
CHAPTER 4

INTRODUCING TOPOI

“ This is the development on the 
basis of elementary (first-order) 
axioms of a theory of “foposes” 
just good enough to be applicable 
not only to sheaf theory, algebraic 
spaces, global spectrum, etc. as 
originally envisaged by Grothen­
dieck, Giraud, Verdier, and 
Hakim but also to Kripke 
semantics, abstract proof theory, 
and the Cohen-Scott-Solovay 
method for obtaining indepen­
dence results in set theory.”

F. W. Lawvere

4.1. Subobjects

If A  is a subset of B, then the inclusion function A  ^  B  is injective, hence 
monic. On the other hand any monic function f : C  >-> B  determines a 
subset of B, viz Im f  =  {f(x): x e C}. It is easy to see that /  induces a 
bijection between C and Im f, so C =  Im f.

Thus the domain of a monic function is isomorphic to a subset of the 
codomain. Up to isomorphism, the domain is a subset of the codomain. 
This leads us to the categorial versions of subsets, which are known as 
subobjects:

B
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76 INTRODUCING TOPOI CH. 4, §4.1

a subobject of a ^-object d is a monic Harrow f:a>-*d with codomain d.
Now if D  is a set, then the collection of all subsets of D  is known as the 

powerset of D, denoted 9P(D). Thus

SP(D) = {A:  A  is a subset of D}.

The relation of set inclusion is a partial ordering on the power set 3P(D), 
i.e. (0>(D), c )  is a poset, and becomes a category in which there is an 
arrow A  —» B iff A  c  JB. When there is such an arrow, the diagram

commutes. This suggests a way of defining an “ inclusion” relation be­
tween subobjects of d. Given f :a>^d  and g:b>^d,  we put g iff there 
is a Harrow h : a - ^ b  such that

commutes, i.e. f = g ° h .  (such an h will always be monic, by Exercise 
3.1.2, so h will be a subobject of b, enhancing the analogy with the Set 
case). Thus / e g  precisely when f  factors through g.

The inclusion relation on subobjects is
(i) reflexive; f ^ f ,  since

B

A

b

and
(ii) transitive; if /  c= g and g c  k, then /  c: k, since

c

h

b >------1—► d it f =  g°h  and g = k°i
then f =  k°(i °h).

1 / j
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Now if f  ̂  g and g c  fi then /  and g each factor through each other, as

In that case, h : a b is iso, with inverse i (exercise for the reader). Thus 
when / c  g and g ^ /, they have isomorphic domains, and so we call them 
isomorphic subobjects and write f  — g. Now in order for c  to be anti­
symmetric, we require that when f  — g, then f  = g. This may not in fact be 
so, indeed we may have a Φ b. So c  will in general be a preordering on 
the subobjects of d as defined, and not a partial ordering. If we left things 
there, we would run into difficulties later. We really do want to be able to 
think of c  as being antisymmetric. The machinery that allows this was set 
up in §3.12. The relation — is an equivalence relation (exercise -  use (i),
(ii) above). Each f :a>+d  determines an equivalence class

We are now going to refer to the members of Sub(d) as the subobjects, 
i.e. we redefine a subobject of d to be an equivalence class of monies with 
codomain d. To obtain an inclusion notion for these entities, we put 
(using the same symbol as before)

Here we come up against the question mentioned in §3.12. Is the 
definition, given via representatives of equivalence classes, independent 
of the choice of representative? The answer is yes. If [/] = [/'] and 
[g] = [g'], then /  ̂ g  iff f c g ' ,  i.e. e  is stable under — (exercise).

The point of this construction was to make e  antisymmetric. But when 
[ / ] c [ g] and [g ]■=[/], then / e g  and g c / ,  s o / - g  and hence [/] = [g]. 
Thus the subobjects of d, as now defined, form a poset (Sub(d), e ).

This lengthy piece of methodology is not done with yet. It now starts to 
bite its own tail as we blur the distinction between equivalence class and 
representative. We shall usually say “ the subobject / ” when we mean 
“ the subobject [/]” , and “ / e g ” when strictly speaking “ [ / ] [g]” is 
intended, etc. All properties and constructions of subobjects used will 
however be stable under — (indeed being categorial they will only be

m

[/] = { g : / = g } ,
and we form the collection

Sub(d) = {[/]: /  is a monic with cod f  = d}.

[ /]^ [g ] iff / £ g .
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defined up to isomorphism anyway). So this abus de langage is technically 
justifiable and has great advantages in terms of conceptual and notational 
clarity. The only point on which we shall continue to be precise is the 
matter of identity, “ f  — g” will be used whenever we mean that f  and g 
are the same subobject, i.e. [/] = [g], while “ f = g ” will be reserved for 
when they are the same actual arrow.

Elements

Having described subsets categorially, we turn to actual elements of sets. 
A  member x of set A, (xgA) ,  can be identified with the “ singleton” 
subset {x} of A, and hence with the arrow {x} ^  A, from the terminal 
object {x} to A. In the converse direction, a function f : 1 —> A  in Set 
determines an element of A, viz the /-image of the only member of the 
terminal object 1. Thus; if category <€ has a terminal object 1, then an 
element of a ^-object a is defined to be a ^-arrow x : 1 —> a. (Note that 
x : 1 —> cl is always monic -  Exercise 3.6.3.)

Of course the question is-does this notion in general reflect the 
behaviour of elements in Set? Must a non-initial ^-object have elements? 
Can two different ^-objects have the same elements? Can we characterise 
monic and epic arrows in terms of elements of their dom and cod? These 
matters will be taken up in due course.

Naming arrows

A  function / :  A  —> B from set A  to set B is an element of the set B A, i.e. 
/ e B A, and so determines a function Γ/ Ί: {0} —> BA, with Γ/ Ί (0) = /. Then if 
x is an element of A, we have a categorial “ element” x : {0} A, with 
x(0) = x. Since ev((f, x)) = /(x) we find that ev ° (Γ/ Ί, x)(0) = ev(lf ( 0), 
^(0)) = /(x) = /(x(0)), and hence we have an equality of functions:

This situation can be lifted to any category that has exponentials. Given 
a arrow f :a-^b,  let f°pra : 1 x a - > b  be the composite f°pra : l x  
a —> a ^ b .  Then the name of f  is, by definition, the arrow Γ/ Ί: 1 —> ba 
that is the exponential adjoint of f  ° pra. Thus 'f1 is the unique arrow 
making

E x e r c i s e  1. In Set, Sub(D) =  5P(D). □

ev ° (Γ/ Ί, x) = f  ° x.

ba x a
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commute. Then we have that for any ^-element x : 1 —* a of a,

ev ° <Γ/ Ί, x} = /  ° x.

E x e r c is e  2 . Prove this last statement.

4.2. Classifying subobjects

In set theory, the powerset £P(D) is often denoted 2 ° .  The later symbol, 
according to our earlier definition, in fact denotes the collection of all 
functions from D  to 2  = {0,1}. The justification for the usage is that 
$ >(£ )) =  2 D , i.e. there is a bijective correspondence between subsets of D  
and functions D  —> 2 . This isomorphism is established as follows: given a 
subset A c D , w e  define the function Ya : D —> 2 , called the characteristic 
function of A, by the rule / ‘for those elements of D  in A, give output 1 
and for those not in A, give output 0” . i.e.

The assignment of Ya to A  is injective from &(D)  to 2D, i.e. if Ya = Xb 
then A  = B  (why?). It is also surjective, for if f  e 2D, then f  = γΑί, where

A f = { x : x e D  and f(x) = 1}.

This correspondence between subset and characteristic function can be 
“ captured” by a pullback diagram. The set A f just defined is the inverse 
image under f  of the subset {1} of {0,1}, i.e.

x e A  
x£ A

Fig. 4.2.

Af C > D

f

{1} 2
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is a pullback square, i.e. A f arises by pulling back {1 }^  2 along f. We are 
going to modify this picture slightly. The bottom arrow, which outputs the 
element 1 of {0,1} is replaced by the function from 1 ={0} to 2 = {0 ,1} 
that outputs 1. We give this function the name true, for reasons that will 
emerge in Chapter 6. It has the rule; true (0) = 1. Then the inner square 
of

is a pullback. To see this, suppose the “ outer square” commutes for some 
g. Then if beB,  f  (g(b)) = true (1(b)) = 1, so g ( b ) e A f. Hence k : B - > A f 
can be defined by the rule k(b) = g(b). This k makes the whole diagram 
commute, and is clearly the only one that could do so. It follows that if 
A  ^ D, then

A c ► D

! Xa

Λ true rs

is a pullback, since pulling true back along χΛ yields the set 
{jc: χΛ(χ) = 1}, which is just A. But more than this follows -  χΛ can be 
identified as the one and only function from D  to 2 that makes the above 
diagram a pullback, i.e. the only function along which true pulls back to 
yield A. If, for some /, the inner square of

is a pullback, then for xg A ,  f(x) = 1, so x e A f. Hence A  ^ A f. But the 
outer square commutes -  indeed it is a pullback as we saw above -  and so
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the unique k exists with i ° k =  j. Since i and j are inclusions, k must be 
as well. Thus A f ^ A, and altogether A  = A f. But f  is the characteristic 
function of Af, and so, f  =  χΛ.

So the set 2 together with the function true : 1 —> 2 play a special role in 
the transfer from subset to characteristic function, a role that has been 
cast in the language of categories, in such a way as to lead to an abstract 
definition:

D e f in it io n . If is a category with a terminal object 1, then a subobject 
classifier for is a -object Ω together with a Harrow true: 1 —> T2 that 
satisfies the following axiom.

Ω  -a x io m . For each monic f : a » d  there is one and only one arrow 
X f i d - ^ Ω  such that

a >— ί—> d 

Xf

1 —^  Ω  

is a pullback square.

The arrow xf is called the charactenstic arrow, or the character, of the 
monic f  (subobject of d). The arrow true will often be denoted by the 
letter “T” .

A  subobject classifier, when it exists in a category, is unique up to 
isomorphism. If T : 1 —> Ω  and Τ ': 1 Ω' are both subobject classifiers we 
have the diagram

The top square is the pullback that gives the character χ'τ of T using T' as 
classifier (remember any arrow with dom = 1 is monic). The bottom
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square is the pullback that gives the character of Τ', when T is used as 
classifier.

Hence by the PBL (§3.13, Example 8) the outer rectangle

1 — I —  Ω

X t '° X t

1 — 3—♦ Ω

is a pullback. But by the Ω- axiom there is only one arrow Ω —> Ω making 
this square a pullback, and Λα would do that job (why?) Thus χγ  ° Χτ = 
λη. Interchanging T and T' in this argument gives

Χτ ° =
and so χΎ>: =

Since Τ' = ^ ο Τ we have that any two subobject classifiers may be 
obtained from each other by composing with an iso arrow between their 
codomains.

The assignment of xf to f  establishes a one-one correspondence be­
tween subobjects of an object d, and arrows d —» Ω, as shown by:

T h e o r e m . For f : a » d  and g:b >+ d,

/ = g  iff xf = xg.

P r o o f . Suppose first that xf = xg. Consider

Since xf = xg, the outer square commutes (indeed is a pullback) and so as 
the inner square is a pullback there exists fc factoring g through /, hence 
g In terch a n g in g  f  and g on the diagram leads to f ^ g  and altogether 
f^g -

Conversely if / —g, then the arrow fc in the above diagram does exist 
and is iso with an inverse fc-1: a =  b. Using this one can show that the
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outer square is a pullback, which can only be so if xf is the unique 
character of g, xf = *g. □

Thus the assignment of xf to f  (more exactly to [/]) injects Sub(d) into 
%(d, Ω). But given any h :d  —> Ω, if we pull true back along h,

f . λ

true Ω

the resulting arrow f  will be monic (since true is monic and the pullback 
of a monic is always itself monic -  Exercise, §3.13). Hence h must be xf. 
So in a category where these constructions are possible we get

Sub(d)=^(d,  Ω).

N o t a t io n . For any -object a , the composite true ° la, of arrows ! : a —> 1 
and true, will be denoted truea, or Ta, or sometimes true I

1
true

E x e r c is e  1. Show that the character of true : 1>—> T2 is

true Ω

i-e. Xtme =  V
E x e r c is e  2 . Show that χ 1(ΐ = truen = true ° I,,.

1rΩ >- Ω

lr true ° I

1



E x e r c is e  3 .  Show that for any f :  a —> b,

84 INTRODUCING TOPOI CH. 4, § 4.3

/

true \̂̂  ytrueb

Ω

trueb ° f  = truea. □

4.3. Definition of topos

D e f in it io n . An elementary topos is a category % such that
(1) is finitely complete,
(2) g* is finitely co-complete,
(3) % has exponentiation,
(4) has a subobject classifier.

As observed in Chapter 3, (1) and (3) constitute the definition of 
“ Cartesian closed” , while (1) can be replaced by

(1') % has a terminal object and pullbacks,

and dually (2) replaced by

(2') % has an initial object 0, and pushouts.

The definition just given is the one originally proposed by Lawvere and 
Tierney, in terms of which they started topos theory in 1969. Subse­
quently C. Juul Mikkelsen discovered that condition (2) is implied by the 
combination of (1), (3) and (4) (cf. Pare [74]). Thus a topos can be defined 
as a Cartesian closed category with a subobject classifier. In §4.7 we shall 
consider a different definition, based on a categorial characterisation of 
power sets.

The word “ elementary” (which from now on will be understood) has a 
special technical meaning to do with the nature of the definition of topos. 
This usage will be explained in Chapter 11.

The list of topoi that follows in this chapter is intended to illustrate the 
generality of the concept. By no means all of the detail is given -  for the 
most part we concentrate on the structure of the subobject classifier.
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4.4. First examples

E x a m p le  1 . Set is a to p o s  -  th e  p rim e  e x a m p le  an d  th e  m o tiv a tio n  fo r  th e  

c o n c e p t in  th e  first p la c e .

E x a m p le  2 . Finset is a to p o s , w ith  lim its , e x p o n e n tia ls , an d  T:1 
e x a c tly  as in  Set.

E x a m p le  3 . Finord is a topos. Every finite set is isomorphic to some finite 
ordinal (A =  n if A  has n elements). Hence all categorial constructions in 
Finset “ transfer” into Finord (as we have already observed for product, 
exponentials). The subobject classifier in Finord is the same function 
true : {0} —> {0,1} as in Finset and Set.

E x a m p le  4. Set2, the category of pairs of sets is a topos. All constructions 
are obtained by “ doubling up” the corresponding constructions in Set (cf. 
Example 10, §2.5).

A  terminal object is a pair ({0}, {0}) of singleton sets. Given two arrows
(/, g ): (A, B) —> (E, F), (h, fc): (C, D ) —> (E, F> with common codomain in 
Set2, form the pullbacks

P C

h u k

B g F

in Set. Then

(P, Q > (C, D)

(i, u) (h, k)

will be a pullback in Set2.
The exponential has

<C,D)<A’B> = (CA, D B)

with evaluation arrow from

<C, D)<a’b> X  <A, B) -  <CA X  A, D B X B)
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to (C, D ) as the pair (e, f)  where e : CA x A - ^ C  and f : D B xB  —>D  are 
the appropriate evaluation arrows in Set.

The subobject classifier is (T , T ):({0}, {0}) —> (2, 2). The category Set 
plays no special role here. If %1 and <̂2 are any topoi, then the product 
category is a topos.

E x a m p l e  5 . Sef^, the category of functions. The terminal object is the 
identity function id{0} from {0} to {0}.

Pullback: Consider the “ cube”

P  E— ►c

/, g, h are given as Set^-objects with (i, j ) an arrow from f  to g, <p, q) an 
arrow from h to g. The rest of the diagram obtains by forming the 
pullbacks

in Set. The arrow k exists by the universal property of the pullback of j 
and q. Then in Set_> the arrows <u, v) and (r, s) are the pullbacks of (i, j) 
and <p, q).

Classifier: is a subobject of g : C D  in Set” ' then there is
a commutative Set diagram

A  >-

B >
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We will take the monies to be actual inclusions, so that A c C ,  B ^ D  
and /  is the restriction of g, i.e. / ( x) = g(x) for x e A .  The picture is

An element x of C can be classified now in three ways. Either
(i) x e  A, or

(ii) χ φΑ , but g (x ) eB , or
(iii) χ φΑ , and g(x)£B.

So we introduce a 3-element set {0, §, 1} and define Ψ: C —» {0, §, 1} by

11 if (i) holds 
| if (ii) holds 
0 if (iii) holds 

We can now form the cube

where true(0) = i'(0) = 1, t : {0, 1} —> {0,1} has i(0) = 0, and i(l) = t{|) = 
1. Xb is the characteristic function of B.

The base of the cube displays the subobject classifier Τ : 1 —>Ω for 
Sef^. T is the pair (t\ true) from 1 = id{0} to Ω = t : {0, 1} {0,1}.

9

D

Fig. 4.3.

{0} true {0,1}
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The front and back faces of the cube are each pullbacks in Set. The 
whole diagram exhibits (ψ, χΒ) as the character in Set_> of the monic (i, j ).

Exponentiation: Let f : A —> B, g : C ^ D  be two Sef^-objects. Then gf 
is the Set^-object (function) gf : E ^ F ,  where

F = D B (exponential in Set)

E is the collection of all Set~ -̂arrows from f  to g i.e.

A  — C

E={ (h,k) :  f

B

g commutes} 

D

and

gf ((h, fc» = k.

The product object of gf and f  in Set^ is the product map 

gf x f : E x A - ^ F x B  (cf. §3.8) 

and the evaluation arrow from gf x f  to g is the pair (u,v) 

E x A  — C

gfxf 

F x B D

where v is the usual evaluation arrow in Set, and u takes input ((h, k), x) 
to output h(x).

The constructions just given for T : 1 —> Ω and gf will be seen in 
Chapter 9 to be instances of a more general definition that yields a whole 
family of topoi.

4.5· Bundles and sheaves

One of the primary sources of topos theory is algebraic geometry, in 
particular the study of sheaves. To understand what a sheaf is requires 
some knowledge of topology and the full story about sheaves and their 
relation to topoi would take us beyond our present scope. The idea is 
closely tied up with models of intuitionistic logic, but is much more 
general than that. Indeed, sheaf theory constitutes a whole conceptual 
framework and language of its own, and to ignore it completely, even at
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this stage, would be to distort the overall significance and point of view of 
topos theory.

For the benefit of the reader unfamiliar with topology we shall delay its 
introduction and first consider the underlying set-theoretic structure of 
the sheaf concept, to be called a bundle.

Let us assume we have a collection si of sets, no two of which have any 
elements in common. That is, any two members of si are sets that are 
disjoint. We need a convenient notation for referring to these sets so we 
presume we have a set I  of labels, or indices, for them. For each index 
i e I, there is a set A t that belongs to our collection, and each member of 
si is labelled in this way, so we write si as the collection of all these A t’s,

si = {At: i e l } .

The fact that the members of si are pairwise disjoint is expressed by 
saying that for distinct indices i, j e l

A* Π Aj = 0

We visualise the A t’s as “ sitting over” the index set T thus:

If we let A  be the union of all the A^s, i.e.

A  = {x : for some i, x e A J

then there is an obvious map p : A  -> I. If x e A  then there is exactly one 
A t such that x e A h by the disjointness condition. We put p(x) = i. Thus
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all the members of A t get mapped to i, all the members of A i to j, etc. 
We can then re-capture A* as the inverse image under p of {i}, for

P-1({i}) = {x: p(x) = i} = A ·
The set A t is called the stalk, or fibre over i. The members of A t are 
called the germs at i. The whole structure is called a bundle of sets over 
the base space I. The set A  is called the stalk space (l’espace etale) of the 
bundle. The reason for the botanical terminology is evident-what we 
have is a bundle of stalks, each with its own head of germs (think of a 
bunch of asparagus spears).

This construction looks rather special, but it is to be found whenever 
there are functions. We have just seen that a bundle has an associated 
map p from its stalk space to the base. (If in fact every stalk is nonempty 
then p will be surjective, but in general we will allow the possibility that 
A t = 0). Conversely, if p : A  —» I  is an arbitrary function from some set A  
to I, then we can define A t to be p-1({i})> for each i e l ,  and define

=  {P_1({i}): i e i }  = ( Λ : i e I}.

Then si is a bundle of sets over I  whose stalk space is the original A, and 
induced map A  —» I  the original p (the stalks are disjoint, as no x e A  can 
have two different p-outputs).

So a bundle of sets over I  is “ essentially just” a function with codomain 
I. The two are not of course identical conceptually. To construe a 
function as a bundle is to offer a new, and provocative, perspective. To 
emphasise that, we will introduce a new name Bn (I) for the category of 
bundles over I, although we have already described it in Example 12 of 
Chapter 2 as the Comma category Set 1 1 of functions with codomain I. 
Thus the Bn(I)-objects are the pairs (A, /),  where f : A - > I  is a set 
function and the arrows k : (A, / )  —> (jB, g) have k : A  —» B such that

A  — fc—  B

I

commutes, i.e. g ° k=f .  This means that if f(x) = i, for x e A, then 
g(k(x)) = i, i.e. if x e A i? then k(x)eBi.  Thus k maps germs at i in (A, / ) 
to germs at i in (jB, g).

Now a topos is to be thought of as a generalisation of the category Set. 
An object in a topos is a “ generalised set” . A  “ set” in the topos Bn (I) is a 
bundle of ordinary sets. Many categorial notions when applied to Bn (!)
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prove to be bundles of the corresponding entities in Set, as we shall now 
see.

The terminal object 1 for Bn (I) is idr : T —> I, and for any bundle (A, /), 
the unique arrow (A, /)  —» (I, idj) is f : A —> I  itself (cf. §3.6). Now the 
stalk of idj over i is id” 1 ({i}) = {i}, which is terminal in Set. Thus the Bn (I) 
terminal is a bundle of Set-terminals over I, and the unique arrow 
f : (A, /)  —» (I, idr) can be construed as a bundle

Pullback: Given Bn(I)-arrows k : (A, f) -> (C, h) and I : (B, g) —> (C, h>, 
so that

B

A  — C

commutes, form the pullback

P — J3

P

in Set of k and I. Then
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is a pullback of k and I in Bn (I), where j = f ° p  = h o k ° p  = h ° l o q = 
g ° q. The diagram is probably more usefully given as the commutative

P ------- 2-------► b

Now if A i? Bh Q  are the stalks over i for the bundles /, g, h, then the 
pullback of

A

i*

A  Q

has domain {(x, y ): x e A h y e  Pi9 and k(x) = Z(y)} which can be seen to be 
the same as

{(x, y ): x e A, y e B and j(x, y> = i} =

which is the stalk over i of j : P —> I.
Thus the pullback object (P, j) is a bundle of pullbacks from Set. 
Subobject classifier: The classifier for Bn (J) is a bundle of two-element 

sets, i.e. a bundle of Set-classifiers.
We define β  = (2 x I, pj), where pT: 2 x I —> I is the projection 

Pi((x, y))= y onto the “ second factor” . Now the product set 2x1  is in 
fact the (disjoint) union of the sets

{0} x I = {(0, i): i g 1}
and

{l}xl = {<l,i):iel},

each isomorphic to I, and we visualise 12 as shown in Fig. 4.5. The stalk 
over a particular i is the two-element set

a={<0,i),<l,0} = 2x{i}.

The classifier arrow T : 1 —> Ω can be thought of as a bundle of copies of 
the set function true. We define T : I —> 2 x I by

T(i) = <l,i>.
In terms of the limit approach to products, T is the product map 
(true!, idr) of true ° !: I —» {0} {0,1} and idr.
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{ / } x l

- XI

Fig. 4.5.
To see how T  classifies subobjects we take a monic fc: (A, f) > (.B, g) in 

and in fact suppose that k is an inclusion, i.e. A ^ B  and f(x) = 
g(x), all x e A. We wish to define the character xk : (B, g) —* i2 = (2 x I, Pi) 
so that

1--- ► B
J

idIy

Xk

vPi

2x1
commutes and gives a pullback in Bn (I). Now any x e B  is classified 
according to whether x e  A  or χφ. A.

2x1

Fig. 4.6.

We make assign as “ 1” or “ 0” accordingly, and also make these 
choices in the right stalks, so that pT ° x k = g. Formally, x k : B - > 2 x I  is 
the product map (χΑ, g ): B —> 2 x I, where χΛ : B —> 2 is the usual charac­
teristic function of A, i.e.

<· x e A  
XkW l<0,g(x)> if x*A.
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E x e r c is e  1. Verify that this construction satisfies the Ω -axiom. □

Sections: The function T : I  —» 2 x I has an interesting property -  for 
input i the output T(i) — (1, i) is a germ at i. Such a function from the base 
set I  to the stalk space that picks one germ out of each stalk is called a 
section of the bundle. In general s : I ^ A  is a section of bundle f : A  —> I  
if s ( i ) eAi =  / _1({i}), for all i e I. This means precisely that f(s(i)) = i, all i, 
and hence that

I  — A

I

commutes. So another way of looking at a section is to say that it is a 
Bn(I)-arrow from the terminal (I, idj) to (A , / ). Thus a section of the 
bundle (A, f) is an element of the Bn(I)-object (A, /)  in the sense of the 
definition at the end of §4.1. But our initial picture of a section is a 
bundle of germs, one from each stalk. So an “ element” in Bn(I) is a 
bundle of ordinary elements.

Elements of Ω, i.e. arrows 1 —» Ω, in any topos Έ are known as the 
truth-values of and have a special role in the logical structure of (See 
Chapter 6). We know (§4.2) that there is a bijective correspondence 
Sub(l)=^(l, i2) between elements of Ω and subobjects of 1. Now in 
Bn (I) a subobject k:(A,/)>->l of 1 must have

A  >- I 

I

commuting, so k = f. Thus a subobject of 1 can be identified with an 
injective function f : A  Z, i.e. with a subobject of I  in Set. The latter of 
course is essentially a subset of I, and we conclude that there is a bijection

^CD —Βη(Ι)(1, Ω)

i.e. we may identify truth-values (elements of Ω) in Bn(I) with subsets of 
I. It is instructive to spell this out fully:

Given A  ^ I, let Sa : I - ^ 2 x I  be the product map (χΑ, idj), i.e.

c i e A
a(I) l<0,i> if ΐφΑ



then SA is a section of Ω, whose image is shown shaded in the picture.

(  <S5SS> )  (>M
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Fig. 4.7.

The assignment of SA : 1 —> Ω to A  is injective (exercise). Moreover if 
S : l —>i2 is any section, and A  ={i:  S(i) = (1, i)}, then S = SA, so the 
assignment is also surjective.

Note that whereas Set has two truth values, 9>(I) may well be infinite (it 
certainly will be if I  is infinite).

E x e r c i s e  2 . What are the truth-values in Set2 and in Sef^? □

Products. Let (A, f) and (B, g) be bundles over I and form the pullback

A x jB ----- 2-----► B

Then (A XjB, h) is the product of (A, /)  and (JB, g) in Bn (J), where h = 
f  ° p = g ° q, and has projection arrows p and q. Note that the stalk (fibre) 
over i is

{(x, y): /(x ) = g(y) = i} = A t x

the product of the fibres over i in (A, /) and (B, g). Hence the name 
“ fibred product” that is sometimes used for “pullback” .

Exponentials. Given bundles / :  A  —> I and g : B —> I  we form their 
exponential as a bundle of the exponentials B A  of the stalks of A  and B. 
More precisely let Dt be the collection of functions k : A i - ^B  such that

A  — B
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commutes and so k carries A t into the stalk Bt of g over i (where, as 
previously, /*  denotes a function that has the same rule as f  but may vary 
as to domain or codomain). Now the D*’s may not be pairwise disjoint, so 
we define Ei = { i } x D i, for each i, and then is a bundle. The
induced function p :E->  I  where E is the union of the Et’s has p((i, k)) = i. 
(jE, p) is the exponential

The evaluation arrow ev : (JE, p) x (A, /)  —> (B, g) is the function 
ev : E  XjA —> B, where

The reader who has the patience to wade through the details of checking 
that this construction is well defined and satisfies the definition of ex­
ponentiation will no doubt get his reward in heaven. For the present he 
will perhaps appreciate the advantages of the categorial viewpoint, 
wherein all we need to say about the exponential, to know what it is, is 
that it satisfies the universal property described in §3.16. (We shall return 
to this example in Chapter 15).

F u n d a m e n t a l  th e o r e m . Not only is Bn ( I )  =  Set 11 a topos, but more 
generally if % is any topos and a an ^-object, then the category % !  a of

arrows over a (§2.5, Example 12) is also a topos.

This fact has been called the Fundamental Theorem of Topoi by Freyd 
[72]. The reader can probably sort out many of the details from the 
above, e.g. if T: 1 —> Ω is the classifier in g’, then in 1 a it is (τα, 1α), i.e.

The definition of exponentials in <g I a would carry us too far afield at 
present. It requires the development of a categorial theory of “partial 
functions” and their classification, which will be considered in Chapters 
11 and 15.

ev({(i,k),x)) = k(x).

<Τα,1α)> flX fl

a

Sheaves

A  sheaf is a bundle with some additional topological structure. Let I  be a 
topological space, with Θ its collection of open sets. A  sheaf over I  is a
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pair (A, p) where A  is a topological space and p : A  —> I  is a continuous 
map that is a local homeomorphism. This means that each point x e A  has 
an open neighbourhood U in A  that is mapped homeomorphically by p 
onto p(U) = {p(y ) :y e  U}, and the latter is open in I. The category Top(I) 
of sheaves over I  has such pairs (A, p) as objects, and as arrows 
k : (A, p) —> (jB , q) the continuous maps k : A ^ B  such that

commutes. Such a k is in fact an open map (as is a local homeomorphism) 
and in particular Im fc = fc(A) will be an open subset of B.

Top (I) is a topos, known as a spatial topos. The terminal object is
idr : I  —> I. The subobject classifier is the sheaf of germs of open sets in I. 
Its construction illustrates a common method of building a bundle over I. 
There will be some ambient set X  and each point i e I  will determine an 
equivalence relation on X. The stalk over i will then be defined as the 
quotient set X / —* of equivalence classes of X  under

In the present case X  is the collection Θ of open sets in I. At i e  I, we
define by declaring, for U, V e Θ

U ~ i V  iff there is some open set W  such that i e W
and u n w = v n w

Then is an equivalence relation. The intuitive idea is that U V when 
the points in U that are close to i are the same as those that are in V and 
close to i, i.e. “ locally” around i, U and V look the same, i.e. the 
statement “ L7= V ” is “ locally true” at i.

A  — B

I

Fig. 4.8.
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is called the germ of U at i. Intuitively it “ represents” the collection of 
points in U that are “ close” to i.

We then take as the stalk over i,

Then Ω is the corresponding function p : I  —* I, where I is the union of 
the stalks i2i? and p gives output i for inputs from Ω{. The topology on I 
has as base all sets of the form

where V is open and [ / c V .  This makes p a local homeomorphism, and 
also makes each stalk a discrete space under the relative topology.

If we denote by the collection of open neighbourhoods of i then we 
have the following facts about germs of open sets:

(i ) I U I = [ I I  iff i e U
(ϋ) [H  = e*

(iii) [U]i = [01 iff i is separated from U (i.e. there exists V e  Θ* such 
that U n  V = 0)
[The reader familiar with lattices may care to note that the open sets in I 
form a distributive lattice (Θ, (Ί, U) in which Θι is a (prime) filter. The 
stalk Ω{ is essentially the quotient lattice Θ/Θί? i.e. is the standard 
definition of the lattice congruence determined by Θ*.]

Before examining Ω as a subobject classifier we will look at truth- 
values s : 1 —> Ω. Such an arrow is a continuous section of Ω, generally 
called a global section of the sheaf. (We may also consider local sections 
s : U -> I  of I  defined on (open) subsets U of I).

Now if U is open in I, define Su : I  —> I  by Sv (i) = (i, [U\). We then find 
SLJ is a continuous global section, i.e. : 1 —> Ω. By (i) above we note 
that Su(i) = (i, [ID  iff i eU.  Then if s : 1 —* Ω is any continuous section of 
Ω and U = {i: s(i) = {i,[ID} we that U is open (U = s-1([I, I])) and

We thus have that the truth values in Top(J) are “ essentially” the open 
subsets of I, whereas in Bn (I) they were all the subsets of I. This will be a 
continuing theme. We shall later see other constructions that have a 
set-theoretic and a topological version, and find that the latter arise from 
the form by replacing “ subset” by “open subset” .

A  = {(f [LGi)· U open in I}.

[U, V] = {(i, [Ι/I ):  i e V}

I
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The arrow T : 1 —* Ω is the continuous section T : I  —> J that has T(i) = 
(U Mi)> all i c  I. Now if fc is monic, where

A  r k ■> B

X X
I

commutes, and A  is an open subset of J3, we obtain the character 
Xk : (JB, q) —> Ω as follows.

If x e JB, choose a neighbourhood S of x on which q is a local 
homeomorphism. Then xk : B - > I  takes x to the germ of q(ADS)  at 
q(x), i.e.

Xk(x) = (<i(x), [q(A n S)]q(x)>
Intuitively, the germ of q(AHS) at q(x) represents in I, under the local 
homemorphism q, the set of points in A  close to x. It provides a measure 
of the extent to which x is in A. Whereas in set theory classification 
admits of only two possibilities -  either x e A  or χφ.Α~ in a topological 
context we may make more subtle distinctions by classifying according to 
how close x is to A. We use the germs at q(x) as a system of entities for 
measuring proximity of x to open subsets of B. A  partial ordering on 
β „ (χ) is given by

[^]q(x)C[V]q(x) iff there is some open set W  such that q(x) 
e W a n d  U n W c V D W ,

i.e. iff the statement “ U ^ V ”  is locally true at q(x).
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Then the “ larger” the germ of q(A Π S) is in terms of this ordering, the 
closer will x be to A. If in fact x e A, then q(x) e q(A Π S) and so by (i) 
above, the germ of q(A Π S) is as large as it could be, i.e. [q(A Π S)]q(x) = 
[I]q(x). At the other extreme, if x is separated from A, then the germ of 
q(AHS) is as small as it could be, i.e. [q(A Π S)] = [0]. Otherwise, when 
x is on the boundary of A, [q(A OS)] is strictly between the germs of 0 
and I, [0]uz[q(A Π 5)]η[Ι].

E x e r c is e  1. Verify that the definition of xk(x) does not depend on the 
choice of neighbourhood S of x on which q is a local homeomorphism.

E x e r c is e  2. (Alternative definition of xk(x)). Let

Ux = { i e  I: for some local section s of (B, q), s ( i ) eA  and 
s(q(x)) = x}

be the set of points in I that are carried into A  by some local section of 
(B, q) that takes q(x) to x. Show that

[L̂ x]q(x> — [q(A Π S)]q(x),

where S is as above. □

4.6. Monoid actions

Let M = (M, *,e) be a monoid (cf. §2.5). Then any given m eM  deter­
mines a function Am :M —»M, called left-multiplication by m, and defined 
by the rule Am(n) = m * n, for all neM.  We thus obtain a family 
{Am: m eM } of functions, indexed by M, which satisfies

(i) Ae = idM, since Ae(m) = e*m = m, and
(ii) Am o Ap =Am, p, since Am(Ap(n)) = m * (p * n) = (m * p) * n. 

Condition (ii) in fact says that the collection of Am’s is closed under 
functional composition. Indeed, it forms a monoid under this operation 
with identity Ae.

The notion just described can be generalised. Suppose we have a set X  
and a collection {Am : X  —> X:  m eM}  of functions Am from X  to X, the 
collection being indexed by the elements of our original monoid, and 
satisfying

= idx 
A ° A — Ayvm  ' vp yvm * p *

The collection of Am’s is called an action of M on the set X, and can be
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replaced by a single function λ : M x X - > X ,  defined by 

A(m, x) = Am(x), all m eM , x e X .

The above two conditions become 

X(e, x) = x
and

λ (m, λ(ρ, x)) = X(m * p, x).

An M-set is defined to be a pair (X, λ), where λ : M x X - ^  X  is such an 
action of M on X.

E x a m p l e  1. M is the monoid (N, +, 0) of natural numbers under addition. 
X  is the set of real numbers, λ is addition:— A(m, r) = m + r.

E x a m p l e  2. X  is the set of vectors of a vector space, M the multiplicative 
monoid of its scalars, λ is scalar multiplication of vectors.

E x a m p l e  3. X  is the set of points in the Euclidean plane. M is the group 
of Euclidean transformations (rotations, reflections, translations) with * 
as function composition. A(m, x) is m(x), i.e. the result of applying 
transformation m to point x.

E x a m p l e  4. X  is the set of states of a computing device. M is the set of 
input words (strings) with * the operation of concatenation or juxtaposi­
tion of strings. A(m, x) is the state the machine goes into in response to 
being fed input m while in state x. □

For a given monoid M, the M-sets are the objects of a category M-Set, 
which is a topos. An arrow / :  (X, λ) —> (Y, μ) is an equivariant, or 
action-preserving function / :X ^ >  Y, i.e. one such that

χ - ί - ^  γ

Am * μ-m

x  — i—» y

commutes for each meM.  In other words, /(A(m, x)) = μ(τη,/(x)), all m 
and x. Composition of arrows is functional composition.
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The terminal object is a singleton M-set. We take 1 = ({0}, X0) where 
A0(m, 0) = 0, all m.

The product of (X, λ) and (Y, μ) is (X x Y ,  δ), where 8m is Am x 
μηι: X  x Y  —* X  x Y. The pullback of

(Υ,μ)
g

(Χ,λ) — ί—  (Ζ,γ)

is (X  x z Y, δ) with δ as above.
Now a set B c  M is called a /e/i idea/ of M if it is closed under 

left-multiplication, i.e. if m * b e B  whenever b e B and m is any element 
of M. For example, M  and 0 are left ideals of M. We put Ω = (LM, ω) 
where LM is the set of left ideals in M, and ω : M x Lm~> LM has 
ω (m,B) = {n: n * meB} .  T : 1 —* Ω is the function T : {0 } -^ L w with 
T(0)=M. Thus T picks out the largest left-ideal M  of M.

To illustrate the workings of the subobject classifier, suppose 
k : (X, λ) >~K Y, μ) is in fact the inclusion X ^ Y  (since k is equivariant 
this means μ(τη, x) = λ (m, x), all x e X). The character xk : (Y, μ) —̂ Ω of 
k is xk : Y  —> Lm defined by

Xk(y) = {m: μ(τη, y )eX),  all y e Y .

E x e r c i s e  1. Check all the details-that ω is an action of M on LM, that 
Xk(y) is a left-ideal, and that xk satisfies the Ω -axiom. □

Exponentiation

Our initial motivation showed that * : M x M ^ M i s  itself an action of M 
on M, i.e. that (M, *) is an M-set. Given (X, λ) and (Y, μ) we define the 
exponential

(Υ, μΥΧΜ = (Ε,σ)

where E is the set of equivariant maps /  of the form f : (IVi, *) x (Χ ,λ )->  
(Υ,μ) and am:E ^  E  takes such an f  to the function g = 
crm (/): M  x X  Y given by

g(n, x) = f(m * n, x)

The evaluation arrow

ev : (E, σ)  x (X, λ) (Y, μ)



CH. 4, § 4.7 POWER OBJECTS 103

has
ev(f,x) = f(e, x).

Then given an arrow f (X, λ) x (Y, μ) —> (Z, v), the exponential adjoint 
f : (X, λ) —> (Z, ι/)(Υμ0 takes x e X  to the equivariant map fx :M x Y —» Z  
having

/x(m, y) —/(Xm(x), y).

Categories of the form Μ-Set provide a rich source of examples, particu­
larly of topoi that have “ non-classical” properties. They will be “ re­
created” from a different perspective in Chapter 9.

E x e r c is e  2. Describe all the left-ideals in (N, +, 0).

E x e r c i s e  3 . Show that M  is a group iff M  and 0 are the only left-ideals of 
M, i.e. iff Lm = {M, 0}. □

4.7. Power objects

The exponential Ω α in a topos is the analogue of 2A in Set. Since 
2a =  0>(A) it is natural to wonder whether the object 12α behaves like the 
“powerset” of the “ set” a. In fact it does, as we shall see by first 
developing an independent categorial description of 0>(A) in Set.

Now given sets A  and B there is a bijective correspondence between 
the functions from B to 0>(A) and the relations from B to A. Given 
function / :  B —> 0>(A) define relation Rf <^Bx A  by stipulating xRfy iff 
yef (x) ,  for x e B ,  y e  A . Conversely, given R ^ B x A ,  define fR :B^> 
$P(A) by fR(x) = {y: y e A  and xRy}.

It is not hard to see that the assignments of fR to R and Rf to f  are 
inverse to each other and establish the asserted isomorphism.

In order to capture this correspondence in terms of arrows we examine 
a special relation e A from ^ (A )  to A. eA is the membership relation and 
contains all the information about which subsets of A  contain which 
elements of A. Precisely

— {(U, x): U ^ A , x e  A, and x e U}.

Passing from 0>(A) to 2A, the condition “ x e  17” becomes “ χυ(χ) = 1’\ 
and we see that eA is isomorphic to the set

e a = {<Xu> *>: U s  A, x e A, and *u(x) = 1} £  2A x A
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What is the characteristic function of eAas a subset of 2A x A ? Well it is 
none other than the evaluation arrow ev : 2A x A  - »  2, since ev(xu, x) = 
Xu(x). Thus we are lead to a characterisation of eA (and hence e A up to 
isomorphism) by the pullback square

Ca 2A x A

true

Now given a relation R ^ B x A ,  we have ( x , y ) s R  iff y e / R(x) iff 
(fR(x), y ) e e A, and so JR is the inverse image of eA under the map 
fR X 1A, that takes <x, y) to </R(x), y).

So we see that (§3.13) the diagram

R  c  > B x A

fR x  idA

ga c > 0>(A)xA

is a pullback, where g is the restriction of fR x  idA to R.  But something 
stronger than this can be said -  given JR, then without considering what g 
is, fR is the only function B —» 0>(A) that will give a pullback of the form 
of the diagram.

E x e r c is e  1. Prove this last assertion. □
We are therefore lead to the following definition:

D e f in it io n . A  category ^  with products is said to have power objects if to 
each ^-object a there are ^-objects 2?(a) and ea, and a monic e 
: e a>^g>(a) x a, such that for any ^-object h, and “ relation” , r : R>^b x a 
there is exactly one Harrow fr :b^> 0>(a) for which there is a pullback in 
Ή of the form

R  >—-—► b x a

/rXla

e* > - € -» f ( a ) x a  

T h e o r e m  1. Any topos Έ has power objects.
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P r o o f .  For given ^-object a, let 0>(a) = Ωα and let e  : e a v - > Ω α x a be 
the subobject of Ωa x a whose character is : Ωα x a —> Ω, i.e.

ea —̂ ► ΩαΧα

! eva

1 ------1----- ► Ω

is a pullback, where eva is the evaluation arrow from Ωα x a to Ω. To 
show that this construction gives power objects take any monic r:R*->bx 
a and let xr : b x a —> Ω be its character. Then let fr : b —> Ωα be the 
exponential adjoint to χτ, i.e. the unique arrow that makes

Ω α χα

ΛΧΊα 
b x a

commute. Now consider the diagram 

R > r b x a

(  I frX â

I ( Ca > £ > Ωα x a

\ eva

1 ----1----► Ω

Since eva ° (fr x Λα) = χ„ the “perimeter” of this diagram is a pullback, by 
the Ω -axiom. In particular it commutes, so as the bottom square is a 
pullback, the unique arrow R - >ea does exist to make the whole diagram 
commute. But then by the PBL the top square is a pullback, as required 
by the definition of power objects. Moreover simply knowing that fr is 
some arrow making the top square a pullback gives both squares as
pullbacks and hence (PBL) the outer rectangle is a pullback. The Ω-
axiom then implies that eva ° (/rx 1 a) — Xr and thus from the previous 
diagram fr is uniquely determined as the exponential adjoint of χΓ. □

Now given power objects we can recover Ω, as Ω =  Ω 1= <3>(1). The 
monic ε ϊ>^Ω1χ Ι  =  Ω 1 proves to be a subobject classifier. Anders Kock 
and C. Juul Mikkelsen have shown that power objects can also be used to
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construct exponentials, and that

a category is a topos iff is finitely complete and has power 
objects

(for details consult Wraith [75]).
Currently this characterisation is being used as the definition of a topos, 

it being the best in terms of brevity. Paedogogically it is not however the 
best, for a number of reasons. Historically the idea of an elementary 
topos arose through examination of subobject classifiers, and this path 
provides the most suitable motivation. As will be evident it is the 
Ω -axiom that is the key to the basic structure of a topos and it would 
have to be introduced anyway for the theory to get off the ground. 
Moreover each of the Ω -axiom, and the notion of exponentiation, is 
conceptually simpler than the description of power objects.

There is another more remote matter, due to the recent development 
of weak set theories relating to recursion theory (admissible sets-cf. 
Barwise [75]). These theories produce categories of sets without general 
powerset formation. It therefore becomes of interest to study the ramifi­
cations of the Ω -axiom without having to relate it to the notion of 
power-object.

E x e r c is e  2 . Examine the structure of power objects in the various topoi 
described in this chapter.

E x e r c is e  3 . Deduce from the discussion of this section, including the 
proof of the Theorem, that a category ^  is a topos iff

(i) has a terminal object and pullbacks of appropriate pairs of 
arrows,

(ii) has a subobject classifier true: 1 —> T2
(iii) For each ^-object a there is a ^-object Ω α and an arrow 

eva : Ωα Χ α —>Ω such that for each ^-object b and “ relation” 
r : R>^bx  a there is exactly one arrow fr :b^> Ω α making

Ω αΧα 
*

frXlaj  

b x a
commute.

E x e r c is e  4. Show that the unique arrow Ω α —> Ω α corresponding to the 
relation <=α>-*ί2α x a  is 1β α. □
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4.8. ft and comprehension

In Lawvere [72] it is suggested that the Ω -axiom is a form of the ZF 
Comprehension principle. To see this, suppose that B is a set and φ a 
property that applies to members of B. We represent φ in Set as a 
function φ : B —> 2 given by

<p(x) = 1 if x has property φ 
0 otherwise.

Now the comprehension (seperation) principle allows us to form the 
subset {x: x g B and <p(x)} of all elements of B satisfying φ. This set is 
determined by φ qua function as what we earlier called Α Φ = 
{x: <p(x) = l}. We have ye{x:  <p(x)} iff <p(y) = l, and

B

true

is a pullback. By analogy, 
cod = Ω, we let {x : φ } : a —» 
true back along φ, as in

in a topos g, if φ : b —> 12 is an arrow with 
b be the subobject of b obtained by pulling

{x: φ} 
a >------- ► b

i a

Now in a general category, if x : 1 —> b is an element of object b, and 
f :a>+b  a subobject, we define x to be a member of /, xe f ,  when x 
factors through /, i.e. there exists k : 1 —> a making

commute. This naturally generalises the situation in Set.
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Applying this notion of membership to the above pullback we see that 
if y : 1 —> b is a b -element then

y c { x : φ} iff the arrow fc exists to make the whole diagram commute. But 
as the inner square is a pullback, fc will exist (uniquely) iff the perimeter 
of the diagram commutes. Hence

y G { x : φ} iff φ ° y = true,

giving us an analogue of the set-theoretic situation.

E x e r c is e  1. Take f:a>+b, g:c>-+b with / ^ g .  If x £ b  (i.e. x : l  —> b, or 
x & Λ b as above) has xe f ,  show x eg.

E x e r c is e  2 . For an y f : a>*d  an d  x : l  —> d, x  e  /  iff ° x = true.


