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Abstract. We regard a cubic spectral problem associated with the Kaup- 
Kupershmidt equation. For this spectral problem we prove a completeness 
of its “squared” solutions and derive the completeness relations which they 
satisfy. The spectral problem under consideration can be naturally viewed as 
a Z 3-reduced Zakharov-Shabat problem related to the algebra 51(3, C ). This 
observation is crucial for our considerations.

1. Introduction

The Kaup-Kupershmidt equation (KKE) is a 1 +  1 nonlinear evolution equation 
given by

dt f  = d5x5 f  + 10/dXs f  + 25 dx f cßx2 f  + 20 f  2dx f  (1)
where f  G C œ (R2) and dx stands for the partial derivative with respect to the 
variable x. It is S-integrable, i.e., it possesses a scalar Lax representation dtL = 
[L, A] with Lax operators of the form

L =  dX3 +  2 fd x +  dxf  (2)

A =  9dx5 +  30fdx3 +  45dxf  dx2 +  (20f 2 +  35dX2 f  )dx +  10dx3 f  +  20fdxf .
(3)

It proves to be convenient to work not with scalar but with one-order matrix Lax 
operators. That is why we factorize the scattering operator L (see [4])

L =  (dx -  u)dx(dx +  u) (4)

where the new function u(x, t) is interrelated with f  (x, t) via a Miura transforma
tion as follows

f  =  dxu -  1 u2. (5)
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Taking into account that L defines the spectral problem L 0 = A3ÿ  one obtains 
that the matrix scattering operator reads

where

L ^  L = dx + Q -  A J

(  u 0 0 0 1 0
Q =

( 0
0

0 ) ’
J = ( 0 0 1

\ 0 0 u 1 0 0

(6)

As we shall see further this represents a Z3-reduced generalized Zakharov-Shabat 
problem related to the algebra sl(3, C). This is a crucial point in our considerations. 
That is why we are going to sketch in the next section some basic facts on the Lie 
algebras theory and on the inverse scattering transform.
The purpose of this work is to apply the general methods developed in [6] for 
proving completeness of the squared solutions of the corresponding generalized 
Zakharov-Shabat system (GZS). This shall be done in Section 3 (see Theorem 1).

2. Preliminaries

In this section we are going to remind the reader briefly all necessary facts on 
the theory of simple complex Lie algebras and inverse scattering transform and 
introduce the notation we aim to use later on. For a more detailed information 
about the theory of Lie algebras we refer to the book [7] while those who want to 
find a profound exposition of the inverse scattering method are referred to [11,12].

2.1. Lie Algebras

Let g be a simple Lie algebra, i.e., it does not have proper ideals. Its Cartan subal
gebra h C g is the maximal commutative subalgebra. The dimension of h is called 
rank of g. For sl(r +  1, C) the Cartan subalgebra is r-dimensional and consists of 
all traceless diagonal matrices of h. The basis of h bears the name a Cartan basis. 
The Cartan basis {Hk}rk=l for sl(r + 1, C) reads

1 r+1
Hk = Ekk -  r +1 Ç  E j j , k = 1 , . . . , r  (7)

j
where (Eij )mn = öimöjn is the Weyl basis of sl(r + 1, C).
Any root a  G h * satisfies by definition the equality

[Hk , E a] = a(Hk  )E a (8)

where E a G g is called a root vector. The set of all roots A is known as a root 
system of the Lie algebra g. For sl(r + 1) the roots can be presented by

e  -  e j, i = j, i , j  = 1 , . . . , r  +  1 (9)
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where {ek } rk =1 forms an orthonormal basis in the Euclidean space R r . The corre
sponding root vectors are

E e i - e j  =  E i j . (10)

A root is called positive (negative) if its first nonzero component is positive (neg
ative). Thus one introduces ordering in A and it splits into a subset of all positive 
roots A +  =  { a  G A; a  > 0} and subset of all negative roots A -  =  { a  G 
A; a  < 0}.
Positive roots { a j  }  G A are said to be simple if all of them are linearly independent 
and a i — a j  G A. The simple roots form a “basis” in the set of all root A, i.e., 
each root is a linear combination of them. The set of all simple roots for s l(r +  1) 
is presented by

a j  = ej  — ej +1 ■ (11)
A positive root a m ax is called maximal if a m ax +  a  G A  for any a  G A + . By 
analogy one can introduce the notion of minimal root a min -  it is a negative root 
to satisfy a min — a  G A. In the case of s l(r +  1) the maximal root is given by

a m ax =  e1 er +1j a min =  a m ax- (12)

The set A of all simple roots and the minimal one bears the name system of ad
missible roots.
A reflection S a  : R r  ^  R r  with respect to the hyperplane orthogonal to a root 
a  leaves the set of roots A invariant. The symmetries of A form a finite group 
called Weyl group. A Coxeter automorphism C is a transformation induced by the 
reflections with respect to the simple roots, namely

C =  Sa i  ◦ S a2  ◦ ■ ■ ■ ◦ S a r ■

One can prove that C is a finite order automorphism, i.e., there is an integer h such 
that Ch  =  Id. The number h is called Coxeter number. The Coxeter number for
sl(r +  1, C) is simply r +  1.
Due to Cartan’s theorem every simple Lie algebra possesses a nondegenerate scalar 
product -  the Killing form defined by

(X,  Y ) =  tr(ad X  adY ). (13)

For s l(r +  1) the Killing metric has the form

(X, Y ) =  1 tr(X Y ). (14)

Another notion we are going to use is the so-called Casimir element (operator). The 
Casimir operator of some simple Lie algebra g belongs to its universal enveloping
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algebra and can be presented as quadratic polynomial of some elements of g. For 
example the second Casimir operator P  of sl(r +  1) looks as follows

r
P  =  E  H j  ® H j  +  E  Ea ® E - a . (15)

j= 1 a€A
It has the important property

P (A ® B) = (B G A )P  for all A, B  e  SL(r +  1). (16)

2.2. Spectral Problem for a Generic L  Operator

Consider a generic (nonreduced) GZS

L 0 =  (idx +  Q(x) — X J  ) ÿ  =  0 (17)

where J  is areal nondegenerate Cartan element, i.e., J  e  h C g and a ( J ) =  0 for 
all roots a, while Q(x)  is a linear combination of the Weyl generators Ea of g

Q(X) = E  Qa (x)Ea . (18)
ae A

The scattering operator under consideration differs from that one in the first section 
by a multiplication by an imaginary unit (compare with (6)). This is not a principal 
issue and it is just a matter of technical convenience.
The fundamental solutions ^ (x , X) take values in the Lie group G corresponding 
to g. In the simplest case of zero boundary conditions, i.e., limx^ ± œ Q(x) =  0 the 
continuous part of the spectrum of L fills up the real axis of the complex X-plane. 
A basic notion in the theory of inverse scattering transform is Jost solution. The 
Jost solutions behave at infinity as plane waves, namely

lim ^±(x,X )eiAJx =  1. (19)

The transition matrix between the Jost solutions T (X) =  ÿ+(x,  X)ÿ-  (x, X), X e  R 
is called a scattering matrix. The Jost solutions and the scattering matrix are de
fined only on the imaginary axis. One can prove [5,10] there exist fundamental 
solutions x+(x, X) and x - (x, X) which possess analytical properties in the upper 
(9X > 0) and lower (9X < 0) half plane C+ and C -  respectively. The fundamen
tal solutions x+(x, X) and x - (x, X) are interrelated via

X- (x, X) =  x+(x, X)G(X), X e  R (20)

G(X) =  £ -  (X)S+(X) =  D - (X)T+ (X)T- (X)D(X).

The matrices S ±(X), T±(X) have a triangular form while D±(X) are diagonal and 
they represent factors in the Gauss decomposition of the scattering matrix T(X)

T  (X) =  T - (X)D+(X)S+(X) =  T+(X)D- (X)S- (X).
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2.3. Algebraic Reductions

Let us consider the action of a discrete group GR called a reduction group by 
Mikhailov [9] on the set fundamental solutions {^(x, A)} as follows

Adc  ÿ(x ,  k(A)) =  i>(x, A)

where Ad stands for the adjoint action of G in the Lie algebra g induced by Gr . 
We require that the linear problem

(idx +  Q -  A J ) ÿ  = 0 (21)

where Q(x)  and J  are assumed at this point to be arbitrary elements of the simple 
Lie algebra g, is GR-invariant which immediately yields to the following restric
tions

A dc Q(x) =  Q(x), k(A) A d c  J  = A J . (22)

Thus, the number of the independent components of Q(x) is reduced and that is 
why Gr is called a reduction group.
In particular, let GR =  Zh (h is the Coxeter number of g) and Zh acts on g by 
Coxeter morphisms

k : A ^  uA, u  =  e2in/h, C = e x p ( £  u kH k). (23)
k

The symmetry conditions (22) imply that the matrices Q(x ) and J  have the form

r
Q = £  QkHk, J  = £  Ea . (24)

k=1 a£A

We remind that A  stands for the set of all admissible roots (simple + minimal 
root) of g. Hence the existence of reduction determines uniquely the form of the 
matrices Q (x ) and J .
As we saw in the previous section the spectral problem for KKE was associated 
with the sl(3) algebra and the matrices Q(x) and J  have exactly the same form as 
shown in (24). Thus, KKE is naturally related to a -reduced L  operator associ
ated with sl(3). For the sake of convenience we shall consider the gauge equivalent 
system of (21) -  the one which has a diagonal matrix J  G h and a potential Q(x)  
as a nondiagonal matrix with zero diagonal elements. The eigenvalues of J  are 
the cubic roots of 1, i.e., J  =  diag(1, u, u 2), where u  =  e2in/3. This allows us 
to apply the general results to be described in the next subsection to the problem 
which we solve.
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2.4. Caudrey-Beals-Coifman Systems

Spectral problems with Coxeter type reductions imposed on them are studied for 
the first time by Caudrey [3], Beals and Coifman [1,2] in the case of the algebra 
s l(n) (see also [9]). That is why they bear their names -  Caudrey-Beals-Coifman 
(CBC) systems. Further generalization for an arbitrary simple Lie algebra was 
provided by Gerdjikov and Yanovski [6].
In case of a presence of a Zh Coxeter type reduction the spectral properties of the 
scattering operator (17) change substancially. The continuous spectrum now is a 
bunch of 2h rays lv closing equal angles n / h  and the Cartan element J  must be 
complex by all means. The A-plane is split into 2h regions of analyticity Qv, v =  
1 , ,  2 h , meaning that in every sector there exists a fundamental analytic solution 
Xv(x, A). In each sector Qv there exist equal number of discrete eigenvalues Anv. 
They are situated symmetrically. With each ray lv it can be associated a subset 
bv C A  defined by

bv =  {a  G A ; 9  A a ( J  ) =  0, for all A G lv}, v = 1 , . . . ,  2 h (25)

and a subalgebra gv C g generated by all roots of bv

Qv =  {E a ,H a > a  G bv}. (26)

Obviously, A  =  |J h=1 bv and if a  G bv then —a  G bv. Moreover, the following 
relations hold true bv =  bv+h. One can introduce ordering in Qv by defining 
“positive”and “negative” roots in Qv as follows

A ± = {a G A ; 9 Aa ( J ) ^  0, for all A G Qv}. (27)

We shall use the auxiliary notation b± =  A ± n  bv as well. As a direct consequence 
of (27) one can check that the following symmetries hold

A ±+h =  A ï . b±+h =  bj . (28)

The Coxeter automorphism induces a natural grading in the Lie algebra g

h
Q =  0  Q(k), Q(k) =  {X G g ; C X C -1 =  u kX }, u h = 1. (29)

k= 1

It can be verified that the grading requirement [g(k), g(1)] C g(k+1) is satisfied.
The fundamental analytic solutions x v(x, A) with adjacent indices are interrelated 
via a local Riemann-Hilbert problem

Xv(x, A) =  x v 1(x,A)Gv(A), A G lv

Gv (A) =  S -  (A)S+ (A) =  TD-(A):fv+ (A)T-(A)D+ (A).
(30)
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Figure 1. Contours of integration yv =  lv U Cv U lv+1.

The matrices (A), T±(A) and D±(A) are the corresponding Gauss factors of
the scattering matrix Tv(A). They all belong to the Lie subgroup G(v) C G related 
to the subalgebra g(v) C g.
From now on we shall consider a L  operator associated with the sl(3) algebra with 
a Z 3 reduction. This spectral problem was investigated by Kaup in [8]. In this 
case the complex A-plane is separated into six regions by six rays as it is shown 
in Fig. 1. Each ray is connected with only one positive root as it is presented in 
Table 1. Hence, one can associate a sl(2) subalgebra with each ray — this is the

Table 1

Ray lv l1, l4 l2, l5 l3, l6
Roots of bv ± (e1 — e2) ± (e2 — e3) ± (e1 — e3)

algebra {Ea , E - a , H a } generated by the positive root a. As we discussed before 
the algebra sl(3) gets Z3-grading, i.e., we have

sl(3) =  g(0) ® g(1) ® g(2).

3. Completeness Relations for Squared Solutions of a Z 3 Reduced 
Scattering Problem Related to the Algebra s l(3, C)

The fundamental analytic solutions allow one to introduce the so-called squared 
solutions (eigenfunctions) by

e^ Xx ,  A) =  Pj (xvE ax v(x, A)), hjv)(x, A) =  P j (x vH j x v(x, A)) (31)
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where P J stands for the mapping onto the quotient space sl(3, C )/ ker a d j . Since 
J  is diagonal the kernel of ad J obviously coincides with the subspace of all diag
onal matrices. The squared solutions occur naturally in Wronskian relations. One 
typical example of such an Wronskian relation is the following one

/ œ
dxxv[J,Q (x)]xv(x, A). (32)

-œ

Next theorem holds true
Theorem 1. The squared solutions (31) form a complete set with the following 
completeness relations

0(x -  y )n  = —  X (-1)V+ 1  /  dA (eÿ (x, A) 0  e-ß v (y> A)
v= 1  J l v

(33)

- e -Vßv1)(x,A) 0  eßv 1)(y , A)) -  i X X AR f  G(v)(x,y ,A).
v= 1  n v

where

n  =  X  Ea 0  E  “J  a 0  Ea > GßV)(x> y>A) =  eßV)(x>A) 0  e- i  (y >A)•
»eA+

Proof: We will derive the completeness relations (33) by simply applying Cauchy’s 
residue theorem in calculating the expression

J  (x,y) =  X  ( -1 )v+1
v= 1

p G(v)(x, y, A) dA
Yv

(34)

where the contours Yv are shown in Fig. 1 and the Green functions G (v)(x, y, A) 
have the form

G (v)(x,y, A) =  Q(y -  x) X  elv)(x, A) 0  e-^(y, A) -  6>(x -  y)
«eA+

X  elv) (x>A) 0  e- a (y>A) +  X  hjv) (x>A) 0  hjv) (y>A)
(v) (v)

*eA-

According to Cauchy’s theorem J ( x ,  y) is equal to the sum of all residues of the 
integrands, namely

J (x ,y )  =  2ni X X  ^  G(v)(x,y,A).A — Anv= 1  n v
(35)
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On the other hand taking into account the orientation of the contours yv the inte
grals in the expression (34) can be regrouped to obtain

J (x,y) =  E ( - ! ) V+1 /  (G(v)(x,y, A) -  G(v-1)(x,y, A))dA
v=1 Jlv

+  E ( - ! ) V+1 /  G(v)(x, y, A) dA.
v=1

Next important result underlies the proof of our theorem 

Lemma 1. The following equality is valid, for any A G

E  e« -1)(x A) ® e-v« 1)(y>A) +  E  hjV-1)(x>A) ® hjv-1)(y>A)
a£A j=1,2

=  E  E E x A) ® eE (y>A) +  E  hjv)(x>A) ® hjv)(y>A)-
«eA j=1,2

(36)

(37)

Proof of Lemma 1: The proof is based on the interrelation (30), the definition of 
Xv (x, A) and the properties of the Casimir operator P  (see formula (16)). □

The terms corresponding to the integrals along the rays in (36) can be simplified 
due to the following lemma

Lemma 2. In the integrals along the rays contribute only terms related to the roots 
that belong to 5+ and 5 - respectively, i.e.,

G (v) (x, y, A) -  G (v 1)(x, y, A)

=  eß ?(x>A) ® e- t  (y>A) -  E - E x  A) ® E r E y , A)-
(38)

Proof of Lemma 2: As a consequence of Lemma 1 one can verify that 

G (v)(x, y, A) -  G(v-1)(x, y, A)

=  E  e« )(x A) ® eE (y > A) -  E  E ^ E x A) ® e-v« 1)(y>A)-
aeA+ aeA ^ j

At this point we make use of the property A +\5+ =  A+_ 1\5 -  and the fact that the 
sewing function Gv (A) is an element of SL(2) group related to . Then the sums 
in G (v) (x, y, A) and in G(v-1) (x, y, A) over these subsets annihilate each other and 
what survive are terms corresponding to the subsets 5+ and 5-  respectively. □

It remains to evaluate the integrals along the arcs Cv. For that purpose we have 
to use the asymptotic behavior of G(v)(x,y, A) as A ^  <x>. It is given by the 
expression
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G (V\ x , y ,  A) »  £  eiAa(J){y-X)Ea 0  E - a -  -  y
a€A+

£  eiAa(J)(y—x)E„ 0  E —a +  £  Hj 0  Hj I . 
«eA j=i,2 /

Asymptotically G (v') (x, y, A) is an entire function, hence we are allowed to deform 
the arcs Cv into lv U lu+1. Consequently the integrals along the arcs Cv can be 
rewritten in the following manner

£ (- 1)"+1 /  G(v)(x, y, A) dA =  £ (- 1)v+1 /  dA
v=1 ßCv v=1 ßlv

x ^e—iAßv (J)(y—x)E —ßv 0  E ßv -  eiXßv(J)(y—x)E ßv 0  E —ßv) .

After we combine the term associated with lv and that one associated with lv+3 and 
recall the well known formula for the Fourier transform of Dirac's delta function

1
—  dA eiAx =  S(x)
2n J — ̂

we derive the result

2 nS(x -  y) £  (Ea 0  E — aJ —a 0  Ea ) •
aeA+ ( )

(39)

Thus, taking into account (35), (36), (38) and (39) we finally reach the complete
ness relations (33). □

Remark: All elements a G sl(3) admit a uniquely determined Z3 expansion, for 
example Q(x) G g(0) while the squared solutions can be expanded as follows

e- a ) (x , A) =  e£0 (x> A) +  e£ i  (x> A) +  e0,2 (x> A)> ea , k  A) G fl

Then we have completeness relations for all components e^k(x, A).
Completeness of the squared solutions means that each function X  (x) with values 
in sl(3, C)/  ad J can be expanded over them, namely

X (x) =  2-  £ ( - 1 ) v+1 /  dA (Xßv(A)e—£ (x, A) -  X — ß„ (A)eß71)(x, A))
2n V=1 J lv

-  i £ £  X „
v=1 n v

», » » » »
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where the components of X  (x) are given by

X ßv (A) =  f  dy(adj e{£ (y , \ ) , X  (y))

X - ßv (A) =  I  dy(adJ e—ßV,1)(y>A)>X  (y))J—̂

X„v =  1 /  dy tr i  [ a d j  ® 1 Res G(v) 
2 J —̂  V ^

Here tr i means taking the trace of the first multiplier in

(x, y, A)X ® flj . 

the tensor product.

4. Conclusion

We have demonstrated that the squared solutions to the scattering problem con
nected with the Kaup-Kupershmidt equation form a complete system in the space 
of functions which take values in g / adJ . This allows one to expand any function 
which belongs to this space in series over the squared solutions. As a matter of 
fact the squared solutions represent a generalization of the plane waves elkx in the 
standard Fourier analysis. This quite general result motivates the interpretation of 
the inverse scattering transform as a generalization of the Fourier transform. In 
order to prove the completeness relations we have applied the contour integration 
technique (Cauchy's residue theorem) to an appropriate contour. The spectral prop
erties of the scattering operator L affect the structure of the completeness relations 
themselves: there are terms associated with the continuous part of its spectrum and 
terms related to its discrete eigenvalues Anv (see (33)).
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