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1. Definition of random functions from a Poisson process

Let R(t, T) be an ordinary (nonrandom) function of two variables t and TX
which, for example, might represent time. Let us consider instants distributed at
random on the time axis according to the classical Poisson process of density
m (m > 0). Let Ni(t) be the number of these instants belonging to the interval
(0, t) if t > 0, to the interval (t, 0) if t < 0. We shall write N(t) = Ni(t) if I > 0;
N(t) = -N1(t) if t < 0, so that N(t') - N(t) represents the number of instants
belonging to (t, t') whatever may be t and t' (t < t').

The following well known results should be recalled:
(a) N(t) is a random function with independent increments, taking integer values,

and is almost certainly nondecreasing.
(b) The probability that the number of instants belonging to any finite interval

of time be infinite is zero.
(c) The distribution in the time of these instants is stationary.
(d) m is the expectation of the number of instants belonging to any interval of

amplitude 1.
(e) The probability that the number of instants belonging to any interval (t, t'),

t < t', be equal to n is equal to
e-ma (m 5) n

n!
where 6 = t'- t.

Calling T1T25 .. . ..ri.
. the instants of an interval (to, t), (t > TO), different

applications, for example, the phenomenon of noise in electronics, lead to a con-
sideration of random functions of I defined in the following way:

(1) ~~~~~X(t) = R (t, )X

which may be written as

(2) X (t) = JR(t, T) dN ( r) .

More generally, we shall consider

(3) X(t) =] R(t, r)dN(r),

and we shall denote random functions of this kind, that is random functions from
a Poisson process, by P.r.f. The study of these functions has been developed by
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several authors, in particular, Blanc Lapierre [1], Kac and Hurwitz [3] and Maru-
yama [2]. But it is possible to extend, to simplify and to complete their results; this
is the purpose of our paper.

The first point is to give a precise definition of integrals (2) or (3). They exist
only if R(t, T-) satisfies some conditions which depend on the sense (integral with
probability one, integrals in quadratic mean, . .) attached to the integrals (2), (3).

Let R(T) be a function of r. We first consider the integrals

(4) X<= R (r) dN(T),

where a and ,B (a < ,) are any finite, given constants. Denote by assumption HI
the assumption that R(Tr) is a definite function which is P-measurable on (-X,
+ X ) and finite, except perhaps on a set of measure zero.

1.1 Integrals with probability one. We can give to (4), considered as an integral
with probability one, two different meanings.

(a) Except in cases whose probability measure is zero any trial e assigns to N a
finite number n of jumps (Tr, . .r,r) between a and ,B. It is known that if
N(3) - N(a) = n, the Tj are independent and follow the uniform law on (a, p3).

We can consider the sum E R(Tj), and it follows from assumption H1 that with

probability one this sum exists and is finite. Then the formula

(5) X.<= ER(Tr) for e

defines a random variable that we may consider to be, by definition, Xa.
(b) We can define X.e as the stochastic limit, if it exists, of a Stieltjes-Riemann

k

sum of the following type: JR (Q,) A8N, obtained by dividing (a, 13) in partial

intervals by points to = a, < ... , < t, < ta+1... ., < tk = , putting A.N =
N(t.) - N(t8_1), C. being chosen arbitrarily (not at random) on (t.-1, t.).1 The
limit is obtained when sup (t8 - t8,.) -+ 0. It is necessary that this limit exist and
be independent of the division points (t8), and of the choice of the th's. Definition
(a) is more suitable to the physical origin of the considered integral. Definition (b)
is more suitable to the usual definition of stochastic Riemann, or Stieltjes-Riemann
integrals, but it requires an additional condition on R(Q.), in order that the inte-
gral exist with probability one; indeed for a trial e such that N(3) - N(a) = n,
if sup (t. - t1) -O 0, there will be a time when (5) will be confused with

(6) 'R

j denoting a number which tends to Tj, but in an arbitrary manner. In order that
(6) has, with probability one, a limit independent of the choice of the h's, namely
z R(Tr), it is necessary and sufficient that the set of points of (a, ,B) where R(T)

is discontinuous be of measure zero. Let H2 denote the assumption that the points
I We may consider choosing the t's at random.
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of (-, + X ) at which R(r) is not continuous form a set of measure zero (H2 im-
plies H1).

It is seen that whatever may be a and j3, the integral with probability one
(4) exists in the sense (a) if H1 holds, and in the sense (b) if H2 holds. Now let H3

+co

denote the assumption that J |R(T) dr < + - (this integral is a Lebesgue

integral). Let A be a random variable following the uniform law on (a#), and
consider the random variable R(A). If H3 holds, the expectation of R(A) exists

and is ,/, - a, where ,u = fR(r)dr. It is seen that when N(3) - N(a) = n,

the conditional expectation of X.# exists and is nu/l - a; then, the a priori ex-
pectation of X.g exists, and is m,u. This is true with definition (a) as well as with
definition (b).
Now let X be the integral with probability one,

+ao(7) X=J8R( T)dN(T) .

We will define it as the limit with probability one, if it exists, of Xp as a tends
to - o and , tends to + o independently. It follows from a classical theorem
that X exists in this sense if H1 and H3 (or H2 and H3) hold. It is seen that the
expectation of X exists and is the limit of the expectation of X.#, so it is equal to

mjf0R(r)dr.+ao

1.2. Probability law of X4 and of X. In the case in which assumption H1 (or H2)
holds, let a be a given number and consider X.# as a function of the variable , (it
is obvious that we can exchange the role of a and ,). Obviously X.#1 is a continuous
in probability random function of ,B with independent increments; indeed, if we
write AN = N(# + A#) - N(#), AX = X -,X+,k,-Xag we get AX = 0 as
AN = 0; but the probability of AN = 0 tends to 1 as AO -- 0. We then have as a
result, that the probability law of X.# is an infinitely divisible law and then the prob-
ability law of its limit X is also an infinitely divisible law.

Let 0(v) be the characteristic function of R(A). The conditional characteristic
function of X.# as N(O) - N(a) = n is obviously [@(v)]". Then the a priori char-
acteristic function of Xp is

e-CO- m- (j-a)m)(v)]"=exp{m(#-a)[0(v) -1] }-

The logarithm 6'B(v) of the characteristic function of X.#, is

(8) ,aB(v) =m(fl-a)[0(v) -1] =m/,; [ eive(.)-1 dr.

From this there results, and it is easy to verify directly, that if not only H1 (or H2)
holds, but also H3 holds, the integral

eir() II dr .<
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converges as a and ,B tend independently to - - and + - respectively. Hence,
the logarithm +(v) of the characteristic function of X is equal to

+coD

(9) + (v) = mf/ [ ei R(T)-1 I dT.

These results will be useful. We see that they permit the computation of the mo-
ments of X. and of X, when they exist. In particular the "cumulants" of X, when
they exist, are easily computed from the integrals

+cof- oRn(r)dr.
1.3. First generalization. Let Ri(T), R2(r), . . . , Rk(r) be k functions such that

H1 (or H2) and H3 holds. The k random variables

Xi= Rj (r) dN ( r) (integral with prob'ability one)

are not independent. Let 4,t(vi, . . ., vs.) be the logarithm of the characteristic
function of the k-dimensional distribution of the k-dimensional random variable
Z = (X1, . , Xk). Let us set

Y = VIXI + . . . + VkXk

We have 4&(v1, . . . , vk) = log tE[e"]1.

Y =f [vR1 (r) + . . .+ Rk(T) dN (T) = R (r) dN (T),
where R(r) = viRi(T) + . . + VkRk(r)-

For any system (vI, ., Vk) with vj's finite, R(T) satisfies H1 (or H2) and H3;
hence, from (9)

(9') Vl( v1 , Vk) = mJ [ ei[vlR,(T)+. .+VkRk(T)] - 1] d r

This expression can be used to compute the moments of Z.
1.4. Second generalization. In the integrals (4) or (7) we ascribe, to a jump of

N(T) at the abscissa T, a given extent R(T). We may imagine that this extent is
chosen at random; in other words we may attach to each value of T a random
variable Y(T) and consider the integrals

X/ =fJ Y (rT) dN ( T) X, = j Y (T) dN(-T).
X', may be defined (definition a) as equal to S Y(Tr) for a trial e, in which the

jumps of N(T) between a and , occur at the points T1, . . . , Tj, . . . , and X' may
be defined as the stochastic limit of X,', as a -C - c, 3 -* + co. If the Y(T)'s are
mutually independent, the law of X', will be again an infinitely divisible law, and
also the law of X'; besides it may be sufficient that Y(r) be defined except on a set
of values of measure zero. Let us make the following assumptions: except perhaps
on a set of values of measure zero, Y(T) is defined; E[ Y(T) I ] and E[VY(T)] exist and
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are e-measurable functions of r; X' exists as the limit almost certainly of X, and

+coE(X')=mfr E[V(r)]dr.

Let us call O(T; v) the characteristic function of Y(T). Assuming that, for any v,
O(T; V) is an e-measurable function of T, we obtain for the logarithm *'(v) of the
characteristic function of X' P+OD
(10) 4"(v) = mf [( , V)-( 1] d Tr.

As an example let F(u) be a distribution function such that
+co

F(0) = 0; f udF(u) =X.
P+oD

We have f udF(u) > a[1- F(a)], so that the existence of the expectation X

implies that
a [I1-F (a) ] Oas a +co.

Suppose that Y(r) be such that

Pr [Y (r) = 1] = 1 - F (t - T),
Pr [Y (T) = 0] = F (t - T)

when r < t, and Y(r) = 0 almost certainly when r _ t; for example X' might
represent the number of conversations which are being conducted at time t in a
telephone center, if it had no loss. Let F(u) be the distribution of the length of the
conversations. We have

0 (r, v) = eiv+ F (t -r) [1 - ei] if r < t.

(Tr, V) = 1 if T7 t .

It is easy to verify that the above assumptions hold, and that

4' (v) = mX [eiv- 1],
so that the number of conversations conducted follows a Poisson law.

1.5. Integrals in quadratic mean. We may also consider the integrals (4) and (7)
as integrals in quadratic mean. We. shall call H4 the assumption that R(T) and
R2(T) are integrable in the sense of Riemann on (-X, + cx). Suppose that H4
holds (this. implies that H1, H2 and H3 hold), and let us consider the Stieltjes-Rie-
mann integral (5). To prove that this integral converges in quadratic mean, we
must prove that

E[j [R (t.) -R(Q) I A.N ]

where ,, . are arbitrary numbers on (t4-, t.), tends to zero as the supremum of
(t,- tj) tends to zero.

If we write u8 = R(%8) - R(,), the considered quantity may be written as

mE U2 (t,,-t._1) + m2[ us (t,- t-1) ] -m2[ U2 (t,-t.,_) 2]
888
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which, under assumption H4, tends to zero. We see also that

E[j ER(Q.)AN ] mf'R2(r) dr+m2[JR(r) dr.

Then this last quantity is the second moment of X4. It follows that if a--
and P -- + o (independently each other), X.# tends in quadratic mean to X, the
second moment of which is

(11) mJo R2(T) dT+ m2[ R(T)dr]

Remark. It may be noted that the continuity of R(T) is not necessary to obtain
the above and following results; nevertheless, we know that a Riemann integrable
function is continuous almost everywhere.

1.6. Another point of view. Set

N* (t) = N (t) - EN (t) = N (t) - mt.

In many applications we have to consider not X. and X, but the quantities

(4') X*=J-R()dN*(r) and X*=J R(r)dN*(r).

The integration in quadratic mean leads us to a study of

E[(K ua,AN*)2] = m U.2

If we call H5, which is much less restrictive than H4, the assumption that R2(r) is
integrable in the sense of Riemann on (-x, + c-), it is easy to see that a sufficient
and also necessary condition for the existence in quadratic mean of X* is that

- ~~~~~+co
(11') E[X*] =0, E[X*21 =mf R2(r) dT.

Suppose only that J
c R2(T)dT exists in the sense of Lebesgue (assumption H',

less restrictive than H5). X. and then X* exist almost certainly [in the sense
of (a), p. 21, and we have

E [X* I =0, E [X@] =mf R2 (r) d Tr.

Then X* exists as the limit in quadratic mean of X*,, and (11') has a meaning.
1.7. Conclusion. Obviously, it is sufficient to apply the above results to solve

the problem of the definition and of the existence of the P.r.f. X(t) defined by (3).

2 Convergence to a Laplace law

Suppose that m -4 + X. What are the conditions under which the law of X con-

verges to a Laplace law? That is to say, what are the conditions under which there
exists a number a, and a positive number b (depending on m) such that

(12) lim [#(v/b) -iav/b] =-v2/ 2
m-4 +co
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/,(v) is given by (9). Suppose that H4 holds. Differentiating under the integral
sign, we get

I'(v) = imfn R (T)eivRC()d T, 4'(O) = imf R(rT) dr,T
ao _ao

+ co + co

v) = - mf-C R2(T) eivR(T)dr,T I"(0) = -mfc R2 (T) d T.

We note that the differentiations are justified, that ,"(v) is a uniformly continuous
function of v.

Setting
/1Jl= R (rT) dTr, A2 fJ R2 (rT) d X,

we get
6(v) =im,lv -2 A2V2+ V2W( v),

where co(v) -O 0 as v 0. Excluding the noninteresting case JA2 = 0, we see that
(12) holds when

a = mAl; b = +/m,2
Remark. It is easy to extend this result to the case considered in the second gen-

eralization above, but we shall consider the case of the first generalization. As-
suming that H4 holds for Ri(T), , Rk(T), the same method shows that if

+x +OD

j = X Rj ( T) drT Xcoj8 Rj ( T)RJ ( T) d T

the k-dimensional random variable made up of the random variables Xj miA
tends as m -- + -, to a Laplace variable; indeed, the logarithm of the charac-
teristic function of its limit distribution is

A.j,,ViVj is a definite positive quadratic form of the vj's if the Rj(T)'s are linearly
3,8

independent, because

E E-Xco .

2.1. Another point of view. We may have the convergence to a Laplace law under
different conditions. X.# being a random function with independent increments,
may be considered as the sum of independent random variables. Then, as a -+ -

,B -f + o, it will be asymptotically a Laplace variable, at least under some condi-
tions which may be easily found from the general theory of the convergence of a
sum of independent random variables to a Laplace variable. For example, let
Ri(T) . . . Rk(r) be k functions such that Rj(T) and RI(T) have finite Riemann in-
tegrals on any finite interval (a, ,3), (j = 1, 2, . .. , k), but

R2 (T) d T + o.
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Let

/I Rj(,rT) dT, = Rj( T)R. (T)dT X

and suppose that the limits

lim Mj,a = 's (j, S 1, . * * X k)

exist (clearly they exist and take the value 1 ifj = s).
Let Si be the subset of (a, ,) on which

jRj(T) >e<,
and suppose that whatever may be j and e, we have

JRj (T) d T
lim Xi, -=0.

From (9') it is easy to show that the k-dimensional random variable composed of
the set of random variables

iRj(r)dN (T) m,4u
a

has a distribution which tends, as a -cx ,a + a,to a k-dimensional Laplace
distribution whose logarithm has the characteristic function

-2 ( Mis .

A result of the same kind may be given when one of the limits a, # is a constant
and the other tends to infinity.

Remark. Above and below we suppose that the functions R(t, r), R(ir), Ri(T)
are real, but it is not difficult to extend the results to the case where R(Tr), Rj(r),
R(t, r) are complex functions.

2.2. Application. Tt is sufficient to apply the above results to get the main re-
sult concerning the P. random functions found by Kac and Hurwitz, Blanc La-
pierre, and Maruyama. For example, let us consider the random function X(t)
defined by (4'), and suppose that, for any t, R(t, T) considered as a function of 'r
verifies the assumption Hg.

X*(t) =f R(t, T) dN*(rT)
-co

defines a random function of t. The expectation of X*(t) exists and is zero.
Its variance is

r+cO2[X* (t) I mfJ R2 (t, r) dT = ma2 (),

where
+co

a, ftcoJ RI (t, T) d T .
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It follows that X*(t) is a random function of second order; its covariance r(t, t') is
found from (9') by setting k = 2, R&(r) = R,(t, r), R2(T) = R(t', r) in (9'). Per-
forming the substitution, we have

+co
r (t, 1') = mJ R (t, T)R (t', t) d T = m,u2 (I, t')

where

(13) pA2(t, t') = f R(t, r)R(t', r) d T.

In the particular case (very important in the theory of noise) of (2), where
R(t, T) = R(t - r) is a function only of t - T, with R(t, r) = 0 for r < to or
T> t, and R(t, r) = R(t - r) for to < r < t, assuming t' > t > to, we get from (13)

p2(, t') =JR (t-T)R (t'- T) d T R (u)R (t'-t+ u) du.

For to =-O, r+x
p2 (t, ') =J R (u)R (t'-t+ u) du,

which depends only on t' -t, and in fact only on t' -t |. Besides, under the same

conditions c2(t) is independent of t. This implies that X(t) = JO R(t - T)dN(r)
is a stationary random function of the second order. This was obviousand further
it is obvious that X*(t) is, more precisely, a strictly stationary function.

In practice m is generally very large, and we saw that, as m -* + -, the tem-
poral law of the process X*(t), suitably normed, tends to the law of a Laplace
process, the correlation function of which is

+co

(14) r (h) =j c R (u)R (u +h) du.

So for any function R(u) satisfying H', the integral (14) is a positive definite func-
tion of h. It is known also that r(h) is a continuous function of h; in other words,
r(h) is a characteristic function. Conversely, given any characteristic function r(h),
we would like to find a function R(u) so that (14) holds. From a classical theo-
rem [5, p. 91] it is necessary that the spectral function F(c) of r(h) has a density
functionf(w) (be absolutely continuous). In this case R(u) exists, and is defined as
the Fourier transform of

g(w) = V7o)
R(u) obtained in that way belongs to L2, that is to say, satisfies H'. Then we can

say that every Laplace stationary process with absolutely continuous spectral
function may be obtained like the "limit" of a P.r.f. as m -> + -.
On the other hand, from the above results, it is easy to prove the classical theo-

rem of Khintchine which states a necessary and sufficient condition that a func-
tion r(h) be a characteristic function is that it be the limit, uniformly over every
finite interval, of a function of the form

+co

fcoR(u)R(u+hk)dh,
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where +co
f I R (u) I 2du= 1

(integrals in the sense of Lebesgue).
2.3. Another application. The convergence to a Laplace process may be easily ob-

tained for random functions of the following form:
+co

XI () = c Y (t, T) dN ( T)

where Y(t, r) is a random variable (compare 1.4). Let us take, for example, the
case in which X'(t) is the number of conversations in a telephone center without
loss, operating since t = - (compare 1.4).

Putting X'(t) = mX + VmXZ(t), we find that the law of Z(t) tends, as
m -4 + -, to a stationary Laplace process, the correlation function of which is

(15) r (h) IXi -F (u + k) I du = ; [I1-F (u) ] du, h > O

[if F(u) = 1 - e-u, then r(h) = e lhl].
For h > 0 this function r(h) is monotonic, nonincreasing, lim r(h) = 0

d[r(h) does ntt vanish], d r(h) exists.

d 1

r'(+ ) r= h -I-()1

and
r' (-h)=r ' ' (h), h> 0 .

For h > 0, r'(h) is monotonic, negative and r'(+ co) = 0. From these results, it
is easy to give a new proof of a theorem of P6lya [6, p. 115].

3. Transforms of a random function
Suppose that the random function X(t) represents a voltage applied to the input

of a quadratic detector. It is known that the response voltage is then [X(t)]2;
therefore, we are led to the following problem:

Let V(x) be an ordinary function of x defined in -o < x < + -, and let X(t)
be a random function, not necessarily a P.r.f., Y(t) = V[X(t)] is a random func-
tion. The problem is to study Y(t), knowing X(t). The main problem is generally
to find the temporal law of Y(t) from the one of X(t). This last problem has been
considered by Blanc Lapierre who proposes to evaluate the moments of the ran-
dom variable Y(t) and, more generally, those of the n-dimensional random variable
[Y(t1) ... Y(tQ)]. About this computation we make the following remark: Let us
suppose that there exists a function U(v), the Fourier transform of V(x), such that

+Vo
V (x) ,J eivTU( v) dv.
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Let k(ti, v1; t2, v2; . . . -; tnvn) be the characteristic function of the n-dimensional
random variable [X(tI), .. , X(tj)]. We may write formally

(16) E [ Y (ti) Y (t2) . . . Y (tn)]
=E I V[X (t) I X V [X(t2) ] ...X V[X (tn) I

=E [ jc e 1x(t~) U ( vD) d vj . . X [ fr eivnX(tn) U ( v,n) dvn]v

= ElE f(".h..fexp i [ viX (ti) +...+ v.X (tn) I U( vj) X.** U( Vn) d v, ... d v.

=J . . .JO(ti, v,; . .. ; t. vn) U( V,). ... U(vn) d v, ... d v..

It is easy to extend this result to the case in which the tjs are not all different.
Then we have the formula to compute any moment attached to Y(t), from U(v)
and the characteristic 4(tl,vl, . . . ,tn, Vn,,) of X(t). It is easy to give sufficient
conditions to validate the above formal computation. For example, it is sufficient

+co

thatf U(v) dv < + -. In particular it is easily seen that

E [ yn (t) ] f¢ . .Jo (t; v,,.. v.) U ( v, ) . .. U ( vn) d v, d vn .

We may compare (16) and the direct formula (17),

(17) E [ Y (t1) . .. Y (tn) f=J.V..JV(xi) . V (x.) dF (t1, xi; . .; tn, x,X),

where F(ti, xi; ... ; tn, Xn) stands for the distribution function of the n-dimensional
random variable {X(t1), .. . , X(tJ)}. (16) is better than (17) whenever 4(ti, v,;
...; tn, vn) is better known or simpler than F(t1, xi; . .. ; tn, xn), which, in par-
ticular, is the case if X(t) is a P.r.f., since ,(ti, v%; . ; t4, v,,) is then given by (9).

It follows that one may compute the moments of some random variables con-
nected with Y(t), particularly those of the linear functionals of Y(t); for example,
one has often to consider random variables such as

ZT-=TI0 Y (t),dt (stochastic integral),

the temporal mean of Y(t) in (0, T). If this stochastic integral has a meaning, it is
easy to construct a method to prove the result obtained by Blanc Lapierre that

if R(t, r) depends only on t -T, X(t) = J R(t -T)dN(T), and V(x) satisfies
some wide suitable conditions, then ZT is asymptotically, as T -4 + X, a Laplace
random variable.

According to results of section 2 we conceive that the preceding results can in
certain cases permit the study of a random variable of the form

b

(18) H= V[X1 (t) ] dt,

where Xi(t) is a Laplace process of any kind.
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Remark. This leads us to make, incidentally, the following remark. Let V(x) =
x2. Kac and Siegert [4] have shown that if Xi(t) is a Laplace stationary process,
the correlation function of which is r(h), the characteristic function +(v) of H is
equal to [D(2iv)]-/2, where D(X) is the Fredholm determinant of the integral
equation with kernel r(t - T). But this result is not limited to Laplace stationary
processes.

Let us suppose that Xl(t) be Laplacian and real, for instance with covariance
r(t, r), continuous on the finite interval [a, b]. Let (Xi) be the eigenvalues of the
integral equation

(19) xf r (t, T) f (T) dT= f (t) + g (t),
a

and let [fi(t)] be the normed corresponding eigenfunctions
b

f fi (t) f (t) dt = b&j.
Let us set

xi= J i(t) X1 (t) dt in quadratic mean .
a

We know [7, pp. 327-328] that

E [XiXi] =0 if i wd j

-1 if i=j.

xi
(20) rF(t, T) - fi(t) fi( ) for a<t, t<b;

Xl(t) = jfi(t)Xj in quadratic mean for a < t < b, so that

(21) H=X X.

In an heuristic manner we can reason in the following way: Xi has for its prob-
ability density

-xl/2X,i

and the Xi's are independent of each other, so that

<t(v) =E [ eirN =Jl exp j i vx2-X .- . dxj...

the formal computation of which is immediate and gives

(22) 0 (v) = D(2iv)

if D(X) is the Fredholn determinant of the equation (19). This demonstration can
be made more rigorous, but not in an immediate manner. Another method, not
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very elegant, but immediately rigorous, is the following. From (21), we easily get
expressions, in terms of the Xi's, of moments and then of cumulants of H; whence,
a development in series of log +(v) with the following form

(23) log 0 ( v) = i% v",
n

where the vn's are the cumulants of H. On the other hand, let us call rnL(t, r) the
n-th iterated of the kernel r(t, T) [on the interval (a, b)]. We know that

I' (t, T) = Ef~( (
i fT)

At last, let us set

A,, f rn, (t, t) d!t

We know that (cf. p. 237 in [8])

d [log D (X)] = A,-l,
n-I

whence a development of log [D(2iv)-1/2j
(24) log[D(2iv)-1/21 = 2ninA, vn

ogL\$V,J 't~2nV
The identity of the developments (23) and (24) is easily verified; this proves the
equality (22). We have supposed a and b finite, but it is easy to give sufficient con-
ditions in order that the result be yet available for a or b or both a and b infinite.
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