t) f; exaf d\: < /): erafdv < ]—;fd”;

since K C T was arbitrary, the proposition is proved.

From proposition (I.1) we immediately deduce the following.

Prorosition (1.2). If f: X = R s locally v-negligible, then the set of all
t € T for which f is not Nr-negligible is locally u-negligible.

Prorosition (1.3). If f: X — R is v-measurable, then the set of all te T
Sor which f is not N-measurable is locally p-negligible.

Let K C T be a compact set. Then the set of all ¢ € K for which ¢xqu)f is
not A-measurable is y-negligible. But ¢x)f and f coincide on Supp A, for t € K;
we deduce that the set of all { € K for which f is not \~-measurable is u-neg-
ligible. Since K was arbitrary, proposition (I.3) is proved.
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ProrositioN (1.4).  For every numerical v-measurable function f > 0 on X,
the mapping t — f’{ Jd\, is u-measurable and

T T *
(3) ijdv = /1 du(l) /dex,.
Let K C T be a compact set; then t — f\* exmf dh, is p-measurable. Since

(4) [\ oxwf A\ = [:fdxt for te K

and since K was arbitrary, the measurability of the mapping ¢ — [{ f dX, fol-
lows. To prove the equation in propgsition (I.4), consider a compact L C X;
then

) j‘\, ouf dv = [T du(t) [\, o) dh, < fT du(l) f\_ fdn..
Since L was arbitrary, we deduce
(6) [X fdv < f, " du(t) [Y Fdn.

Combining this with the inequality in proposition (I.1), we obtain the equation
in proposition (1.4).

ProrositioN (1.5). If f: X —» R is locally v-integrable, then the set of all
t € T for which f is not N-integrable is locally p-negligible, and the mapping
t— fx Sd\, (defined locally almost everywhere with respect to ) s locally
u-tntegrable.

Let K C T be a compact set. Then ¢xq)f is v-integrable, whence the et of
all t € K for which g f is not M-integrable is u-negligible. It follows that the
set of all ¢t € K for which f is not \-integrable is p-negligible. Since K was
arbitrary, we deduce that the set of all ¢ € 7' for which f is not A-integrable is
locally w-negligible. Let again K C 7 be a compact set. Then

(7) §01\'(t) /del\t = '[\_ (p}\'(1)f([/\¢

for almost every t € K (with respect 1o u). Since ¢k f is v-integrable, we deduce
that ¢ — ¢k (t) [y f d\, is u-integrable; therefore, ¢t — [y fd\, (which is defincd
ouly locally almost everywhere with respect to u) is locally u-integrable.

ReEmMARK. I'rom the above follows that if f: X — R is locally »-integrable
(in particular, if f is essentially y-integrable), then the mapping ¢ — [y fd\,
(defined only locally almost everywhere with respect to u) is p-measurable.

Prorosimiox (1.6). If f: X — R is essentially v-integrable, then the set of all
t € T for which [ vs not A-integrable is locally p-negligible, the mapping t — f xJdn,
(defined only locally almost everywhere with respect to u) is essentially u-integrable
and

(8) [\,fdy = L du(t) jxfdx,.
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Since f: X — R is essentially »-integrable if and only if sup (f,0) and
sup (—f, 0) are, it is enough to consider the case f > 0. The assertion then
follows from proposition 7 in ([2], chapter V, paragraph 2), and from proposi-
tions (I.4) and (1.5) above.

O Y Y

APPENDIX II. A MAXIMAL THEOREM

(I1.1) Let (X, 3, u) be an abstract measurc space, and let » be a second
measure on 3. We suppose that there is a clan 3, C 3 consisting of sets having
u and » finite measure, such that

(i) A edand B e 3, implies 4 N B € §;

(i1) for cvery A € 3 we have

p(d) = sup (A N B) and »(d) = sup »(4 N B).
BET: BET.

THE MAXIMAL THEOREM. Let (A,)nex be a sequence of sets belonging to 3.
For every n € N and 2 € A, let U(n, x) and U*(n, x) be two sets, the first of
which belongs to 3, such that

1) uw*(Uzea, U(n, 1)) < = for each n € Ny

2) v(U(n, 2)) > w(U(n, x)) for everyn € N and r € A,;

3) infyea, u(U(n, x)) > 0 for cvery n € N for which A, # &;

(4) for every n € N and x € A, we have p*(U'*(n, 2)) < Cu(U(n, z)), where
(' is a constant independcrl of n € N and r € A,;

(BG)letpeN,geN,p<qgtfacAd,andy E A, N CU*(p, x) we have

Up,r) N Ulgy) = .

There is then a sequence (U(u(j), () er (with I C N and u: I — N) con-

sisting of disjoint scts such that
(6) A = Usex 4. C Ujer U*ul)), x(7));
() w(d.) < Cv(Ujer Uu(g), 2(7))).

ReEmarks.  (a) Once (6) is proved, (7) follows immediately from (4) and (2),
respectively. (b) We may of course suppose during the proof below that 4, = &F.
(¢) From (7) we deduce u(4,) < Cv»(X); in many applications »(X) < «, and
then this inequality becomes relevant.

Troor. let o be the first integer n € N for which A, # &. Let U be the
sct of all sequences (U(u(y), x(7)));er, with I an interval of N and w: I - N
an increasing mapping such that

(8) 150, u0) = o, and z(0) € A.;
9 ifje Nandj + 1 € I, then
(G4 1) € Augen — U U*u(s), x(s));
0<s<g

S8

(10) fje Nandj + 1 € I, then
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Av— U U*(u(s), 2(s)) = &
0<s<j

forall0 < h < u(j + 1) (if such an h exists).

Let now (U(u(y), (4)))jes € U. 1t is clear then that z(j) € A, for allj e 1.
Also the sets in the sequence are disjoint (if there are more than one). In fact,
let cel, jel with i <j; let p = u() < ¢=u(j). Then z(:) € A, and
z(j) € Ag — Uo<e<i—1 U*(u(s), z(s)). By (5) the sets U(u(3), z(3)) and U(u(j),
z(j)) are disjoint, whence the assertion is proved. Clearly, U ## & since
(U(u(0), 2(0))), with u(0) = « and z(0) some element in A4,, belongs to U.

By remark (1) above, in order to prove the theorem it is enough to show the
existence of a sequence (U(u(y), z(5)));er in U satisfying (6). We shall divide
the proof into two parts:

(I) we shall show here that if (U(u(j), 2(j)))jen € U, that is, I is infinite,
then this family satisfies (6). Note first that
an lim u(j) = .

JEN
In fact, otherwise u(j) < ¢ for some ¢ € N and all j € N. Then 2(j) € 4o U
AU -+ U A, for all j € N. Let now B be a set with y*(B) < « containing
all U(n, 2) with0 < n < gandz € 4, (use (1)). Since the sets (Uu(j), z(5)))ien
are disjoint, we obtain lim;enx u(U(u(j), 2(5))) = 0; since u(j) must be constant
for j large enough, this contradicts (3) and therefore (11) is proved. Let now
h e N. By (11), there is j € N such that » < u(j + 1); by (10),

(12) Ay C0<L8J<j U*(u(s), 2(s)) C Y U*(u(s), z(s)).

Since h € N was arbitrary, (6) is proved in this case.

(IT) If there is a finste family in U satisfying (6), then clearly the proof is
completed. Otherwise, let (U(u(j), z(j)))jer € U be a finite family; then
A, — Ujer U*(u(g), (7)) # 0. Let p =supl and let I' = I U {p + 1}. Let
g be the first integer in N for which

(13) A, -y U*(u(y), =(5) # &

define u(p + 1) = ¢. If p = 0, we obviously have ¢ = u(p + 1) > u(p) = ¢,
since A, # . If p > 0, then by (10), Ar — Uo<e<p—1 U*(u(s), 2(s)) = &,
and hence A, — Uo<s<p U*(u(s), 2(s)) = & for every 0 < h < u(p); since ¢
is the first integer in N satisfying (13), we deduce ¢ = u(p + 1) > u(p). Let
z(p + 1) be an (arbitrary) element in the set (13). Clearly the sequence
(Uu(y), z(5)))jer € U. This inductive argument shows how to construct a
family (U(u(j), 2(5)))jen € U and hence completes the proof of the theorem.

A VARIANT OF THE MAXIMAL THEOREM. Let (A.).en be a sequence of scts
belonging to 3. For every n € N and z € A, let U(n, x) and U*(n, x) be two sets,
the first of which belongs to 3. Suppose that

(14) for each B € 3y and each n € N we have

W U Ulnr)) <=
rEBNAn
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(15) the conditions (2), (3), (4), (5) of the maximal theorem are satisfied. Then
(16) pde) S Cv(X) if A, = ke)NAn.

Proor. loreveryn e N let A, C A,, A, € 3. The previous theorem gives
then

(17) r(U 42) < Ov(X);
neEN

from this (16) follows immediately.

(I1.2) Here (X, 3, u) is as in (IL.1), the clan J, being the set of all 4 €3
for which u(A4) < «. Let 8 be a measure on 3 with 3(X) < . Before proceeding
further, we want to remark that the following is also a consequence of the
maximal theorem.

TrEOREM 1. Let (F.)nen be an increasing sequence of tribes contained in 3.
For each n € N let f, € £1(X, 3, 1) be a F,-measurable function satisfying

(18) B(A) > fA fadu forall A € 5,
For cvery a > 0 we then have
(19) au({z|sup fa(x) > a}) < B(X).
Proor. Define v = (1/a)8; define Ay = {z|fy(z) > a} and
(20) 4, = {x[()sjséxf_l i) < a, fu(x) > a} for n 2> 1.

Clearly the set {z|sup.,en fu(z) > a} equals the union of (4z).en. Let A, = Az
if u(d;) =0, and A, = J if u(4)) = 0. Finally let U(n, z) = U*(n,z) = 4.
for all x € A, and all n € N for which 4, # &. It is then easily seen that the
conditions (1)—(5) of the maximal theorem are satisfied. For instance, (5) can
be verified as follows: let p e N,ge N, p < q lf x € A,and y € 4, N C4,,
then A, # A,; hence, p > ¢, and therefore, A, N\ A, = &; that is, U(p, z)
N Ulg, y) = . Hence the proof is completed.

(IL.3) Let X be a locally compact group, A a left Haar measure, 3 the tribe
of all A-measurable parts of X, and J, the clan of all A € 3 which are relatively
compact. Let u be the essential measure corresponding to \; note that X and u
coincide on 3.

Let U € 3, with \(U) > 0. Yor f locally \-integrable define

(21) fo(x) = x—(lzT) /wfdx.

It is clear that fy is a continuous function; moreover, if f € £1(X, A), then it
is easily verified that fy € £1(X, \) and
(22) Ifell: < (sup A=Al (A = the modular function).

scU

Suppose now that (U,),en is a sequence of sets belonging to 3 and satisfying
the following conditions:
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(3) the sequence (U,), en is decreasing;
(j3) every neighborhood of e contains some set U, with k € N;
(i) 0 < MU, U;Y) < ONU,) for all n € N and some constant C'.
ReEMark. In theorem 2 below we do not make use of condition (jj) above.
Tueorem 2 (R. E. Edwards and E. Hewitt). Let f e £1(X, N). For each
n € N, let f, = fu, (see (21) above). For every a > 0 we then have

(23) ax({alsup fu(@) > a)) < € f 1] dn.
neEN X

Proor. Let v = (1/a)!f].X. Since the Radon measure v is absolutely contin-
uous with respect {o A, the xets in 3 are all »-measurable, whence » is naturally
defined on 3. Let now 4, = {z|f.(x) > a} for n € N. Clearly,

(24) {alsup f.(@) > a} = U A,.
neEN nEN

Yinally let U(n, 1) = 2U,, U*(n, 2) = 2U,U; ' foralln € N for which 4, # &.
Then the conditions (14) and (15) of the variant of the maximal theorem are
satisfied (use also the left invariance of A\, and note that on the sets we consider
here, \ and u coincide. To verify (5), for instance, we reason as follows: let p € N,
geN, p<Lgq If rz€6 A, and y€ A, N CxU,U;", then y ¢ 2U,U;", and
hence y ¢ 2U,U;! (we have U, D U,, and thus UU;' D U;Y). We deduce
2U, NyU, = & (otherwise zu, = yu, for some wu,e 7, u,€ U, which
would imply ¥ = 2uu; ' € 2U,U;1). The conclusion then follows from the
variant of the maximal theorem.

ReMark. Let f: X — R be locally M-integrable and K C X a compact set.
There is then a compact set L C X such that 20U, C L for all x € K. We
deduce f,IK = (for).|K for each n € N (it is clear that we use here notations
similar to those of theorem 2; see also (21)).

CoroLLARY 1. Let f: X — R be locally M-integrable. The sequence (f,).ey
converges to f locally almast crerywhere with respect to \.

Proor. The remark preceding this corollary shows that it is enough {o con-
sider the case when f € £1(X, \). Since the assertion is obvious for f € K(X),
and since X(X) is dense in £1(X, ), the corollary follows from theorem 2 above,
formula (22) and the classical (almost everywhere) convergence theorem of
Banach.

(I1.4) Concerning the subject of this appendix, see also [1], [4], [7], and [15].
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