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1. Introduction

Consider a family of the distributions We characterized by the probability
densities t(x, 0) with respect to a dominating measure u(x) on the as-algebra
of a measurable space (9C, a) with a parameter 0 e Q. Later on SC C En will be
a parallelepiped of the n-dimensional Euclidean space, a the Borel a-algebra;
Q C E&, in general, a compact in the s-dimensional Euclidean space, t(x, 0)
being a function continuous with respect to 0 for a fixed x, and for a given
0-almost everywhere continuous with respect to ,u(x), the Lebesgue measure.
We shall consider the problems of hypothesis testing and unbiased estima-

tion. The first class of problems will be formulated as follows.
Let ll,(0), * * *, WI,(0) be continuous functions of 0 e Q C E,; r < s. The

hypothesis Ho to be tested is composite and consists of the equations

(1.1) ll(0) = 0, * * *, flr(0) = 0

which determine the set QO in the set U.
The alternative H1 to Ho consists of the inclusion 0 e Q\Qo. Sometimes a

Bayes distribution B(0) on y\yo is given; this converts H1 into a simple hypoth-
esis. The last set-up is perhaps not quite natural, but it is convenient for the
primary investigation of the composite hypothesis Ho.
We study the tests of Ho against the alternative H1.
The problem of unbiased estimation will consist in the investigation of the

behavior of the statistics t(x) possesing the mathematical expectation E(Q[0) =
F(0) unbiased with respect to this function in the presence of the relations (1.1).
The way the question is presented above does not, of course, cover all the

important problems of hypotheses testing and unbiased estimation. For in-
stance, the problems of sequential analysis are not covered in this way. But
in the set-up described above we can find a series of problems which are very
interesting and deep from the analytical point of view; some of these will be
considered below. The proofs of the theorems formulated below are rather long
and complicated; therefore it is not possible to exhibit them in this article.
(See [12] for the simplest cases.)
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2. Verifiable and nonveriflable functions

In general, let O(x) be any randomized test of the hypothesis Ho. Form the
power function so(0) = E(4)(x)J0). The hypothesis Ho relates only to the values
of the functions HIl(0), * * *, HI,(0). If the function so(a) is not trivial (that is
not constant), it is characterized only by the deviations of H11, * * -, II, from the
values prescribed by Ho for all 0 e go. In this case we shall say that the hypoth-

is Ho is verifiable in an invariant way by means of the test 0. If such a test
4 p) with a nontrivial power function so(a) exists for the vector function
( ),1(8) *,*XI,(0)), we shall say that the function (II1(0), * * *, HI,(0)) is verifi-
able in an invariant way (more concisely, verifiable). The question which now
arises, given a family (P0 = {t(x, 0)}, is how to describe the verifiable functions
(H1i(0),X * * , Ir(a0)).
This set-up for the first time appeared in 1940 in the work of G. Dantzig [1].

He studied Student's problem (for the repeated normal sample xi, ... , x. G
N(a, a2) to test the hypothesis Ho: a = ao), and proved that, in the terminology
introduced above, HI, = a is nonverifiable. In 1945 a well-known work of Charles
Stein appeared; this showed that the function II, = a becomes verifiable in
the setup of sequential analysis.
At present we have little information on verifiable and nonverifiable functions.

For a repeated normal sample x1, * * * , xn E N(a, a2), with the constant sample
size n we can prove the following theorem.
THEOREM 2.1. The functions Hi = (a/aP) are nonverifiable for p < 1.
The result of G. Dantzig follows from this theorem for p = 0. On the other

hand, it is easy to prove that for p = 1 this property fails to hold; the func-
tion Hi = a/a is verifiable.
To test the hypothesis Ho: (a/a) = yo in an invariant way, it is sufficient to

apply the nonrandomized test o with the critical zone depending only upon the
ratio

(2-1) (E ~~~~(Xi- X

Further, for the Behrens-Fisher problem, given two independent repeated
normal samples Ho: a, - a2 = 0, the function a, - a2 proves to be nonverifi-
able. However, besides these separate results nothing more is known about the
verifiable functions. For the case where (Po is an exponential family (cf. [3],
pp. 50-59) the problem on the verifiable functions is reducible to certain rather
peculiar questions of the theory of the multiple Laplace transforms.

3. Similar tests

The above results, however fragmentary, lead to the conjecture that the
verifiable functions are seldom encountered in the usual problems, and if en-
countered, the corresponding tests +(x) form a narrow class among all the
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tests and do not have desirable properties with respect to their power function.
In view of this we can try to find tests for Ho, eliminating the nuisance parameters
from the power function E(O(x)l) = so(8) only for the null hypothesis Ho, so
that so(@) becomes constant due to the relations (0, 1) implied by the null
hypothesis Ho. We can pose the problem of describing a sufficiently complete
class of these tests and of singling out the optimal ones in some sense.

This problem is linked in a direct way to the theory of similar regions intro-
duced into statistics in a well-known work of J. Neyman and E. Pearson [4],
and the Neyman structures [5], [3]. The last ones can be constructed if, after
introducing the relations (1.1), the family 'Ye is converted into the family A'Y
depending upon the (s - r) dimensional nuisance parameter in the Euclidean
space E.-, and admitting for this parameter suitable sufficient statistics. In
particular cases there are no relations (r = 0), and all the parameters are
nuisance parameters. This problem appears in a natural way if it is required
to test whether a family of distributions {t(xi, 0)} has a density with the func-
tion t of a given type on the evidence of N independent observations xi, * * -, xN,
where the parameter values 0 are different for each observation (the problem
of N small samples). For instance, suppose that we are given N samples from
an exponential family, characterized by the density

(3.1) pe(x) = exp - (OiTi(x) + *-- + 0,T.(x))h(x)
where x e E,, and Ti(x), * * *, T8(x) are sufficient statistics, and s < n. If there
are no relations between the parameters 01, ... , O., we have the complete
exponential family, and all the similar regions have Neyman structure (see
E. Lehmann, H. Scheff6 [7], E. Lehmann [3]). In the problem of N small
samples we can take as an alternative the hypothesis H1 that the family is of
the type

(3.2) pe(x) = exp - [(01T1(x) + *- + 0OT.(x)) + eV(x)]h(x)
where e is a small number and V(x) a suitable statistic. Here we shall have the
same sufficient statistics TI(x), * * *, T,(x).
The case where the parameters are those of the affine transformations of the

repeated sample and similar statistics-the affine invariants-was considered
in detail by A. A. Petrov [13].
Note the possibility of construction of similar domains for certain mixtures

of distributions when we have only trivial sufficient statistics (see [8], [10]).
These mixtures are of the type

(3.3) pe(x) = Ri(T1(x), 0)ri(x) + * + Rq(T(x), 0)r.(x)
where x e Em, 'Y(x) e E,, (n < m), and the densities pe(x) are taken with
respect to a dominating measure u(x); q > 1 is an integer, and Rj, r are measur-
able for j = 1, 2, q, and

(3.4) Jf IRj(T(x), 0)(rj(x)[ds(x) < oo (j = 1, 2, * , n).
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For q = 1, the pe(x) become the well-known families possessing nontrivial
sufficient statistics.
We return now to the family (e subject to the relations (1.1). If we can

construct under such requirements nontrivial similar regions, they will lead us
to the nonrandomized similar tests 4l(x) of a given level a E (0, 1) for which
we have
(3.5) E(0i(x)JHo) = a.

For a randomized similar test +(x) only this condition is obligatory; in general,
its distribution may depend on nuisance parameters. As is well known (see [3]),
the randomized similar test can be converted into a nonrandomized one of the
same level a, if a new random variable CU is introduced which is independent
of the observation x and uniformly distributed on the segment [0, 1]. Then the
test 0* with the critical region cU - c(x) < 0 will be nonrandomized in the
space {fu} X {x} and will be similar with the same level a as the initial test.

Let our family aPo = {pe(x)} admit nontrivial sufficient statistics

(3.6) T = (Tl, *--, Tk)

where k < n (we suppose that no pathological situations as described by D. Basu
in [9] arise).
Then the transition from the randomized tests +(x) to the nonrandomized

ones does not require the supplementary random and uniformly distributed
variable CU; it can be constructed by means of the observations relevant to
the problem.
Suppose we are given a randomized test +(x) of level a. Form the expression

(3.7) +1(T) = E(0(x)JT).
It will also be a similar level a test measurable with respect to the ai-algebra of
sufficient statistics. Moreover, take a measurable scalar function V(x) and form
the conditional distribution
(3.8) F(yJT) = P(V < y T).
This distribution does not depend on 0. Suppose that for almost all the values

of T, the function F(yJT) is strictly monotone with respect to y. Then, as is
well known, the transformation Cu = F(VIT) gives a random variable Cu which
for almost all given T, is uniformly distributed on [0, 1].

If we define now the nonrandomized test +*(x) with the critical region
cu - k1(T) < 0, then it will depend only on the observations x E X and will
be a similar level a test. In general, its power function will be the same as that
of the initial randomized test +(x).

Hence, in the construction of the tests which do not depend only on sufficient
statistics, there are no essential differences between the randomized and non-
randomized tests; one can easily pass (in principle, at least) from the former to
the latter without changing the power.
However, if we restrict ourselves to the tests depending only on sufficient
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statistics, this difference becomes essential, and the construction of nonran-
domized similar tests becomes difficult, as we shall see further on in the example
of the Behrens-Fisher problem.

If there are nontrivial sufficient statistics T = (T,, * *, T,) then instead of
arbitrary tests +(x) we can consider the tests 41(T) equivalent to them with
respect to power. These are determined by the formula (3.7) and depend only
on sufficient statistics. In what follows, we shall consider only such tests, and
this basically for incomplete exponential families.

4. Similar and unbiased tests for incomplete exponential families

For incomplete exponential families, the principal analytical tool for describ-
ing the similar and unbiased tests and unbiased estimates can be obtained from
the theory of the ideals of holomorphic functions and the theory of analytical
sheaves connected with them. Similar tests generate an analytical sheaf of
ideals, and their description can be effectuated by means of "theorem B"
of H. Cartan on the behavior of the first cohomology group [11].
To single out the cases where the similar tests are described rather simply,

we first impose certain requirements on the structure of exponential families
and the relations formed by the null hypothesis, and then we shall weaken
these requirements.

Conditions upon the exponential family. The exponential family is given by
the density, with respect to the Lebesgue measure, of its sufficient statistics

(4.1) Pe(T7, * *, Ts) = C(O) exp {01T1 + * + 08Tj}h(T1, * ,).

Denote by 3 C E, the range of values of the sufficient statistics (T1, T8).
The conditions required are the following.

(I) There is a number s, < s (s, might be equal to 0) such that
h(Ti, *- *, T8) = 0 if at least one of the variables Tj < 0, (j = 1, 2, * , Si).
This defines the carrier 3 of the function h(T1, * * *, Ts).

(II) In all interior points of 3, the function h(T1, *--, Ts) does not vanish
and has there continuous partial derivatives. Moreover, in the domain J. C 3
defined by the inequalities T, < E and T, 2 e for any e> 0, we have the estimate

(4.2) a In h + *nh+|lnh 0=°(1 + 1)T1+.T..+ aT8 (,a
where a < 1 is a constant.

(III) The integral f ... f Po(T1, * T*, 7s) dTj ... dTs is absolutely con-

vergent for a = (01, ,0s) c d whered is the product6P = R, X * X Rs, X
Ss,+, X ... X Ss of si right half-planes Re Oj > 0 anld (s - si) strips
0 < Re Oj < Aj. (Of course, any open vertical strip can be reduced to the type
of the strips Sj by shifting the parameter values.)
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Conditions upon the null hypothesis Ho. For real points 0 = (01, * , 0.) E (P,
the null hypothesis Ho is determined by r < s relations

(4.3) IIH(l, * * ,* 0) = 0; Hr = (01, * * O.) = 0.

The functions III, - * *, IIr must be real for real (01, * , 0k). After multiplying
by [(O, + 1) ... (D. + 1)]-N where N is a suitable number, the functions
Hi, * * *, Hr must become functions of (1/0k + 1), * - *, (1/0C + 1) holomorphic
on the closure of CP, that is on 5 (including the points with 0, = X ).

(Such conditions are always fulfilled, for instance, for the case of polynomial
relations, which often appear in statistics.)
The null hypothesis Ho consists in the fulfillment of the relations (4.3) on the

compact S2 of real numbers, defined by the inequalities e, < 0j < Ej; Ey < Ai,
(j = 1, 2, - * *, s), for e, sufficiently small. The corresponding set of points will
be denoted by Qo. The alternatives to Ho consist in the inclusion (1, - - *, 0C) E
U\Ro. The alternatives are provided with a Bayes probability measure B(O)
defined on Q\Qo which converts them into a simple hypothesis. For the test 4
similar with respect to Ho we introduce the Bayes gain

(4.4) W(0IB) = full' E(010) dB(D).

Further conditions on the relations. (I) The equations (4.3) considered in the
complex domain must generate there an analytical set of points V..... which
can be decomposed into a finite number of disjoint components V"1....., each
of complex dimension (s - r) and each containing inside a connected set G1 I,
of real points entering into go and having a real dimension (s - r).

(II) rank |In' = r inside (P (i = 1, 2, * , r;j = 1, 2, * , s).

We can consider the similar tests O(T1, *--, T.) of the null hypothesis Ho
depending upon the sufficient statistics only. As 'was explained above, any
similar test is equivalent to such a test. We can now give a description of an
"everywhere dense" family of similar tests.
A simple case of an analogous set-up was considered by Robert A. Wijsman

[27].
THEOREM 4.1. For a given e > 0 as small as we please and for a given level a

similar test 4 = O(T1, * *, T.), we can indicate the similar test 4.e = 4.(T,, * * T.)
such that

(4.5) IW(4.[B) - W(4IB)I < e
for which we have the representation

(4.6) ,(T1, * , T) = at +
I (AtHi + * + A*,Hr).

Here Aj = Aj(T), (j = 1, 2, * , r) are pre-images of the functions
][ (01, . . .

, 0.-(N+1)
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for a one-sided Laplace transform and the asterisk * is the convolution sign. The
functions H1, * , Hr have a prescribed number of partial derivatives and have the
estimate

(4.7) Hj(T1, T.*8) = O(exp ¢(!T,I + + IT. ); j = 1,2, --, r

where r > 0 is as small as we please. If i is one of the numbers 1, 2, * , si and
Ti < 0, then Hj(T1, * - - , T.) vanishes.
This theorem enables us to solve, at least in principle, the problem of the

choice of the "e-optimal" similar test for a given Bayes distribution B. To find
an E.-optimal "cotest" =e=. - a, we look for H1, * * , Hr such that

(4.8) 1(A*I + + A*Hr)

under the restrictions
(4.9) -a < e < 1-a

gives the largest possible value to

(4.10) W(I,keB) = JIn\ E(4v JB) dB(O).
We thus obtain a variational problem with restrictions. For its solution one
can apply the methods of linear programming (see [12]).
We return now to the numerous requirements imposed upon h(T1, *--, TX,)

and the relations (4.3), implied by the null hypothesis Ho. Among these condi-
tions the rather restrictive one is the requirement that h(T1, *--, T,,) 5z 0
inside S.

If we reject this condition, the difference will be only that the functions
Hl, * * *, Hr in the formula should be chosen so that the expression
(4.11) A,H1+ *- + A*Hr
vanishes at the points where h(T1, * , T.) = 0. In this domain we put 4O = a.
We pass now to the structure of unbiased tests of Ho against the alternative H1.

By virtue of the known theorems of test theory (see [3]) in our set-up, the
unbiased tests will form a part of the set of similar tests. Under the condi-
tions of theorem 4.1 we can describe an everywhere dense set among all the
unbiased tests-the set of all sufficiently smooth unbiased tests 9. Namely,
for any unbiased test 4 there exists a 4. E 9 such that the condition (4.5) will
be fulfilled. The general form of the tests of the set 9 is given by the following
theorem.
THEOREM 4.2. Under the conditions of theorem 4.1, any sufficiently smooth

unbiased test can be represented in the form

(4.12) 1a+ E A A'Hij

Ai being the functions defined above, Hi, (i, j 1, 2, * , r) functions of the
same type as the Hj introduced above.
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If the condition about the nonvanishing of h in the domain 3 is violated, we must
require that j,j=1 Ai*AHij vanish at the points where h = 0, and put 0 = a at
these points.

5. Unbiased estimates

As is well known from the theorem of C. R. Rao [15] and D. Blackwell,
in a sense the unbiased estimates cannot deteriorate if "projected" into the
space of sufficient statistics. We shall consider the exponential families (4.1)
and sufficiently smooth statistics depending only upon the sufficient statistics
Ti, * * *, T8 and fulfilling the condition

(5.1) t(Ti, * * *, T7) = O(exp P(JT1I + * + IT4)
for any r > 0. Each such statistic will be an unbiased estimate of E(t[0) = t(O).
If there are no relations, so that the family is complete, the unbiased estimate
of t(6) is unique with probability 1. If there are relations (4.3), then all the
unbiased estimates of 1(0) differ by unbiased estimates of zero x, that is, the
statistics satisfying the conditions E(XI0) = 0 and called U.E.Z. for short.
The set of smooth U.E.Z. with the growth condition (5.1) are described by the
following theorem.
THEOREM 5.1. Under the conditions of theorem 4.1, U.E.Z., which are suffi-

ciently smooth and fulfill the growth condition (5.1) are described by the formula

(5.2) x 1(A*BH + + A*rH,)

in the notation of section 4.
If h vanishes inside 3, we must, as indicated earlier, choose Hj so that the

numerator of the fraction (5.2) vanishes at the corresponding points. Taking
into account the description of all sufficiently smooth unbiased estimates of
zero (5.2) for the case of incomplete exponential families considered by us,
one can establish certain cases of inadmissibility of unbiased estimates. For
instance, A. M. Kagan established that for a repeated sample xi, * , x,, of
a one-parameter family

(5.3) Pe(x) = Co exp - (x - 9)21, k > 2

the sample moments x, am = (1/n) Et=1 xi' for 2 < m < 2k - 2 are unbiased
estimates of the corresponding moments of the distribution which are inadmis-
sible on any compact set of values of the parameter 0. (For the estimate of x
this follows from the well-known theorem of C. R. Rao [15].)

6. Investigations on the Behrens-Fisher problem

In this section are expounded the investigations of Leningrad statisticians
in the period of 1963-1965 on the Behrens-Fisher problem-a classical problem
on the elimination of nuisance parameters.
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First, we shall present the results obtained by applying to the Behrens-Fisher
problem the theory of similar tests for incomplete exponential families expounded
above. The corresponding normal samples will be denoted (xi, * , x,,,) E
N(ac, oi), (y', * *, y,,) G N(a2, oa), and the sufficient statistics x, y, s2, .

Consider the similar tests O depending only on I- l, s 2,s
Introducing instead of x--y, s2, s2 the proportional variables

(6.1) X = x-\y)nin2; u = n1si; v = n2s2
and putting

(6.2) M n -3 m2 = n2- 3 ni, n22 3

Fo = n2u + nv -x,
we can represent all sufficiently smooth cotests q - a in the form

(6.3) 4'(x, u, v)
= xl12U-m1v-m2FoH

= x1/2u-mv-m2Jolofufov Fo(x - (, u - q, v - H( , r) d?dqd
where H = H(%, r t) is a sufficiently smooth function of the three variables.
The cotest ,6(x, u, v) is to fulfill the restrictions

(6.4) -a.< ,(x, u, v) < 1-a.

For a given Bayes probability measure B(O) on the alternatives, the formula (6.3)
gives an e-complete family of tests.
We now pass to the properties of similar tests 1= + , s2,s2) depending

on the sufficient statistics only.
In his well-known article [16], A. Wald considers nonrandomized tests for

the Behrens-Fisher problem, subject to four axioms. The first one requires that
the tests depend on the sufficient statistics only. The second one requires the
invariance of the critical zone with respect to one and the same shift of all the
sample elements. The third axiom requires the invariance of the critical zone
with respect to the contraction or expansion of all the sample elements by the
same scale factor. The fourth axiom of Wald will be formulated later; we con-
sider now the first three. It is easy to deduce from them that the nonrandomized
test O must be of the form:

(6.5) ,=8,

We shall call the general (randomized) test of this form homogeneous; the
description of all homogeneous randomized or nonrandomized tests (tests of
the form (6.5)) we shall call the homogeneous Behrens-Fisher problem.
The fourth axiom of Wald leads to the conclusion that the critical zone of

the nonrandomized test is of the form
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(6.6) (82 > +(02)
where 4,6 is a Lebesgue measurable function. The tests of this type were studied
by R. A. Fisher [17] and B. Welch [18]. Therefore, we shall call them non-
randomized Fisher-Welch-Wald tests. The problem of the existence of nontrivial
similar tests of this type is not yet solved.

In the work [16] cited above, A. Wald considers the tests of the type (6.6)
and constructs approximately similar tests of this type. Raising the question
of the existence of exact similar tests, he makes an attempt to construct tests
with analytical boundary for the critical zone; his calculations are made for
samples of the same size.
The investigations expounded in [19] prove that there are no such tests.

Denote t = (x-P/82), 7i = (s1/s2). Then the boundary of the critical zone is
of the type

(6.7) WII = +(X)-
THEOREM 6.1. For the case of two samples of equal sample size n > 4 there

exists no nonrandomized Fisher-Welch-Wald test with boundary for the critical
zone (6.7) possessing a finite first derivative in the open interval (0, 1) and fulfilling
the Lipschitz condition in a sufficiently large segment of the type [0, 'O7].

Here one can define the number '70 in the following way: o0> 1 so that the
function 0(,q) is continuous in [0, 1]. Denote supo<,<i ,6(X7) = M; then one can
take 70 = 2M + 1.

In article [19] the condition n > 4 was omitted by an oversight.
I. L. Romanovskaia [20] transferred this result to the case of the samples of

unequal sizes. She proved the nonexistence of the nonrandomized Fisher-Welch-
Wald test with critical zone of the type

(6.8) lx-\l+/njn2 > 72
nin(./n2sl + nAs2

where 7 = (n2s /n s2) and n2 2 4. The test is supposed to be similar with
respect to a bounded countable set of values of (a1/a2). The function Al(v) must
be continuous and must satisfy the Lipschitz condition on the segment [0, '70]
and have a finite first derivative in the open segment (0, 1). The number '0> 0
is defined as in theorem 6.1. It is not known whether these conditions upon
4,(q) can be replaced by continuity or measurability only; the results expounded
below cause one to have doubts about it. The method applied in [19] to prove
theorem 6.1 to all appearances can also be applied to study this question, but
the question still remains unanswered.
At any rate, if the nonrandomized test of the Fisher-Behrens-Welch type

exists, it must evidently have a "pathological structure" and bad statistical
properties.
However, for the equal sample sizes one can construct a randomized homo-

geneous test of the type which is similar to the one mentioned above and has
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good statistical characteristics. This test can be obtained by projecting the
well-known Bartlett test (paired sample test) on the space of sufficient statistics
and therefore has the properties of the Bartlett test. There exists a whole
family of such tests. Denote t = (x-y/2), 7 = (s8/s2) as was done earlier;
let c > 0 be any constant; form the expression

(6.9) Z = 2

The test ) = 4(t, 7) is constructed in the following way: if j < cf - 1l, let
4) = 0 (the null hypothesis is accepted with probability 1). If 11 > cft7 - 11,
then z < 1. In this case we introduce the function

(6.10) 4(1,7) = _ 4(r) drmnax (z, 1

where
r (n2) n-4

(6.11) (r) 2) (1r2)

For the test obtained in this way, by changing the constant c, we can get any
level a = E(4)lHo). Note that the zone where O = 0 is bounded by segments
of straight lines passing through the point (0, 1).
We can consider the families of nonrandomized homogeneous tests with the

critical regions of the type

(6.12) t >8 ) 2 c

where the constant c is arbitrary. For the case where t is a continuous function
of both variables, the best results were obtained by 0. V. Shalaevsky [21].
THEOREM 6.2. There exist no continuous functions t of two variables which

generate for each c a similar test of the type (6.12), except for the trivial
case t = const.

It would seem that the continuity condition of the function t could be replaced
by a measurability condition. But in 1964, several Leningrad statisticians
proved simultaneously [22], [23] that this is not so and that for any level
a E (0, 1) there exist measurable nonrandomized homogeneous similar tests for
the Behrens-Fisher problem. More exactly, the following theorem was proved.
THEOREM 6.3. For any level a E (0, 1) and pairs of samples of sizes n1 and n2,

one even and another uneven, there exists a nonrandomized similar homogeneous
test for the Behrens-Fisher problem with the critical zone depending only on

(-Y/s2), (S/82).
Theorem 6.3 can be improved a little.
THEOREM 6.4. Suppose that we are given a finite number K of pairs of samples

of sizes n1i, n2i, (i = 1, 2, ... , K), one even and another uneven. Then there exists
a measurable nonrandomized homogeneous test
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(6).13) = PI S<

which is simnilar for all tlese sample pairs simultanconsly anid hIas a prescribed
level a E (0, 1).
Note that the sufficienit statistics x, j, SI, S2 are choseni for the given sample

pair so that the test of theorem 6.4 will depend on the niumber i of the sample
pair through this.
The articles [22] and [23] constructinig different variants of tests of theo-

rems 6.3 and 6.4 are based on a lemma proved by I. V. Romanovsky anid
V. N. Sudakov.
LEMMA OF I. V. ROMANOVSKY AND V. N. SUDAKOV. Suppose that on a rec-

tangle 0: a < a < b; c < y < d is given a finite number of measurable probabilit!y
densities pm(x, y), (m = 1, 2, * -.** a). Then for any given a e (0, 1) there exists
a measurable function I(x, y) taking only the values 0 anzd 1 such that for almost
all values of x (correspondingly, almost all values of y)
(6.14) E(m)(I(x, y)lx) = a; E(m)(I(x, y)Jy) = a for m = 1, 2, * * M.

Here E(m)( I) is the symbolfor the conditional expectation for the densities pm(x, y).
The homogeneous similar tests constructed have apparently bad statistica]

properties.
For the sample sizes of equal parity the question on the existence of the tests

of the described type remains unanswered.
We remark that the requirement of similarity of the test (and this is all the

more true for the stronger requiremenit of unbiasediiess) canniot always be
conciliated with some other conditions of statistical expediency. In particular,
it is natural to require that the homogeneous test 4) accepts the null hypothesis Ho
with probability 1 if x- l is small in comparison with V\ssl + s2. The following
theorem (see [24]) shows that such a conditioni canniot be conciliated with the
similarity property of the test.
THEOREM 6.5. There exists no randomized homogeneous n.ontrivial similar

test 4), accepting the null hypothesis Ho with probability 1 if

(6.15) </2 ± S eO

where e > 0 is a given arbitrarily small constant.
In [24] this theorem was proved in a somewhat stronger form. We re(uire

from the test 4) to accept Ho if in addition to (6.15) we also have (Ix- Y152) <
1 + qo where x7o > 0 is a given arbitrarily small conistant.

7. Characterization of the tests of Bartlett-Scheff6 type

The Bartlett-Scheffe tests for the Behrens-Fisher problem (see [25]) are based
on the introduction of a new random object which for the null hypothesis
Ho: a, = a2, admits the description of all similar tests as Neyman's structures.
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Namely, linear forms depending on the observations xi, * , Xni; Yl, ...* Yn
are introduced which are independent and whose variances differ only by
constant factors for all values of the variances Ao and o-2. For the simplest case
of the samples of equal size (n, = n2), we can take, for instance,

(7.1) x = x-y; t= (xi-x)-(Y -y), (i = 1, 2, ,n)
and form a test with the critical zone

ni -1/2

(7.2) Ixl (E ) CO

where CO is chosen corresponding to a prescribed level a (the Bartlett test). We
see that D(x-y) = (1/n)(of + a2); D(ti) = (1 - (1/n))( 1 + a2). Hence, the
random vector (X, t4, - - *, 4n) generates an exponential family of distributions
with one parameter (al + a2) and one sufficient statistic which is a quadratic
form and the test (6.2) is a Neyman structure test for this family. The more general
Scheffe tests possess the same properties. This proves that such tests can be
characterized by the requirements which are very simple and natural from the
statistical point of view (see [26]).

Let a randomized test 4 = O(x1, * *, x,n; yi, * , y,n) be defined in the space
of the linear forms x, 4i, 42, * * *, 4, where ys < ni + n2 - 1; moreover, these
forms are statistically independent and

(7.3) E(xlHo) = E(tf!Ho) = O, (i = 1, 2, **,,

THEOREM 7.1. Let there exist a small eO > 0 such that the test 4 accepts the null
hypothesis Ho with probability 1 if for at least one of the numbers i = 1, 2, ...

I,,
we have

(7.4) lxi <

(but it can also accept Ho in other cases).
Then the fractions (a(x)/5(e4)) = ai, (i = 1, 2, * A* ,s) do not depend on a,

and 02; 0 = x2 + E= 1 (M/aj) is the sufficient statistic in the space (x, t4, * *, 4),
and the test 4 is a Neyman structure for this space.
We see that the conditions of theorem 7.1 are fulfilled for the Bartlett-Scheff6

tests. Hence, their characterization as Neyman structures follows from a simple
property connected with (7.3).
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