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1. Introduction
The connections between probability theory on the one hand and differential

and integral equations on the other, are so numerous and diverse that the task of
presenting them in a comprehensive and connected manner appears almost im-
possible.

The aim of this paper is consequently much more modest. We wish mainly to
illustrate, on a variety of examples, the interplay between probability problems
and the analytic tools used to approach and solve them.

In the traditional approach a probability problem is often reduced to solving a
differential or integral equation, and once this has been accomplished we find our-
selves outside the field of probability and in a domain where methods of long stand-
ing are immediately available. This approach is far from being exhausted. We illus-
trate it by deriving the so called 'arc sin law' (sections 2 and 3) and certain limit-
ing distributions arising in the study of deviations between theoretical and empiri-
cal distributions (section 6). These illustrations are taken from the domain of at-
traction of the normal law and we are naturally led to the diffusion theory. An at-
tempt to extend the diffusion theory to the case when the normal law is replaced
by more general limit laws is made in sections 7 and 8. We are led here to integro-
differential equations which offer formidable analytic difficulties and which we
were able to solve only in very few cases.

The remainder of the paper is devoted to the reversal of the traditional ap-
proach. This reversal consists in an attempt to utilize the probability theory, both
rigorously and heuristically, to arrive at results about differential and integral
equations. It is in this part that the interplay mentioned above is brought out
most clearly.

As an example of the interplay let us mention the following results which are
discussed in detail in section 10.

Let Q be a bounded three dimensional region and let y E U. Let T = TO (y) be
the total time that a Brownian particle starting from y spends in U.

It can then be shown that, as ,3 - ,

(.1) Pr IT>, -C(y) e -P/)A
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where Xi is -the largest eigenvalue of the integral equation

(1.2) 2iri '-T de = Xo (r)

and C(y) is expressible in terms of the eigenfunction (or eigenfunctions) belong-
ing to XI.
An examination of the method which leads to (1.1) reveals also that, for y C Q,

(1.3) 1 = lilm E(X+Pif (y) pier (r) dr,

where the Xj and soj are the eigenvalues and normalized eigenfunctions of (1.2).
The equality (1.3) expresses the purely analytic fact that the expansion of 1 in a
series of orthonormal functions 5oj(y) is summable to 1 for every y E Ui. This fact
emerges, however, as a trivial consequence of continuity of Brownian motion or,
more precisely, of the fact that a Brownian particle starting at y C Q cannot leave
Q without spending a positive time inside U.

It is true, of course, that (1.3) is devoid of any general interest but the method
by which it is derived can be applied to many other cases. In particular, the classi-
cal result of Weyl concerning the distribution of eigenvalues of the Laplace opera-
tor [section 9] and a somewhat weakened version of the so called WKB method
section 5 can be thus obtained.

2. Limit theorems and functionals
Let X1, X2, . be independent random variables each having mean 0 and vari-

ance 1 and such that the central limit theorem is applicable. Let Sk = X1 + X2 +
. . . + Xk and let V(x) be a nonnegative function of the real variable x. Let fur-
thermore x(r), [x(0) = 0, 0 < T < o] be the Wiener process (Gaussian process
with independent increments). Under comparatively mild assumptions on V(x)' it
can be shown that

(2.1) lim Pr V ( k) < a = Pr V [x (T) ] dr < a.

Thus limiting distributions can be obtained by calculating probability distribution
of Wiener functionals.

It may seem that limit theorems of type (2.1) are of a somewhat artificial na-
ture but it can be easily seen that results of definite probabilistic interest can be
obtained by specializing V(x). For instance if

(2.2) V (x) = +sgn x
2

and t = 1, the sum

kEl \( Vn)
1 The best conditions on V(x) can be inferred from a general result of Dr. M. D. Donsker ancl

will be found in a paper soon to be published in the Memoirs of the American Mathematical
Society.
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represents the number of positive sums among sl, S2, . . . , Sn. The statistical be-
havior of Nn/n is quite curious and the result is

(2.3) lim Prj-< a =-arc sin Va..
n >+- n 7r

In particular, it follows that a = 2 is the least likely proportion of positive sums.

3. Functionals and differential equations

The calculation of distribution functions

(3.1) Prj f V [x (r) I dT< at = a (a; t)

can be reduced to solving an appropriate differential equation. To see how this is
done we restrict ourselves to the simple case,

(3.2) 0< V(x)_M.

Define functions Qn(x, 1) as follows:

(3.3) Qo (x, t) = Vr- e-x'/2t
t O e -(x-t) 1/2(t-r)

(3.4) Q (x, X) J ( - T) V (t) Q. (t, T) d d T.
It is easily checked that

(3.5) =E V [X(T) I dT> = n!f Q,(x, t) dx
and
(3.6) ° _ Qn (xx t) _ Mn tnQ0 (x, t)
Let now

(3.7) Q (x, t) = 1) nUnQn (x, t)
n=O

The series clearly converges for all x, u and t #4 0 and moreover

IQ (x, t) < eumtQo (x, t) .

Due to (3.3) and (3.4) we have

(3.8) Q(x, t) + u ftJ e __ v (t) Q ( X T) dtdr Qo (x, t).
If instead of expectations (3.5) we consider expectations

(3.9) A. (a, b) =E5(j V [x ()]dT) a< x (t) < b,

[that is, we consider integrals not over the whole Wiener space but over that por-
tion of it where a < x(t) < b], we get just as easily

(3.10) Mn(a, b) = n!f Qn (x, t) dx.
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Now, it is clear that

(3.11) Ele`_V[(1)ldr *a< x(t) < b f Q (x, t) dx,

and since V(x) > 0 it follows that Q(x, t) is a decreasing function of u. In par-
ticular,

Q (x, t) < Qo (x, t)
and thus the Laplace transform

(3.12) '1(x)_=(x, s) = ee-8IQ(x, t) dt, s>0,
exists.

If we take the Laplace transform of both sides of equation (3.8) we obtain

(3.13) '1(x) + - eeV d

The integral equation (3.13) is equivalent to the differential equation

(3.14) 2T- [s + UV (x) IT = 0

and the conditions
(3.15) (a) ''-*0 as x-±

(b) ' continuous except at x = 0

(c) V (-O)-' (+0) = 2 .

This derivation may break down for unbounded V(x) (the moments 4in, for in-
stance, may fail to exist). A derivation valid for unbounded V(x) was given by the
author in [1]. Recently Dr. M. Rosenblatt extended the derivation presented here
by first truncating V(x) and then passing to the limit.

The machinery for calculating limiting distributions of type (2.1) is thus es-
tablished. We illustrate it by taking-the example

(3.16) V(x) 1+ sgn x
2

discussed in section 2.
We obtain

'I(x) = -eV2(8+u)x, x>O
e x<>0.

\(x) s e A/2S_, x < O

Thus
1 f= I (x) dx = e -IQ (x, t) dtdx

ViHI- u) = J~~~~~~~~~cooJc

J e Jtj e -adaa (a; t) dt.
Inverting with respect to s and u we obtain easily

o(a;-t) =-arc sin it.
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4. Application to the 'ruin' problem
Let X1X2, . . . be independent random variables satisfying the conditions stated

in section 2. It can be shown [2] that regardless of the distributions of the X's

(4.1) lim Pr { max Sk< a -In =Pr{ maxx (r) < a).

The probability Pr{max x(T) < a} can be calculated by invoking the theory

of section 3.
Let

(4.2) Va (X) =O,x<a
and note that

(4.3) limEe-eufVatz(x)IdT, =Pr{max x(r) < a}
"<>,co I 0OSt!' t

By solving (3.14) for this choice of V(x) we obtain

(4.4) e-"'E e-u vG[z(r)Jd?dt = 1 - e - -

Letting u - X and using (4.3) we obtain
j0 1

J e -'Pr I max x (T) < a }dt=-{ 1-e

and inverting with respect to s we get the classical result

(4.5) Pr { max x (T) <a}= 2 fa/ e u2/du.

If we define Va,b(x) by setting

Va,() , -b<x<a, a>O, b>O ,
Vat() s1, X < - b x > a

we can in a similar way calculate
Pr b-b. min x(T)_ max X(T) <a}

0OSTS' t 0s,se:9
which corresponds to the random walk with two absorbing barriers.

5. An application to differential equations
If V(x) -+ , as x + + and satisfies a few additional assumptions [31 the

eigenvalue problem,.
(5.1) j4,I" - V(x)*I =-x w

where * E L2(-, X ) yields a discrete spectrum. Let

X, X2. .

be the eigenvalues and
*1 (X) , *2 (X)X...X
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the corresponding normalized eigenfunctions. The solution of (3.14) satisfying
(3.15) can be written in the form

(5.2) (x) - j ( *j ( )

(We now set u = 1.) Thus

t w (x) dx = _ )d

Inverting with respect to s, we get
co

(5.4) JQ (x, t) dx = £ eitlj (0) J *j (x) dx.

Thus

(5.5) E -e; VIZ(T) dT a < x (t) < b = 5 e i*tj (0) j (x) dx.

Dividing by (b - a) and letting b -* a we get, introducing conditional expecta-
tions,

(5.6) -ax/2t (t) = a
c

-'ie (0) Ij (a)

The appearance of *j(O) on the right hand side is due to the normalization
x(O) = 0. By a slight extension of the above argument we get

e -(a-t)'/2t E ft V1Z(T) +Vd e-Xit=j (a- *j=E(5.7) e e x~E(e I(t) = a- =

Setting a = t we obtain

(5.8) -L==E e
t

| x (t) = 0 = L e itVEj2 ( )

It can be shown that, as t -O 0,

(5.9) El e-t V[1(,)+ Id& j (t) O I1

and consequently, as I -t 0,
co ~~~~~~1
e- \1,2 ()~>2t

Applying the Hardy-Littlewood Tauberian theorem we obtain

(5.10) E2 VX,_ /

If we integrate (5.8) with respect to t from - to - we get

(5.11) e

xeXit = 2-f E e t V[(T) +tIdd Ix(I) =0 d
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Arguing heuristically, we see that as t -- 0, x(T) being tied down by the conditions

x (0) = x (t) = 0,

is extremely unlikely to become appreciable in the interval (0, t). One is thus led
to the approximation

fE: e vt&v[x() +0-dT x(t) =0 dt f0- tv(E)d
and hente

(5.12) z e- - J e-tv()dt X

If we write

1V =±je7-"2/2d
and denote by B(X) the area of the region

-72+ V(t) _ x

we can rewrite (5.12) in the form

(5.13)~ ~ ~~CL N-Xt 1 Co

e-'dB (X<) .(5.13) e-eXt~ etB()

Assuming enough conditions of V(x) so as to be able to apply again the Hardy-
Littlewood Tauberian theorem we would be led to

(5.14) 1,-.2 B(X), -

The result (5.14) is a weak version of the theorem (proved usually by the ap-
plication of the so called WKB method) that for high quantum numbers the 'old'
and 'new' quantum theories are asymptotically equivalent.
We considered it noteworthy however to point out that this equivalence is, at

least heuristically, a consequence of the intuitively trivial fact that for small t the
Wiener process x(r) tied down by the conditions x(0) = x(t) = 0 is not likely to be-
come appreciable in the interval (0, t);
We shall see in the sequel that a similar heuristic argument leads to Weyl's

classical theorem of the distribution of eigenvalues of the Laplace operator and
that, moreover, the argument can be rendered precise.

From the formula (5.5) we also see (by putting a =-, b = + o-) that for
t-o

( 5. 1 5) El5 eV V [., Id, e-X lt,
where

C= 'j (0) f Tj (x) dx.
X =X, o
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In other words

logE _; v[z(r)]dt j

(5.16) \1 -urn

Thus the lowest eigenvalue can be expressed in terms of integrals over the Wiener
space. It is curious that the classical variational expression

f [V (x) ] + V (x) I (x) I dx
(5.17) X1=mi c

J (x) dx
"Coo

does not seem to imply or be implied directly by (5.16).
The variational expression (5.17) yields as an important byproduct a numerical

method (Raleigh-Ritz) for finding the lowest eigenvalue Xi. Similarly the 'statisti-
cal' expression (5.16) can be made to yield a numerical method. The idea is to cal-
culate

(5.18) E: -

by an appropriate sampling procedure. This can be accomplished by discretizing
(5.18) and calculating by sampling

Ej e /knv (8k/v' )

Initial trials [4] indicate that the method is feasible but much further study will be
needed to fully test its practicality.

6. Applications to statistics
In comparing theoretical and empirical distributions one considers various meas-

ures of deviation. Let X1, X2, . . . , Xn be n independent random variables having
the same continuous distribution ({r). The empirical distribution orn(r) is defined
by the formula

n

(6.1) an ( r) = pr (Xi)

where

(6.2) X
(x) 0, x >

The measures of deviation most commonly considered are

(6.3) = l.u.b. fan (r) - (Tr)
(Kolmogoroff [5]) and

(6.4) coI = f [ -n (r) - a (r) ] 2do- (Tr) .

(Cramer [6], von Mises [7, pp. 316-336], Smirnoff [8]). Limiting distributions VnDn
and non were obtained by various means.
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A generalization of (6.4) is furnished by considering

(6.5) Knf VI 1/n [a.n(r) -ao(T)] }dca('r),
for fairly general V(x).

The distribution of Dna, (o and K, are independent of o-(r) [as long as a(T) is
continuous] and we shall therefore consider the uniform distribution a(T) = TX
0< T-< 1.Set
(6.6) y. (T) = [on(T) - T] -Vn .

Let 0 < ri < T2 < ... < Tk _ 1 and consider the joint distribution of

(6.7) yn (TI), * * *,Y. (Tk) -

By the application of the multidimensional central limit theorem it follows that the
joint distribution of the random variables (6.7) approaches, as n , the joint
distribution of the random variables

(6.8) y (TO , . . ., y

where y(T) is a Gaussian process whose covariance function is

(6.9) E {y (s) y (t) I = min (s, t) - st.

It is worth remarking that also for each n

(6.10) E{y. (s) y. (t) = min (s, t) -s .

It is intuitively appealing that

(6.11) lim Pr{I/nD,<a = Pr{ max y (T) < a
n--+ oo 0:57lOS

and that
(6.12) lim Pr {no < a }=Pr y(T)d<a.

Doob [9] (see also [10]) who used this approach did not justify (6.11). The rela-
tively intricate justification of this step was subsequently given by Dr. M. D.
Donsker.2

The justification of (6.12) and the corresponding relationship for a general class
of V(x) is extremely simple. In fact, let

(6.13) dn,k=f Yy (Tr) dT- y2 (1)

=k frlk [y2 (T) 2 d-

By Schwarz's inequality and (6.1) we have for j± k T-<<k

El y2(r) -

- E[Y.(') ny(j)]'tE+|[Yn(T) +Yn(j ] :5; 2 4j

2 Donsker also points out that using (6.11) one can, by a process analogous to the one used in
his paper cited in footnote 1, justify (6.12) and many more general cases.
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and consequently

(6.14) Et d.,A; }- 3 1k
It follows now almost immediately that

Pr58j <._4"(i) ae < Pr: 'n(,r) dT < a

_ rt1
k

2 (J2)< a + 4 1-

Letting n -o, while keeping k and efixed, we get

Pr sy2 (j) < a-e_q 4
I<k lim inf Pr I Yn (T) dT < a

< lim supPr I f'y2 (rT) dT <a. <Pr jjk1y(k)<a+eq+ -
n-*~0k EVk

Letting k - and observing that e > 0 is arbitrary we get

lim Pr y2 (T) dT < a} =Pr fy2 (T) d T < a

for every a which is a continuity point of the distribution function of fy2 (T) dT.
The fact that

lim Pr: y2 (k) < # t =Pr: yy2 (-T) dT < ,

follows immediately by observing that the sample functions of the y(r) process are
continuous with probability 1. The easiest way to see this is to note, following
Doob [9], that y(T) is related to the Wiener process by the simple relation

(6.15) y (T) = (T- 1) X )-) T< 1, y (1) = 0.

The calculation of the distribution function off V [y ( r) ] d T can be again re-

duced to the differential equation (3.14). Restricting oneself to the case of bounded
V(x) it is easy to check that [10]

(6. 16) E( f(,1V [y ( T) I d )T= n! 2\-f Q.Q(0 1 ),

and consequently by inverting v\27r'(O) with respect to s and setting I = 1 we
obtain

E I Vf22(T) ]dl

Inverting with respect to u we obtain the distribution function off. V [y ( T) I dT.
The result is still valid for a wide class of unbounded V(x) although the proof
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is somewhat more involved. Let us illustrate this theory by considering V(x) =x
[see (6.12)]. Equation (3.14) assumes now the form

(6.17) 2 -(s+ uX2)x =O0

and the Green's function satisfying (3.5) can be shown to be

1 cX D. (-) D. (°)(6.18) 'I'(x) =
1 a~i)~O

2ax/2ir n!Is+ (n+ ) \/-u]I
where

a2-a 2 \/2u
and the Dn(x) are the Hermite functions. We have

'1'(0) 1=2O2)2a V2 s+ (n+l)V2u]
Inverting with respect to s and setting I = 1 we get

(6.19) E) e.v()T 1 LD(° e -(n+1/2) Il2U

=(sin h V2u\ -1/2
- V\2u J

Inversion with respect to u is somewhat tedious but can be accomplished by ele-
mentary means.

The special case V(x) = x2 discussed above can be approached more elegantly
by the use of integral equation. Consider the kernel

(6.20) K (s, t) = min (s, t)-st, 0 _ s, t <I1

and the eigenvalue problem

(6.21) j K (s, t) f (t) dt=Xf (s) .

The kernel is positive definite (being a covariance function) and hence all its eigen-
values are positive. Denote then by

X, X2, ...

and the corresponding normalized eigenfunctions by

fl (t) , f2 (t) , . . .

Let G1, G2, . be independent, normally distributed random variables each having
mean 0 and variance 1. Consider the process

, V\xG,f,(t), 0_t_1.
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It is clearly Gaussian and its covariance function is by Mercer's theorem, K(s, t) =
min (s, t) -st. Thus we can put

(6. 2 2) y (t) = \Lk,S fj (t)

and by Parseval's relation

fy2 (t) dt = E

and

(6.23) E=
( 6 . 2 3 ) , +~~-/1 + 2X

The integral equation (6.21) is equivalent to the eigenvalue problem
1

(6.24) f+- f =0, f (0) = f (1) = 0,

so that
x j= 2

and by (6.23)

E UefYv(t)d T = (sin h /2u) 1/2

in agreement with (6.19).
The method of integral equations can be extended to the calculation of the dis-

tribution of

f p (r) y2 (r) dT, p ( r) > 0.
0

We consider the kernel,
K(s, t) _min (s, t) -stKs, t

p(s)7Vp(t)
and the eigenvalue problem
(6.25) J K (s, t) 1 (t) dt = Xf (s).

Instead of the representation (6.22) we have now
ao

y(t) \ G,jfj (t)

and
aa

'f p()y2(T) d
,01

The integral equation (6.25) is now equivalent to the eigenvalue problem
d2 (_f(t) )+ 1

P (t) ( f (1 f(0) =f(1) =0.

This approach is applicable only to quadratic functionals but the processes can be
quite general. It was first introduced by A. J. F. Siegert and the present writer in
connection with the theory of random noise [111, [12].
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The calculation of
Pr{ max I y ( r) I < a}

can be performed in a manner analogous to that used in section 4. In fact, we note
that

Pr I max I y ( r) < a lim E euVI([-) Id,
0.7.l u ><D

where

V0,)=

o x < a.

This leads to Kolmogoroff's limiting distribution of VnD. but it should be borne
in mind that the justification of (6.11) is of crucial importance. In ending this sec-
tion we should like to call attention to the interesting problem of extending the
theory to the bivariate (or multivariate) case. One can still reduce the theory to
the study of a certain process y(u, v) but because 'time' is now two dimensional
no analogue of the diffusion theory seems to exist. The analogue of nw2 can be
treated by the integral equation method.

7. Extension to some non-Gaussian processes with independent increments

Let x(T) [x(O) = 0] be now a process with independent increments obeying a
symmetric stable law with exponent a(O < a < 2). We thus have

(7.1) E{ eitz(T)} = e-Ifla.

The most important distinction between these processes and the Wiener process, is
that the sample functionsof these processes are discontinuous with probability 1. Let

(7.2) p (x, t) =
o

fe -ize -'I,,lad727r _ c

and consider again the problem of calculating the distribution function of the

functional] V [x (T) I dT.

The considerations of section 3 can be imitated step by step if we put

(7.3) Qo(x, I) = p (x, )

and

(7.4) Qn+, (x, t) f 0

J p (x - T V (t) Q,, (, r) d {drT
_-co

The analogue of (3.13) is now

(7.5) ''(x) +u R (x-,) V(Q,F (E) d , =R (x)
_- coo

where

It will be moe c t to m i2bros i+ o (. b ad a i

It will be more convenient to multiply both sides of (7.5) by ei-rr and integrate
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with respect to x from - - to - . This yields after a few simple transformations

(7.7) (s+ Ra) fJI(x) eixtdx+uf 4T (x) V(x) eix4dx= 1.(77) s fo f'coo
The only case in which we can get an explicit result is when

V (x) = x ><O,
Although the result in this case can be inferred from a general theorem of E. S. An-
dersen [13] we present here an analytic argument because of its simplicity and ele-
gance. The argument, except for a minor simplification, is due to H. Pollard.
We rewrite (7.7) in the form

(7.8) (s+ Pjo) f (x) eitzdx+ (s+u+ f(L)f' (x) ei~-dx= 1

and set, for complex z,

F1 (z) = f0 eiz- (x) dx,
0

F2( Z) = L ei2xT(x) dx.

Fi(z) is analytic in the upper half plane and F2(z) in the lower. Define now the
function 4(z) as follows:

4'(z) = [ 1-uuF1 ( z)] [1 +uF2(- z) ], z in the upperhalf plane
[ 1 -uF (- z)] [ 1+ uF2(z) , z in the lower half plane.

We see that 4)(z) is analytic in both the upper and lower half planes and because
of (7.8) it is easily checked that it is continuous across the real axis. Thus '1(z)
is analytic in the whole plane. It is also seen to be bounded and hence it must be
a constant. Since for real z both Fi(z) and F2(z) approach 0 as z co we infer that

;t (z) e 1

and in particular,
[1- uF1 (0)1 [1 + uF2 (0)] = 1.

From (7.8) it follows (setting v = 0)

sF2 (0) + (s + u) F1 (0) = 1
and finally

F (0)
s + s(s+ u) F2 (0) u+ s- S(+u)

Thus
J i(x) dx = F, (0) +F2(°) = --

- O AN/ s ( s + u

Inverting with respect to s and u we obtain that the distribution function of
rt

f V [x (r) ] dr is

- arc sin

just as in the Gaussian case.
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Unfortunately this method fails already in the slightly more complicated case,

V , xx<a,V1xI, x>a ,

a $ 0, and we were, so far, unable to find any other way to calculate the distribu-

tion function offJV [ x ( T) I dT in this case.
0

8. The "ruin" problem
We shall now discuss an approach to the calculation of the probability

(8.1) Pr - b<g.l.b. x (r) < l.u.b.x (r) _ a}.
0 Tr5 t 0 Sr t

Although this approach can be carried out explicitly only for a = 1 (Cauchy proc-
ess) it throws considerable light on the whole problem. For the sake of simplicity
we shall assume that b = a and thus consider

(8.2) Pr{l.u.b.Ix(r) I < a}.

We follow the idea of section 4 and write

(8.3) Pr{l.u.b. x (r) I < a} = lim E ee o d
oSSt u c

where

(8.4) V(x) =Ob x < a .

We must now make a distinction between the cases a > 1, a = 1 and a < 1.
Let us consider first the case a > 1.

Let g(x) be a function such that

(8.5) g(x)=0 lxj > a,

g (a) = g (-a) = g' (a) = g' (-a) = 0,

g" (x) E L,
and let

h() = fag (x) ei4rdx.

We multiply both sides of the equation (7.7) by R(r) and integrate with respect
to v from to + o. We obtain

(8.6) J (s+ a) h(r) f (x)eidxd g(0).
_co -ao

It is quite easy to verify that (8.6) yields after a few transformations

(8.7) fi (x) [sg (x) -D (a) X -1 d ]Ix = g (0)
where

n z\ _ 1 co cos ,
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As u X (increasingly) I(x) form a nonincreasing sequence of functions whose
limit we denote by *o(x).

Moreover,
0 _* (x) _ e -8'p (x, t) dtfCo

and it can be easily shown that

4Io(x)=0, lx| >a.

Thus we infer from (8.7) that

(8.8) I0 (x) [ sg (x) - D fa g I dt]dx g (0)

for every g(x) satisfying conditions (8.5). From (8.3) we have

(8.9) t e -'Pr{l.u.b.Ix(T) <aIdt=fIo(x)dx(8.9) ~f
"O

0O!,7!gt -a

and the question is, does (8.8) determine Io(x) uniquely. The answer is undoubted-
ly 'no' but we have no proof. The basis for this belief is as follows: If we were to
carry out the above calculations for the Wiener process we would be led to

(8.10) f*o(x)[ sg(x) -gg"(x) ] dx= g(0)
-a

for every g satisfying (8.5). This does not determine Io(x) uniquely. One can,
however, show by a separate argument that in addition to (8.10) 'I'o(x) satisfies

(8.11) lim f-/ o(x) dx = lim !f ,, (x) dx = 0.
e-+OEf-a f-0 fe

Now (8.10) and (8.11) determine o0(x) uniquely and it turns out that

Io (x) = f e-P (x, t) dt,
where P(x, t) is the Green's function of

dP 1 d02P
at 20X2

with the singularity at x = 0 as t -3 0 and subject to the boundary conditions

P (-a, t) = P (a, t) = 0.

This, of course, is in complete accord with the well known facts from diffusion
theory. Now, as long as a > 1, we can still prove (8.11) and hence it is natural to
conjecture that (8.11) together with (8.8) determine Io(x) uniquely.

The situation changes radically when a = 1 (Cauchy process). The analogue
of (8.8) is now

(8.12) .ti (x) [sg(x) P.V.f g' (t) d ]dx= g (O)

for every g(x) satisfying the conditions

(8.13) g (a) = g (-a) = O,
g' (x) E L2 (-a, a) .
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It has been shown by H. Pollard and the present writer [14] that (8.12) yields the
unique solution

1 g (O) g,(a)(8.14) *I (x) --'- I-a1 +2X

where the X's are the eigenvalue and the gj(x) the normalized eigenfunctions of the
integral equation
(8.15) f K (x, y) g (y) dy = Xg (x)
with

(8.16) K(x, y) log 1 -xy+ x2)(1 -y2)

In particular, we obtain in this case

(8.17) Pr l.u;b. a } = I x erIt/2a)gj (0) f, (a) dx.

For stable processes with a < 1 the analogue of (8.8) and (8.12) is

(8. 18) f"P (x) [ S g (X) + ,g (a) f. g' (s1gn (x - t) d ]dx =g (O)

for every g(x) satisfying (8.13), where

, (a) = 2 fl sin rd D.

In this case we conjecture that like in the case of the Cauchy process, (8.18) alone
should yield a unique Io(x).

It might be mentioned that the method3 by which one obtains (8.11) for a > 1,
fails for a < 1. This is perhaps another indication that (8.18) like (8.12) may be
sufficient.

Equations (8.8) and (8.18) were first derived (by a different method) in collabo-
ration with H. Pollard.

9. The multidimensional absorption problem and the theorems of Weyl and
Carleman
Let Q be a two dimensional region bounded by the curve r and consider the

eigenvalue problem
(9.1) 'Au+Xu=0, u=Oon r.

If X1, X2,... are the eigenvalues and ul(x, y), u2(x, y), . . . the corresponding nor-
malized eigenfunctions then according to a classical result of H. Weyl

(9.2) 1, X--+,X ,

Not reproduced here because it is somewhat lengthy.
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and according to a later result of Carleman

(9.3) Wu(x, Y) co\1', (x, y) E -
Xj<x ~~~7r

Here jQ denotes the area of the region U.
These results can be derived heuristically by considerations very similar to those

used in section 5. Let P(xo, yo x, y; t)dxdy denote the probability that a Brownian
particle starting from (xo, yo) will be at (x, y) (within dxdy) at time t without hav-
ing crossed r in the meantime. From the early work on Brownian motion by
Einstein and Smoluchowski it was known that P(xo, yo x, y; t) is the fundamental
solution of the differential

(9.4) ap~~~~APat 2

becoming singular at (xo, yo) as t -O 0 and subject to the boundary condition

(9.5) P=O onir.

Under sufficient restrictions on r it is known that
co

(9.6) P (xO, YO x, y; t) = E e-)Ytuj (xo, yo) u; (x, y) .

As t -O 0 the Brownian particle has had no time to 'feel' the boundary and con-

sequently one might suspect that P(xo, yo x, y; t) is well approximated (as t -O 0)
by the unrestricted fundamental solution. Thus

(9.7) P (xo, Yo x, y; t) 12 t e-[(X-xo)'+(y-yo)21/21
or upon setting x = xo, y = yo

(9.8) P (xo, YoI Xo, yo; t) 12 t ItO .

Using (9.6) we obtain
co

(9.9) Ee- Xt2 (Xo, Yo) 02 O
1 2,7rt'

or by applying the Hardy-Littlewood Tauberian theorem

(9. 1 0) 'r, IU2(xo, Y°) 2X-* o-

This is Carleman's result (9.3).
To obtain Weyl's theorem we integrate (9.9) over Q obtaining

co

(9.11) 1e-Xit , ,

and applying again the Hardy-Littlewood Tauberian theorem we obtain (9.2). This
reasoning which is crude and heuristic can be made precise along the following lines.
Accepting for the moment the probabilistic interpretation of P(xo, yo x, y; t) we
have the immediate inequality

P (xo, yol x, y; t) te2-I(x-x,)'+(v-Y)']/2t
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or, in particular

(9. 12) P (xo, yo xo, yo; t)-2r<

Surround now (x0, yo) by a square S. c Q of side e with sides parallel to the co-
ordinate axes, and denote by rP its boundary. Consider now the probability
P.(xo, yoIx, y; t)dxdy, (x, y)ES6, that a Brownian particle starting from (xo, yo)
will be at (x, y) (within dx, dy) without having crossed rP in the meantime. On
probabilistic grounds it is again obvious that

P. (xo, yoIx, y; t) _ P (xo, yolx, y; t)
or, in particular

(9.13) Pe (xo, yo xoyo; t) < P (xo, yo xo, yo; t)
Now, P,(xo, yo xo, yo; t) can be calculated explicitly and one obtains

(9.14) P. (xo, yo Xo, yo; t)

=4 e-[(m2+n2)72/2.21t sin2MW (Xo Sin2 Y__,e in ~
m,nl e

where (Q, n) is the lower left corner of Se.
By an elementary computation one shows that as t -* 0

(9.15) PC (Xo, Yo xo, yo; t) e21
for every E > 0.

From (9.15) and the inequalities (9.12) and (9.13) we have

P (xo, YoI Xo, yo; t) 12r/
which, as we have seen, yields Carleman's result (9.3). To get Weyl's theorem we
integrate (9.13) over S. obtaining

00

(9. 16) E e -i(m2±nt)r'/2e2]t _ JQfP (xo, Yo x0, yo; t) dxodyo.
m,n=l eS

If we cover Q with a net of squares S. and apply (9.16) to each of the squares we
obtain by adding

(9.17) [ffQ|] P e 1(m'+nZ)T'/262]t < J'JP (xo, yo; t) dxodyo
~2m,n1i Zs,

_ jffjP (xo, yo xo, yo; t) dxodyo,

where [x] denotes, as usual, the greatest integer in x. From (9.12) it follows that

JJP (xo, yo xo, yo; t) dxodyo <

and by combining it with (9.17) we obtain

(9.18) [IQl] y e P (xo jyo xo, yo; t) dxodyo 21-11
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An elementary computation yields

lim te e 2t rt-O m,nI

and hence from (9.18)

2[IflI] < lim inf tffP (xo, yo I xo, yo; t) dxodyo

< lim sup tffjP(xo, yo xo, yo; t) dxodyo <t 0 n7
Letting e 0 we have

lim tffP (x0, Yo I x0, yo; t) dxody0 =o__

and this, as we have seen, implies Weyl's theorem (9.2). Thus a rigorous derivation
hinges on the inequalities (9.12) and (9.13). These inequalities are trivial conse-
quences of the probabilistic interpretation of P(xo, yo! x, y; t). The rigorous justi-
fication of this probabilistic interpretation is, however, not entirely trivial. In par-
ticular, one must make some assumptions about the boundary r.4 The inequalities
(9.12) and (9.13) can also be derived (as was pointed out to me by Dr. G. A.
Hunt), without appealing to probabilistic notions, within the framework of the
classical diffusion theory.

Our approach has a drawback. If, for instance, instead of the boundary condi-
tion u = 0 on r we consider the boundary condition

3lu
(9. 19) =O on r,Oln

the heuristic argument leads again to (9.2) and (9.3). To establish inequalities
analogous to (9.12) and (9.13) (they are reversed in this case) one can again ap-
peal to the theory of Brownian motion except that the 'absorbing barrier' r must
now be replaced by the 'reflecting barrier.' Unfortunately, no rigorous treatment of
reflecting barriers seems to be available. It should, however, be possible to prove
the desired inequalities directly from the differential equation.

It must also be emphasized that our approach is closely related to that of Minak-
shisundaram [16], [17] (see also [181). In two, most important, respects they are
identical inasmuch as both use the diffusion equation and a Tauberian argument.
The difference is that we use the inequalities (9.12) and (9.13) whereas Minakshi-
sundaram uses different estimates. Also, Minakshisundaram [17] goes much
farther obtaining highly elegant analogies between the eigenvalue problem and
Riemann's approach to the problem of the distribution of primes.

The probabilistic approach has the advantage of a strong intuitive appeal mak-
ing the theorems (9.2) and (9.3) almost obvious. It seems almost incredible that
these beautiful theorems are consequences of the crude principle of 'not feeling' the
boundary as t 0 and that their depth seems to be hidden in inequalities like
(9.12) and (9.13) which, on physical grounds, are so immediate.

I A discussion of this problem is being prepared by Dr. M. Rosenblatt and the present writer.
A brief discussion can be found in the recent book of P. Levy [15, pp. 259-261].
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The applicability of the heuristic principle is not limited to the classical case
discussed above.
We have seen in section 8 that for a Cauchy process x(T) [x(O) = 0]

Pr { l.u.b. I x () < a } - e gj (0) fgj () dx,

where the Xi's are the eigenvalues and gj(x) the normalized eigenfunctions of the
kernel

(9.20) log 1-xy+ X(1X2)(1 -y2)

By a slight modification of the argument which led to this result we can obtain
the following: Let P(xo I x; t)dx, - a < xo, x < a be the probability that a 'Cauchy
particle' starting from xo will be at x (within dx) at time I without having left the
strip (-a, a) in the meantime. Then

(9.21) P (xO l x; t) = e/2ar gj (XO) g (x)

By the principle of 'not feeling' the boundary we get

p (xol x; t) ~,,I2 (x-Xo)2' t ,

and by setting x = xo and integrating from -a to a
co

/2 I2ae --r/2aXj,-a 0,

setting a = 7r/2 and applying the Hardy-Littlewood Tauberian theorem we get

or in other words
(9.22)

n

Unfortunately we are unable to prove this result rigorously even though the
analogues of (9.12) and (9.13) are trivially true in this case. The reason for this is
that we do not have in this case the analogue of the explicit formula for P..

10. Connections with potential theory
Connections between the Dirichlet problem and random walk were known for a

long time [19], [20], [21]. Considerable progress was made recently by Kakutani
[22], [231.

In this section we shall be concerned with a particular aspect of this subject.
Let Q be a bounded region in the three dimensional Euclidean space whose volume

l is different from 0.
Let r(t) = [x(t), y(t), z(t)] be the three dimensional Brownian motion [that is,
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x(t), y(t), z(t) are independent Wiener processes] and y a point in space. Let

(I10. 1) V (r) = 1 rEQ
and consider the random variable

(10.2) T_To (y) = J V[y+r (r)]dT.
0

It is clear that T represents the total time which a Brownian particle starting from
y spends in U. It is easily verified that

E{T} =f)TVlr-T dr<<

and consequently T is finite with probability 1. (Here as in the sequel |r - y
denotes the distance between r and y). It is not too difficult to calculate the mo-
ments of T and one obtains

(10.3) Yk=E{Tkj=(ir f. }f dr ... drk.
(27r) n nr,-yj jr2-r1| .. Irk-rk- I

Consider now the integral equation

(10.4) 11(.2 -e s (Q) doe = Xp (r)

and note that the kernel is L2 and positive definite. Denote by Xl, X2,... its eigen-
values and by pi(p), IP2(0), . . . the corresponding normalized eigenfunctions.

In terms of these eigenvalues and eigenfunctions the moments can be expressed
simply by the formulas

(10.5) -= 2 , XI-1fj (r) dr J(-?>j_ d L, k > 1.

If y E Q formula (10.5) assumes the simpler form
co

(10.6) Ak = k j(y) j (r)dr, k> 1.

Let now u > 0. It is easily verified that

(10.7) E e uT}I= - -sk

For y { Q the series on the right is a uniformly convergent series of harmonic func-
tions and hence E{ e-T is a harmonic function of y. If u -* o (increasingly)

lim Et e -uT }=Pr{T=I } = U (y)
UT1o

and hence Prt T = 01 = U(y) being a limit of a decreasing sequence of harmonic
functions is itself harmonic. Suppose now that P is a point on the boundary of Q
which is regular in the sense of Poincare, that is, one can find a sphere through P
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which lies totally inside Q. Let a be the center of this sphere and e its radius. Let
now

~j~ Jr-al <e,
V, (r)

, lr-al >e,
note that

Vp(r) _ V(r)
and consequently

irE -uf cVIr(T)+V]dT~ -ufmE DVP[r(T)+y]dT-~lim E le t r()]]tt< lim Elfe -2r P[ ()+Vd

Thus

U (y) < lim E5loe U (y)

It is not difficult to show that

Up(y) = jy-aj
and thus

U(y)0 as y-+P.

If every point on the boundary of Q is regular in the sense of Poincare, U(y) is
the harmonic function which vanishes at the boundary of Q2 and is 1 at infinity.
From (10.7) we obtain (b = 1/u)

(10.8) U(y) = 1-i1n- E f pi (r) drf j de.
a o faj=I\ Lonl-Y

If y E Q one obtains

(10. 9) 1 = lim î 4 jfqj (r) drjop (y) .

This is a consequence of the continuity of r(T) inasmuch as a Brownian motion
starting from y E Q must spend some time in Q and consequently PrI T = 01 = 0.

It is worth emphasizing that the purely analytic fact (10.9) emerges here as a
consequence of the measure theoretical fact that almost all sample functions r(r)
are continuous at T = 0. If y is on the boundary of Q we still have

( 10. 10) P r {T = 0 } = 1 -liln E(i+i-^pi (r) drpij (y)

we cannot however assert that Prf T = 01 = 0. It seems natural to conjecture5
that if y is a regular boundary point (in the sense used in potential theory)
Pr{T = 0} = 0 but if y is a singular point Pr{T = 01 > 0. The equivalent way
of stating this conjecture is to say that a necessary and sufficient condition for a
boundary point y to be regular is that

1 = linE fpi (r) drpjo(y) .

Consideration of this section enables us also to find the distribution function of T.

6 This conjecture has, in the meantime, been proved by A. Dvoretzky.
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In fact, denoting this distribution function by a($) we can rewrite (10.7) in the
form

(10.1 1) f e da(A) = 1-u aj

where

i 2 j (r) dri d p.
Now, the inversion can be performed by the following simple argument suggested
by H. Pollard.

Dividing by u we get

f(eu vdo.(,3)=a e-uo )( d)d =-- 1+X

We can now invert [24, p. 334] obtaining

(10.12)PrT= '-C aj e-#/xi
Xj=j

or

In particular,
(10. 12) Pr I{T > -8}Ce -a/,,,Bco

That the probability (10.12) goes down exponentially was conjectured by Erd6s.
It should be recalled that Xi is the largest eigenvalue of the integral equation (10.4).

The theory of this section can be extended to dimensions higher than 3. The
principal difference is that the kernels of the analogues of (10.4) are no longer L2.
This difficulty can, however, be circumvented. There is no analogous theory in
one and two dimensions.

11. An application to the integral equation (10.4)
As a final illustration of how probability methods can be used in deriving purely

analytic results we shall consider the problem of the distribution of eigenvalues of
the integral equation (10.4).

Let A be sphere contained in Q and consider

(11. 1) vkf= E(f V [y +r (r) ]d.) , y+r (t)EA (dt,
the symbol EtX, y + r(t) E A denoting the integral of X over the portion of the
sample space in which y + r(t) C A. It is not difficult to verify that

k f1 1 1k+I *f C 1- -d .'1 drkdr, k 2 ,

and hence for y C Q

(1 1.2) V'k =, Xk+lvp (y) fp, (r) dr, k _ O



PROBABILITY THEORY-INTEGRAL EQUATIONS 2I3

Thus

,fE; -uJ$otV[uy+r(r)]dr y+rE(t)A dt= xi pi(Y)JA,, ~ pj()f i()dr.
Inverting with respect to u, we obtain

(11.3) fPr 5 V[y+r(r)]dT>,y+r(t)EA dt
* ~~~~~~~~~~~~~~co

=~ e-"1XiXjpij(y) Jf.pj(r) dr.i=l ~~~A
Let now A be the sphere with center y and radius 5. It can be shown by dividing
both sides of (11.3) by jA = 4/3 7r13 and letting S -a 0 that

(2 r) 3T2f T-3/2 Pr j:V [Y +r (T)j]d T > 8| r(t) =0O dt = e ijzp,j(y)-
Noticing that

Pr f V[y+r(r) ] dr> Ir(t) =0 =0

for t < ,3 we obtain

(11.4) (21 f3/2f 132Pr)f V[y+r(Tr)]dT> |r(t) =O dt

a)~~(y
j=l

Setting t = , and T = /3r we get

12)3f-Pr S V [y +r (#q)]d,>1IrO(#) =O+d
=-, e "~ix4 (y)

j=l

As 00 we see that

(11.5) Prj V [y+r(#,71) ]dq > 1 r(,#t) =0°t * ,

because the Brownian particle starting from y E Q is extremely unlikely to leave Q
in the time interval (0, ,34) (this can be made quite rigorous). Thus

OD( 21r 1

and by the Hardy-Littlewood Tauberian theorem

(11.6) xi(S02(y) .i/2A0
1/Aj<A

By a slightly more complicated argument we also get

(11.7) 1-/ co
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It should be mentioned that the integral equation (10.4), in case the boundary
S of Q is sufficiently regular, is equivalent to the differential equation

(11.8) 4A\ +1 0

and the 'boundary condition'

(1 1.9) X l l( n r

- c] n 1r- L

for every r E Q (r { S).
The heuristic principle of 'not feeling' the boundary section 9 would yield the

asymptotic formula

( 11.10) E ,
-N/2 X3'2X co

and this can indeed be obtained from (11.7).
Set I/X= i/ and note that

E
I

= mAda (A )

where

a(ys) = 1-

Integration by parts gives

E
I (X) X ( d

l/Aj\ OX

From (11.7)

(X)~-T I u X-+co

and consequently

x3 2
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