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Abstract. We introduce a new notion of a curvature of a superconnection, 
different from the one obtained by a purely algebraic analogy with the curva­
ture of a linear connection. The naturalness of this new notion of a curvature 
of a superconnection comes from the study of the singularities of smooth sec­
tions of vector bundles (Catastrophe Theory). We demonstrate that the clas­
sical examples of obstructions to a local equivalence: exterior differential for 
two-forms, Riemannian tensor, Weil tensor, curvature of a linear connection 
and Nijenhuis tensor can be treated in terms of some general approach. This 
approach, applied to the superconnection leads to a new notion of a curvature 
(proposed in the paper) of a superconnection.

1. A B rief Review of the Notion of a  Superconnection

The notions of a superconnection and of the corresponding supercurvature were 
introduced by Quillen in 1985 [7]. In this section we give a brief review of the 
matter and introduce the basic notations.
By £ =  (E, p, M ) we denote a vector bundle over the manifold M  (dim M  = m, 
dim(£) =  n),by £ * -  the dual bundle and by C œ (£) -  the space of the vector fields, 
i.e., the space of the smooth sections of the bundle £. Respectively Qk(M ) =  
C œ (AkT * (M )) is the the space of the differential k-forms on the manifold M  and

m m
Q(M ) =  0  Qk(M ) =  C ~  0  AkT*(M )

k=0 k=0

*In memoriam of our dear friend and colleague Ventzeslav Rizov.
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is the space of the nonhomogeneous forms on M  and Qk (£) =  C œ (Ak T*(M ) 0  £) 
is the space of the differential k-forms with values in £ and Q(£) =  ®m=c^k (£) is 
the space of the nonhomogeneous forms with values in £. By a linear connection
V on £ we understand a linear differential operator V : Q0 (£) — > Q1 (£) with the 
property V (f.ÿ ) =  d f  0  ÿ  +  f  V (ÿ), ÿ  G Q0(£), f  G Q0(M ). The space of the 
linear connections is an affine space with a linear group Q1(£* 0  £). If we choose 
an arbitrary linear connection V 0 as “an origin” then for every linear connection
V on £ we have

V =  Vo +  A, A  g Q1(£* 0  £). (1)

The connection V generates a covariant differential dv  : Qk(£) — > Qk+1(£) 
defined by the property dv (a 0  ÿ) =  d a  0  ÿ  +  (—1)kd A V (ÿ), a  G Qk(M ), 
k =  1 ,2 , . . . ,  m and ÿ  G Q0(£). Its square dv  o dv  : Qk(£) — > Qk+2(£) is an 
Q0(M)-linear operator and as a consequence F v  =  dv  o dv  : Q0(£) — > Q2(£) 
is a differential operator of zero order, i.e., F v  is a tensor, F v  G Q2(£* 0  £). Let 
{x“ } denotes (local) coordinates on M , {ea} -  a (local) basis in £ and {ea} -  the 
corresponding dual basis in £*. In local coordinates

and

(V (ÿ))“ =  0 , ÿ a +  A“  ̂ÿ

Fuvb =  (d“A v -  dvA“ +  [A“  A v])a.

(2)

(3)“ v b  ~ ~  \ y ^ - v  v v 1*-“ * L0 “

The upper notions have an algebraic analogy in the case of a Z2 graded super vector 
bundle [7]. Let £ =  £+ 0  £-  be a Z2 graded vector bundle over the manifold M . 
Then the dual bundle £* =  £+ 0 £ -  is also Z2 graded in a natural way. The induced 
Z2 grading in Q(£) is given by

where

and

Q(£) =  Q(£)+ 0  Q(£-)

Q(£)+ =  0  (Q2k(£+) 0  Q2k+1 (£-))
k

Q(£) -  =  0 ( Q 2k+1(£+) 0  Q2k(£ -)) .

Let V be a linear connection on the vector bundle £ compatible with the Z2 grading
of £,

V :Q 0(£±) Q1(£±)
i.e., V is an odd linear operator.
Let x  G Q0(£* 0  £) be an odd tensor field, i.e., x(x) : £x± — > £x^ (or x(x) G
(£* 0  £)x - ). By definition (proposed by Quillen) a superconnection V s is the odd 
linear operator

Vs =  V +  x  :Q 0(£)± - ^  Q0,1(£A
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where Q0,1({) =  Q0({) © Q1({). It is easy to see that the superconnection V s has 
the property

V s (f .ÿ)  =  d f  © ^  +  f V s W), f  g n ° (M ), ^  g Q1(C).

V+‘In more details, if we write ÿ  

parts of the super vector field ^ , respectively, then

V s

, where ^+  and ^ _  are the even and the odd

' V  x+_" "V^+  +  x+_^_"
ÿ_. X_+ V  _ J0_. V^ _  +  x_+^+.

The space of the superconnections is again an affine space and if we choose an 
arbitrary superconnection Vs0 as an origin, then for any other superconnection V s 
we have

Vs =  Vs0 +  As, As g Q0,1( f  © £)_.
The covariant differential

dVs : Qk (0  Qfc’fc+1(0

can be defined by a purely algebraic analogy with the “classical” case

dV (a  © ^ ) = d a  © ^  +  ( - 1 ) k a  A V s (ÿ ) , a  g Qk (M ), ^  g Q0({).
It is easy to see that again dVs o dVs : Qk (£) — > Qk ,k+1,k + 2(^) is an Q°(M ) 
linear operator. F V s =  dVs o dVs : Q0({) — > Q0,1,2({) is an even differential 
operator of order zero, i.e., F Vs is a tensor, F Vs g Q0,1,2({ * © 0

F Vs =  x 2 +  dV (x) +  F V

The nonhomogeneous tensor F V defined by an algebraic analogy with the “classi­
cal” case is, by definition, the supercurvature of the superconnection V s .
In the classical case the connection V is connected with the parallel transport and 
the curvature is an obstruction to the flatness of the parallel transport. In other 
words the curvature of a connection is an obstruction to its local equivalence with 
the flat connection. In the “super” case there are no natural notions of a parallel 
transport and of a flat superconnection. But we can look for an obstruction to the 
local equivalence of two superconnections. To motivate the idea we consider in 
the next section some classical examples of obstructions to a local equivalence of 
sections of some bundles as particular examples of a general scheme.

2. A List of Obstructions to a Local Equivalence

2.1. An Obstruction for an Arbitrary Nondegenerate Differential Two-Form 
to be Diffeomorphic to the Canonical Symplectic Form

Let M  be a smooth even-dimensional manifold, dim M  =  m =  21 and let w0 g 
Q2(M ). In local coordinates u 0 = Y JL=1 dxM A dx^+© Every diffeomorphism
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X G Diff(M ) has a natural action on Q2(M ). For every w G Q2(M ) we have

( x ) = (x) dXv (x)w«ß (^ (x)).

Does there exist (at least locally) x G Diff(M ) such that x*(w) =  w0 in the case 
det{w^v (x)} =  0? An obstruction to this is the condition dw =  0. If dw =  0 then 
there exists (at least locally) x G Diff(M ) such that x*(w) =  w0. The three-form 
dw is in some sense the curvature of the two-form w.

2.2. An Obstruction for an Euclidean Metric to be in a Canonical Form

Let M  be a smooth manifold, g0 = J2^=1 dxM ® dxß -  an Euclidean metric on M  
in a canonical form and g -  an arbitrary Euclidean metric on M . Does there exist 
(at least locally) x G Diff(M ) such that

x * ( g V (x) =  (x) dxF  (x)g«ß (x (x)) =  g o - (x) =  v  ?

The Riemannian tensor R(g) = 0  is an obstruction to this. If R(g) =  0 then there 
exists (at least locally) a x G Diff(M ) such that x*(g) =  g0. The Riemannian 
tensor R(g) is the curvature of the metric g.

2.3. An Obstruction for an Euclidean Metric to be Conformaly Equivalent to 
the Canonical Metric

Let g0 and g be the same as in subsection 2.2. Does there exist (at least locally)
X G Diff(M ) such that X*(g)(x) =  f  (x)g0 (x), f  (x) =  0? The Weil tensor

w  (g) =  R(g) -  ( Ric(g) -  2(m -  2) r (g) . ^ A g = 0

where Ric(g) is the Ricci tensor, r(g) -  the scalar curvature, is an obstruction 
to this [2]. If W(g) = 0  then there exists (at least locally) x G Diff(M ) such 
that X*(g)(x) =  f (x)g0(x), f  (x) =  0. The Weil tensor W(g) is the conformal 
curvature of the metric g.

2.4. An Obstruction for a Given Connection to be Gauge Equivalent to the 
Flat One

Let £ =  (E ,p , M ) be a vector bundle over the manifold M  and V be a linear 
connection on £ (see (1)). In local coordinates we have

V ß =  +  A^.
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Let p  G A utV (£) be a vertical automorphism of £. The automorphism p  has a 
natural action on the space of the linear connections. In local coordinates

p*(V)ß =  dß +  p* (A)m, p*(A)ß(x) = p - l (x).Aß(x).p(x) + p - l (x).dßp(x).

Can we find p  G A utV(£) satisfying the condition p*(A)ß = 0? The Yang-Mills 
curvature tensor [Fßv} =  0 is an obstruction to this. If Fßv = dßA v — dvA ß +  
[Aß, A v] = 0  we can find (at least locally) an automorphism p  G A utV (£) such 
that

p*(A)ß(x) = p - l (x).Aß(x).p(x) +  p -1(x).ößp(x) = 0.
The Yang-Mills tensor F v  is the curvature of the linear connection V.

2.5. An Obstruction for a Given Almost Complex Structure to be 
Diffeomorphic to the Canonical One

Let M  be an even dimensional smooth manifold, dim M  = m = 2l and let

J 0
d

dx2+i
dxl+l <g>F  )dx1 )

be an almost complex structure on M  in a canonical form in local coordinates. Let 
J  be an arbitrary almost complex structure on M  [4], J  G C™(T*(M) ® T ( M )), 
and J 2(x) = —1. In the same coordinates

d
J(x) = Jj?(x)dxv ® —  •

Every diffeomorphism p G Diff(M ) has a natural action on Crx'(T*(M )®T (M  )). 
For every J  G C<x‘(T *(M) ® T ( M)) we have

dp 1p dpß
p' (J)$(x) = (p(x)) ̂  (x)Ja(p(x)).

Does there exist p  G Diff(M) such that p*(J) = J0? The nonvanishing Nijenhuis 
tensor

N  (J)pßV = Jß  da  Jp — J^ d J  — J Pd J  + J P dv J  
is an obstruction to this. If N  (J ) = 0 then there exists (at least locally) p G 

Diff(M) such that p* (J) = J0 (see Newlander-Nirenberg theorem [5]). The Ni­
jenhuis tensor can be written as a vector-valued two-form

N  (J )(X, Y  ) = [JX, JY] — J  [X, JY] — J  [JX, Y  ] — [X, Y].
The Nijenhuis tensor N  (J ) is in some sense the curvature of the almost complex 
structure J .
All the obstructions to the local equivalence of sections in the corresponding fibre 
bundles with respect to the action of the “functional” group we mentioned in the 
upper cases can be viewed as “curvatures” in the broad sense of the word. We
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can consider them as particular examples of a general notion of a curvature (see 
Section 3) considered as an universal type of obstructions to the local equivalence 
in terms of jet bundles, jet lifting of the group action and the algebraization of the 
differential operators. This scheme applied to the case of a superconnection leads 
to a notion of a curvature of a superconnection which is different from the one, 
obtained by a purely algebraic analogy [7]. We consider the definition given in 
Section 4 to be the adequate one.

3. General Notion of a Curvature

For a vector bundle £ =  (E ,p , M ) the adopted coordinates (xß, ua) on £ induce 
the corresponding coordinates (xß,ua,u<a, u VlV2, . . . , u a i Vk), 1 < v1 < v2 <
■ ■ ■ < Vj < m, j  =  2 ,3 , . . . ,  k in the k-th jet bundle j k (£) of £, j k(£) =  
(E k ,p k , M ) for every k =  1, 2, 3 , . . .  (see [6, 8]). Every element of the fibre 
j k(£)x of j k(£) equals to j k(0(x)) -  the value at the point x of the k-jet of 
some ^  G C œ (£), in coordinates ua(jk(0(x)) =  ^ a (x), u(ai .. v .(jk(0(x))) = 
dvi .. . dVj ̂ a (x), where ^ a  are the components of the field ^ . The mapping 
C œ (£) — > C ^ ( j k (£)) and given in the local coordinate by

^(x) I— ► (i>a(x),dß 4>a(x), . . . ,  dw . . .  dßk i)a(x))

is the so called jet lifting of the section ^  and plays the role of an universal differ­
ential operator of order k (see [6,8]).
Let H  be a “functional” group and Fh  : E  — > E, h G H  be a fibre preserving 
action of the group H  on the bundle £ =  (E, p, M ). For sake of simplicity we will 
have in mind only the group A utV (£) of vertical automorphisms of £, or Diff(M ) 
-  the group of diffeomorphisms of M . In the coordinates (xß,ua) the action F  of 
the group H  reads

Fh (x^ ,u a ) =  « ( x ) , F ha (x,u))

where h G H , <h  : M  — > M  is an action of the group H  on the base M  of the
bundle and F^(< h2(x), F ^  (x, u)) =  Fhlh2(x, u).
The group H  has a natural action F  on C œ

Fh W (x) =  Fh W < - 1(x))) (4)

where ^  G C œ (£), h G H , x G M . The action (4) of the group H  on C œ (£) 
induces an action of H  on the jet-bundle j k (£) for every k =  1, 2, 3 , . . .  .
Let ^ 1 and ^ 2 be two sections of the bundle £. The problem we deal with is the 
(local) equivalence of ̂ 1 and ^ 2 with respect to the group H , i.e., the existence of 
an element h G H  such that

F h (^  2) =  ^ 1. (5)
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In other words for given t  and t 2, the expression (5) is an equation for h G H  . I f  
the equation (5) is satisfied then its k-jet lifting

Fh(jk ( t  ) ) =  j  k ( t i )  (6)
is also satisfied for every k. Inversely, if we can proof that for some k  the equa­
tion (6) has no solution for h G H  then obviously this is an obstruction to the 
solvability of (5), i.e., to the local equivalence of t  and t 2. The equation (6) in­
volves the derivatives of t  and t  up to the order k. Therefore, it is easier to deal 
with (6).
We begin with the study of the condition imposed by the equation (6) on the k-jets 
of t  and t  at a point x° G M .
Let

Gx0 := {h G H  ; ^>h(x°) =  xo}
be the stationary group of the point x0. The group Gx0 has a natural action on 
j k(£)x0 for every k. Let us consider first the case k =  0. The space j°(£ )x0 is 
simply the fibre £xo. For h G Gx0 the equation (6) leads to

F h (t  2(x°)) =  t i  (x°). (7)
Insolvability of (7) with respect to h means that t 1(x°) and f 2(x°) belong to 
different orbits of Gx0 in £x0. If the fibre £x0 is a homogeneous space for the group 
Gx0 there is no obstruction to the solvability of (6) arising from the equation (7). 
Then looking for an obstruction we go to k =  1

F h (j l( t  2)xo ) =  j  1 ( t1)xo. (8)
If the fibre j  1(£)x0 is again a homogeneous space for the group Gx0 there is no an 
obstruction to the solvability of equation (6). We proceed to the first k for which 
the fibre j k(£)x0 is not a homogeneous space for the group Gx0. Let nxo be the 
canonical projection to the factor space j k(£)x0/G x0

nxo : j k(£)xo j k(£)xo/Gxo. (9)
If

nxo (jk ( t 2)xo ) =  nxojk ( t 1)xo ) (10)
then the k-jets j k( t 2)x0 and j k( t 1)x0 belong to different orbits of the group Gx0 
and the equation

Fh(j k ( t 2))xo =  j  k ( t 1)xo (11)
has no solution with respect to h G Gx0. The condition (11) is an obstruction 
to the local equivalence of the sections t 2 and t 1 in a neighborhood of the point 
x°. These considerations are valid for every point x G M  and we obtain a fibre 
preserving map (over the identity)

n :  j k(£) - ^  j k(£)/H
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where the fibre of j k(£ )/H  at a point x G M  is the factor space j k(£)x/G x. The 
fibre preserving map n is the symbol of the differential operator

n : C~(£) C“ (jk(£ )/H )

i.e., n (0) =  n ( jk(0)). The condition n (0 2) =  n (0 0  is an obstruction to the 
(local) equivalence. Therefore, we consider the differential operator n as a curva­
ture -  the general notion of curvature that we propose in this paper (n(0) is the 
curvature of the section 0).
One can show that the classical results listed in Section 2 are explicit examples of 
the differential operator n. Namely:

2.1 The sections we consider are the two forms w on M , the functional group is 
the group Diff(M ), k =  1 and n(w) =  dw.

2.2 The sections we consider are the metrics g on M , the functional group is 
the group Diff(M ), k =  2 and n(g) =  R(g) -  the Riemannian curvature 
tensor.

2.3 The sections we consider are the conformaly equivalent classes [g] of met­
rics g, the functional group is Diff(M ), k =  2 and n([g]) =  W(g) -  the 
Weil conformal tensor.

2.4 The sections we consider are the linear connections V on a vector bundle £, 
k =  1 and n(V) =  F v  -  the Yang-Mills curvature tensor.

2.5 The sections we consider are the almost complex structures J  on M , the 
functional group is Diff(M ), k =  1 and n ( J ) ~  N ( J ) -  the Nijenhuis 
tensor.

In the next section we will consider the cases 2.4 and 2.5.
Remark. Here we consider two kinds of groups:

1. The group H  is the group of vertical automorphisms of a vector bundle £, 
H  =  A utV (£). In this case the stationary group of a point x0, Gx0 =  H .

2. The group H  is the group of the diffeomorphisms of a manifold M , H  =  
Diff(M ). The bundle £ is some tensor power of T (M ) and of T *(M) and 
the action of H  is its tangent lifting. In this case it is enough to consider 
only its stationary group Gx at each point x. This matter will be discussed 
elsewhere.

4. Examples

Example 2.4. Linear Connections on a Vector Bundle

We will describe the curvature of a linear connection on a vector bundle as an 
obstruction to the local equivalence of linear connections in terms of the general 
scheme given in Section 3.
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For every linear connection V on a vector bundle £ we have V ß = dß +  Aß, where 
V oß =  dß is the “origin” and {Aß} =  A G ^ 1(£* G£). The elements of ü 1(£* g £) 
are in one-to-one correspondence with the linear connections on the bundle £ and 
we recognize ü 1(£* G £) as the space of sections of T*(M) G £* G £, where 
the “functional” group A utV (£) acts. To accomplish the procedure described in 
Section 3, we choose coordinates {xß ,u “} to be centered at a point xo G M , 
xß(xo) =  0. The first jet of Aß at the point 0 reads

j  1(Aß )o(x) =  Aß +  A^ax“ , Aß =  Aß( 0), Aßa = daAß( 0) (12)

where ß ,a  =  1 ,2 , . . .  ,m.  The set of all pairs of arbitrary matrices ({Aß}, {Aßa}) 
describes j  1(T*(M ) G £* G £)0. Let ^  G A utV(£) be a vertical automorphism, 
^>(xß) G GL(n, R). The second jet of <p at the point 0 reads

j 2(^)o(x) =  Bo +  B«x" +  2 Baßxaxß, Bo =  ^>(0), Baß =  dadß^(0) (13)

where a, ß  =  1, 2, . . .  ,m.  The set of all triples of arbitrary matrices {Bo with 
det(Bo) =  0, Ba , Baß symmetric with respect to a , ß }  describes the space of 
2-jets of the vertical automorphisms at the point 0. The matrix Bo =  ^>(0) is non­
degenerate and can be considered as a common multiplier of the entire 2-jet and it 
does not play an essential role in our considerations. It is enough to consider only 
automorphisms <p with 2-jets of the form

j 2(^)o(x) =  1 +  Bax“ +  1 Baß x“xß . (14)

The action of p  by its two-jet (14) on j 1(T*(M) G £* G £)o is given by

j1(A ^)o *  j1 (A*(A)M)o =  j1 (A-1)o.j  1(A^ o . J  1(^ )o +  j  1 (A-1)o.j1(d^A)o

Aß *  Aß +  Bß (15)
Aßa 1 * Aßa +  Aß.Ba Ba.Aß Ba .Bß +  Bßa.

The formulae (15) describe the action of (1, Ba , Bßa) on the space ({Aß}, {Aßa}). 
Our purpose is to describe explicitly the projection

n : j  1(T*(M ) G £* G £)o - *  j 1(T*(M ) G £* G £))o/ A utV(£). (16)

First of all j o(T*(M) G £* G £)o is a homogeneous space. So we can take Bß =  
-A ß  and acting by (1, -A ß, Bßa) on j l (Aß)o we obtain (Aß, Aßa) *  (0, Aßa), 
where Aßa =  A ßa-A ßA a+B ßa. Due to the homogeneity of j  o (T*(M ) g £* G£ )o 
there is no obstruction at the level of the zero-jets and we go to the level of first 
jets. So we consider only elements of the type (1, 0, Bßa) acting on (0, Aßa), i.e.,
Aßa 1 * -Aßa +  Bßa.
Due to the symmetry of the matrices Bßa with respect to ß, a  the factor space 
({Aßa})/({Bßa}) is represented by the space of matrices {Aßa} antisymmetric
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with respect to ß , a  and the projection is the antisymmetrization with respect to ß, 
a: Aß a  ^  Aa ß  -  Aß a . Finally we obtain

(Aß  A^ a ) 1 * (0, Aßot) 1 * -Âa ß  -Àß a  (17)

Aa ß - A^ a  = dß Aa - da Aß  = dß A a ( 0) -  da A ß  (0) +  [Aß (0), Aa (0)] =  FßßV (0).

The differential operator n corresponding to n (16) is the Yang-Mills curvature 
tensor

n(V) =  F v
For a flat connection the curvature tensor is equal to zero. For a connection V the 
condition

F v  =  n ( j1(A ))=  0
is an obstruction for V to be a flat connection.

Example 2.5. Almost Complex Structure on an Even Dimensional Manifold

Following the general scheme considered in Section 3 we will describe the Ni- 
jenhuis differential operator as an obstruction to the (local) equivalence of almost 
complex structures on the even dimensional manifold M . The nonvanishing Nijen- 
huis tensor for some almost complex structure is an obstruction to its integrability, 
i.e., to its equivalence to the canonical almost complex structure for which the 
Nijenhuis tensor vanishes.
In this example the bundle under consideration is the vector bundle T*(M) 0  
T (M ). An almost complex structure J  on M  is an element of Cœ (T*(M) 0  
T (M )) with the property J 2 =  - 1 .  In coordinates {xß} centered at a point 
x0 G M , xß(xo) =  0, the first jet of an almost complex structure J  reads

j  1(J )oß(x) =  Jß +  Cßp xp

where Jß  =  J£ (0), Cßp =  d J ß  (0), Ja Ja  =  -Sß,  and Ja Ca ^  +  Ca J  =  0.
The functional group is the group Diff(M ) acting by the tangent lifting. The sta­
tionary group is the group Diff(M )x 0 -  the group of the diffeomorphisms with a 
stable point x0. For the second jet of a diffeomorphism ß  G Diff(M )x 0 we have

j 2(^)ß(x) =  Baxa +  1 Bßß a  ßx x

where Ba =  d a^ ß(0), Baß =  dadßßß(0) and det{Ba} =  0.
Here again the crucial role play the diffeomorphisms ß  with Ba =  Sß i.e., with 
a tangent lifting ß T : Tx0 (M ) — > Tx0 (M ) equal to the identity map. We will 
consider only diffeomorphisms of this kind. For the 2-jets we have

j 2M ß(x) xß +  2 Ba ß
a

/y»'-'1 rp ß
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The action of these diffeomorphisms on the first jet of the almost complex structure 
J  at the point 0 is given by

Tß > Tßv v "J v  (18)
Cß __ v Cß I jß Ra  Rß Ja  (18)v-' vp  v-' vp  1 ^ a ^ v p  ** ap^ v *

Due to (18) we consider only the space W of 1-jets of the almost complex structure 
J  at the point 0 over a fixed {Jß} =  J. This space is parameterized by {Cßp}. 
The description of the space W and of the factor-space of W with respect to the 
action (18) is more visual if we consider {Cßp} and {Ra^} as elements of the 
space L* 0  L* 0  L, where L is a vector space with dim(L) =  m, or equivalently 
as bilinear forms: L x L — r L.
In this interpretation

W =  {C G L* x L* x L ; JC (u,v) +  C (Ju,v) =  0, u, v G L}.

Let us define a map K  : S 2L* 0  L — r W by

K (R)(u, v) =  JB(u, v) -  R(Ju, v). (19)

In theses notations the action (18) of the diffeomorphisms on the space W reads

W 3 C — r C +  K  (R), R G S 2L* 0  L.

Our purpose is to describe the projection

n : W — r W /K (S 2L* 0  L).

By s : W — r S 2L* 0  L we denote the symmetrization

s(C)(u, v) =  1 (C(u, v) +  C(v, u)).

The map A = s o K  : S 2L* 0  L — r S 2L* 0  L is an invertible map but not equal 
to the identity. The space W splits into the following direct sum

W =  K (S2L* 0  L) ® ker(s). (20)

The projections on the first and on the second term in (20) are the following

K  o A-1 o s : W — r K (S 2L* 0  L)

and
1 — K  o A 1 o s : W — r ker(s).

It is easy to calculate that

(K  o A-1 o s)(C)(u, v) =  2(C (u,v) +  C(v,u) — JC(u, Jv) +  JC(v, Ju))
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and

(1 — K  o A -1 o s)(C)(u, v)

=  1 (C (u,v) — C(v,u) — JC  (u, Jv) +  JC(v, Ju)) =  — 2 J.N (J  ).

The projection

— 1 J .N  (J) : W — ► ker(s) w W / K  (S 2L* © L)

is the projection we are looking for. The operator J(x ) is an invertible operator so 
the important information is carried by N  (J ). For the canonical almost complex 
structure N ( J ) =  0. That is why N ( J ) =  0 is an obstruction to the (local) 
equivalence of the almost complex structure J  to the canonical one, i.e., to its 
integrability.

5. Definition of the Curvature of a Superconnection as an Obstruction

Let V s =  V +  x  be a superconnection [7] on a Z2-graded bundle £. Let {xß} be 
coordinates on the base M  and {e+a}, {e- i } be a basis in £, compatible with the 
Z2-grading. In coordinates

V ß =  +  A^ , Aß =  A+ß +  A-ß

A+ =  A+ßa dxß © e+ © e+b, A -  =  Aj  dxß © e -  © e­

X =  x + - a e-  © e+ a +  x -+ a  e+a © e- i  ( ^

(x+ - +  X- + , A+ +  A- ) G ^ 0,1({* © 0 - .

If the origin V s0ß =  dß +  0 in the space of the superconnections is fixed the 
elements of Q0,1({* © £)-  are in one-to-one correspondence with the supercon­
nections. So in the case of superconnections the bundle under consideration is 
(£* © £)-  © (T *(M ) © {* © £ )_  The first jet at the point 0 of a superconnection, 
or more precisely, of its components reads

j  1(X +-)o(x) =  X +- +  X +-ßx ß  X+- =  X + -(0 ) X+-ß =  dßX +-(0)

j  1(X -+)o(x) =  X -+ +  X-+ßxß, X-+ =  X -+ (0), X-+ß =  dßX -+(0)

j  (A+ßM x) =  A+ß +  A +ßpxP, A+ß =  A+ß(0), A+ßp =  dpA+ß(0)
j 1( A- ß) o(x) =  A - ß +  A-ßpxp, A-ß  =  A-ß(0), A - ßp =  öpA-ß(0).

The set (x + - , X+-p, X -+, X-+p, A+ß, A+ßp, A -ß, A-ßp) parameterizes the jet­
space j  1((e* © o -  © (t  *(m  ) © e  © e ) - ) 0.
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The “functional” group is A utV (£+ © £_). For every element © G A utV (£+ © £_) 
we have © =  ©+ +  ©_. The action of © on Q0,1({* © £) is given by

(X+_ + X_+, A+ +  A _ ) — ► ©*(X+_ +  X_+, A+ +  A _) =  (©+1.X+_.©_
+  ©_1.X_+.©+ , ©+^A+p.©+ +  ©+1.dp©+, ©_1.A_p.©_ +  ©_1.dp©_) (22)

The second jet of © G A utV (£+ © £_) at the point 0 reads

j2 (©+)(x) = 1 +  ^+pxP +  1 V + p o , V+p =  dp©+(0 ) V+po = dpda©+ (0) 

j2 (©_)(x) =  1 +  V_pXP +  1 ©_poxPx° , V_p =  dp©_(0 ) ©_po =  dpdo©_(0).

As in the previous examples (see Section 4) we consider only automorphisms with 
2-jets beginning with the identity operator. From (21) and (22) for the action of an 
automorphism © on the first jet of the superconnection we obtain

X + - — x+_
X+-p — X+_p — V+p.X+_ +  X+_.V_p

X -+  — X_+
X_+p — X_+p — V_p.X_+ +  X_+.V+p

A +p — A +p +  ©+p
A +pp — A +pp — ©+p.A +p +  A +p.©+p — ©+p.©+p +  v +pp

A _p — A _p +  ©_p
A _pp — A _pp— V_p.A _p +  A _p.© _p— ©_p.©_p +  v _pp

(23)

We choose ©+p =  —A+p, ©_p =  —A_p and the upper transformations lead to

(x+_, X+_p> X —+ , x —+p, A+p, A+pp, A_p, A_pp) ^

(x +—, x  +—p, x —+ , x  —+p, 0,A+pp, 0,App)
(24)

x +_p =  X+_p +  A+p.X+_ — X+_ .A_p 
X _+p =  X_+p +  A_p.X_+ — X_+.A+p
A+pp =  A+pp — A+p.A+p 
A _pp =  A_pp +  A_p.A_p.

Next we consider automorphisms which acting according (23) preserve the special 
form (24) of the first jet of the superconnection. The first jets of these automor­
phisms have the form (1, 0, ©+pp; 1, 0, ©_pp). Their action on

(x + _ , X+_p, x_+ , X _+p, 0, A+pp, 0, A _pp)
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is given by

(X+—, X + -p , X—+, X-+p , 0, A +ß p , 0, Ä - ß p )

* ( x +— , X +— p , X — + , X — +p , 0, A+ß p  + v +ß p , 0, A—ß p  + v —ß p )-

Due to the symmetry of the matrices v ± ß p  with respect to ß, p the factor space, 
we are looking for, is obtained by antisymmetrization of {A±ß p }. The canonical 
projection

n :  j \ ( C  © £) — © (T*(M) © £* © £) —)

j 1((e* © 6 — © (t  *(m  ) © e* © o —) /  A utv  (£+ © £—)

is the composition of (24) and the antisymmetrization of {A±ß p } with respect to 
ß  p

(X+—, X+ —ß , X—+, X—+ß , A+ß , A+ß p ,A—ß , A—ß p )

— ► (X+—, X+—ß , X—+ , X—+ß , 0, A +ß p , °  A —ß p )

* (x +—  , X +— ß , X—+, X—+ß , 0, A +pß A +ß p , 0, A —pß  A—ß p )
=  (X+—(0 ) V ß X+— (0),x —+ (0), V ß X—+(0),dß A+p (0) -  dp A+ß (0)

+  [A+ß (0),A+p (0)],dß A—p (0) -  dp A —ß (0) +  [A—ß (0), A—p (0)])-

In short notations

n : j  1(X, V) (x , Vx , F v ) G Q0,1’2(£* © £)-

Finally, we claim that the natural notation of curvature of a superconnection V s = 
V +  X on a Z2-graded vector bundle £ is the operator

n (V s ) =  (x, V(x) ,F v ) G D0,1,2(£* © £).

This notion differs from the expression (x2, V (x) , F v ) obtained by purely alge­
braic analogy with the curvature of a linear connection.
Our notion of a curvature of a superconnection may be of interest to the models 
of interacting particles in the supersymmetrical field theories where one of the 
expressions in the Lagrangian is the square of the supercurvature.
The obstructions we have considered are related to the action of the “functional” 
groups on k-jets of smooth sections of some vector bundles. The study of the 
orbits of this action is usually called a study of the singularities of smooth maps or 
“Catastrophe Theory” in the terminology of René Thom (see [1,3]). The title of 
our paper is in the René Thom's terminology.
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