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Abstract, In this paper we study a Riemanian metric on die tangent bundle 
T (M)  of a Riemannian manifold M  which generalizes Sasakian metric and 
Cheeger-Gromoll metric along a compatible almost complex structure which 
together with the metric confers to T ( M)  a structure of locally conformal 
almost Kählerian manifold. This is die natural generalization of die well 
known almost Kählerian structure on T(M) .  We found conditions under 
which T ( M)  is almost Kählerian, locally conformal Kählerian or Kählerian 
or when T ( M)  has constant sectional curvature or constant scalar curvature.

1. A Brief History

A Riemannian metric g on a smooth manifold M  gives rise to several Riemannian 
metrics on the tangent bundle T( M)  of M.  Maybe the best known example is 
the Sasakian metric g$ introduced in [18]. Although the Sasakian metric is natu­
rally defined, it is very rigid in the following sense. For example, Kowalski [11] 
has shown that the langent bundle T( M)  with the Sasakian metric is never lo­
cally symmetric unless the metric g on the base manifold is flat. Then, Musso and 
Tricerri [13] have proved a more general result, namely, lhal the Sasakian metric 
has constant scalar curvature if and only if (M,  g) is locally Euclidean. In the same 
paper, they have given in explicit form a positive definite Riemannian metric in­
troduced by Cheeger and Gromoll [9] and called this metric the Cheeger-Gromoll 
metric. In [19] Sekizawa computed the Levi-Civila connection, the curvature ten­
sor, the sectional curvatures and the scalar curvature of this metric. These results 
are completed in 2002 by Gudmundson and Kappos [10]. They have also shown 
lhal the scalar curvature of the Cheeger-Gromoll metric is never constant if the 
metric on the base manifold has constant sectional curvature. Furthermore, Ab­
bassi and Sarih have proved lhal T( M)  with the Cheeger-Gromoll metric is never 
a space of constant sectional curvature (cf. [2]). A more general metric is given by
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Anastasiei [6] which generalizes both of the two metrics mentioned above in the 
following sense: it preserves the orthogonality of the two distributions, on the hor­
izontal distribution it is the same as on the base manifold, and finally the Sasaki an 
and the Cheeger-Gromoll metric can be obtained as particular cases of this met­
ric. A compatible almost complex structure is also introduced and hence T ( M)  
becomes a locally conformal almost Kählerian manifold.
Oproiu and his collaborators constructed a family of Riemannian metrics on the 
tangent bundles of Riemannian manifolds which possess interesting geometric 
properties (cf. [14-17]). In particular, the scalar curvature of T ( M )  can be constant 
also for a non-flat base manifold with constant sectional curvature. Then Abbassi 
and Sarih [3] proved that the metrics considered by Oproiu form a particular sub­
class of the so-called g-natural metrics on the tangent bundle (see also [1,3-5,12]).

2. Introduction

By thinking of T ( M )  as a vector bundle associated with 0 ( M )  (the space of or­
thonormal frames on M),  namely T (M )  =  0 ( M )  x Rn/0 (n )  (where the or­
thogonal group O(n) acts on the right on 0(M) ) ,  Musso and Tricerri construct 
some natural metrics on T ( M )  (see [13, §4]). The idea is to consider a symmetric, 
semi-positive definite tensor field Q, of type (2,0) and rank 2n on 0 ( M )  x Rn. 
Assuming that Q is basic for ip : O(M)  x Rn — ► T{M) ,  (u, Ç) i-» (p, C*ui), 
where u  =  (p, u i , . . . ,  un) and Ç =  (C1) • • • > Cn) (i-e-> Q is O(n)-invariant and 
Q ( X , Y )  =  0 for all X  tangent to a fiber of ip) there is a unique Riemannian met­
ric qq on T ( M )  such that ip*gg =  Q. In this paper we will show that the metric 
introduced in [6] can be constructed by using the method of Musso and Tricerri 
and we study it. After a compatible almost complex structure is introduced, we 
give the conditions under which T ( M )  is almost Kählerian (Theorem 1). We also 
obtain a locally conformal Kahler structure on T ( M )  (cf. Example 2) and Kahler 
structures on portions of T (M )  (cf. Theorem 2). These results extend the known 
result saying that T ( M )  endowed with the Sasaki an metric and the canonical al­
most complex structure is Kählerian if and only if the base manifold is locally 
Euclidean.
Next we want to have constant sectional curvature and respectively constant scalar 
curvature on T(M) .  With this end in view, we compute the Levi-Civita connec­
tion, the curvature tensor, the sectional curvature and the scalar curvature of this 
metric. We found relations between the sectional curvature (respectively scalar 
curvature) on T ( M )  and the corresponding curvature on the base M.  We give an 
example of metric on T ( M )  of Cheeger-Gromoll type which is flat. (Recall the 
fact that Cheeger-Gromoll metric can not have constant sectional curvature.) See 
also Proposition 6. We give some examples of metrics on T ( M )  (when M  is a 
space form) having constant scalar curvature. See Examples 3, 4 and 5.
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3. On the Geometry o f the Tangent Bundle T ( M )

Let (M, g) be a Riemannian manifold and let V be its Levi-Civita connection. Let 
r  : T ( M )  — » M  be its tangent bundle. If u e  T (M)  it is well known that we 
have the following decomposition of the tangent space TUT (M)

TUT ( M )  = VUT ( M )  ® HUT (M)

where VUT (M )  =  kerr*^ is the vertical space and HUT (M )  is the horizontal 
space obtained by using V. (A curve 7 : I  — » T( M) ,  t  i-» (7 (t) ,V(t))  is 
horizontal if the vector field V (t ) is parallel along 7 =  7 0 7 -. A vector field on 
T ( M )  is horizontal if it is tangent to a horizontal curve and vertical if it is tangent 
to a fiber. Locally, if (U, x l), i =  1 , . . . ,  m,  where m  =  dim M,  is a local chart 
at p e  M,  consider a local chart ( j ~ 1(U),x' l, y t) on T(M) .  If T^(x )  are the 
Christoffel symbols, then Si =  — T^(x)yJ  at u, i =  1 , . . . ,  m  span the
space HUT( M) ,  while , i  =  1 , m  span the vertical space VUT(M) . )  We 
have obtained the horizontal (vertical) distribution H T M  ( VT M)  and a direct sum 
decomposition

T T M  = H T M  ® V T M

of the tangent bundle of T(M) .  If X  e  x (M) ,  denote by X H (and respectively 
X v ) the horizontal (vertical) lift of X  to T(M) .
If u e  T (M)  then we consider the energy density at u on T(M) ,  namely

1 / \
* =  2 0t(u)(u, u).

3.1. The Sasakian Structure

The Sasakian metric is defined uniquely by the following relations

g s ( X H , Y h ) = gs ( X v , Y v ) = g(X,  Y )  o r , gs ( X H , Y v ) = 0 (1)

for each X , Y  e  x(M ).
On T ( M )  we also define an almost complex structure J 5 by

JSX H =  X y , J SX V = - X H for all X  e x(M ). (2)

It is known that (T ( M ), J5, gs) is an almost Kählerian manifold. Moreover, the 
integrability of the almost complex structure J 5 implies that (M , g) is locally flat 
(see, e.g., [7]).
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3.2. The Cheeger-Gromoll Structure

The Cheeger-Gromoll metric on T ( M )  is given by

9c g{p,u) ( X H, Yh) = gp(X,  Y) ,  9c g{p,u) ( X H, Y v ) = 0
1 (3)

gCG(p,u)(Xv , Y v ) = (gP( X , Y ) + g p(X,n)gp(Y,n))

for any vectors X  and Y  tangent to M.
Since the almost complex structure Js  is no longer compatible with the metric 
gcc> one defines on T ( M )  another almost complex structure J c g , compatible 
with the Chegeer-Gromoll metric, by the formulas

JcgX m  = x X v  -  gp(X,n)nv

(4)
J c g A',vf .u) = - \ x H -  gr ( X , u ) n H

where x =  \ / l  +  2t and X  e Tp(M).  Remark that Jcgxl11 =  uy and Jcguv =  
—nH. We get an almost Hermitian manifold (T ( M ), Jc g , 9c g )- Moreover, if we 
denote by f le e  the Kahler two-form (namely Qc g (U, V) =  gcc(U, Jc g V),  for 
a l  U, V  e x{T(M)) )  it is quite easy to prove the following

Proposition 1. We have
dflcG =  wA Qcg (5)

where u  e A 1(T(M))  is defined by

w(p,u)(^fH) =  0 and uj(p^ ( X ^  ) =  —  ̂ 9p ( X, u), X  e TP(M).

Proof: A simple computation gives

Üc g ( X h  , Y H) = Ü ( X V , Y V) = 0

Üc g ( X h , Y v ) = ~  ( g ( X , Y )  +  ^  g(X,xi)g(Y,vi)J .

(From now on we will omit the point (p, u).)
The differential of f le e  is given by

dnCG(xH, y h, Z H) = dücG(xH, y h, Z v ) = dnCG(xv , y v , z v) = o

dQcG(XH, Y v , Z v ) = - ( \  + [g(X, Y)g(Z,  u) -  g(X,  Z)g(Y,  u)]
x \ i r  1 +  x j

for any X,  Y, Z  e x(M) .
Hence the statement. □
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Remark 1. The almost Hermitian manifold (T ( M ) , J c g ,9c g ) is never almost 
Kählerian (i.e., d fict; /  0).

Finally, a necessary condition for the integrability of Jcg is that the base manifold 
(M,  g) is locally Euclidian.

3.3. The General Structure

A general metric, let us call it g a , is in fact a family of Riemannian metrics (de­
pending on two parameters) and the Sasakian metric and the Cheeger-Gromoll 
metric are obtained by taking particular values for the two parameters. It is defined 
(cf. [6]) by the following formulas

gA M (x H, r H) =  gp{x, n  gA M (xH, y v) =  o
-r r T/ (6)

9AM ( X X ,F M  =  a(t)gp( X , Y )  +  b(t)gp(X,u)gp(Y,u)

for all X ,  Y  e x (M) ,  where a, b : [0, + 00) — » [0, + 00) and a > 0. For a = 1 
and 6 =  0 one obtains the Sasakian metric and for a =  6 =  one gets the 
Cheeger-Gromoll metric.

Proposition 2. The metric defined above can be constructed by using the method 
described in Musso and Tricerri [13].

Proof: If we denote by 9 =  (91, . . . ,  9n) the canonical one-form on the frame 
bundle 0 ( M )  (namely, if p  : 0 ( M )  — » M,  9 is defined by d p u(X) =  9t (X)\ii, 
for u  =  (p, u i , . . . ,  un) and X  e Tp(M))  we have J?*(02) =  (a_ 1) |0 à for each 
a  e O(n). The vertical distribution of ib is defined by

9l = 0, D C  := dC +  C ^ j

where uj =  (lu| )  denotes the so(n)-valued connection one-form defined by the 
Levi-Civita connection of g. Since =  (a_ 1) |L u |a | we can also write
R t ( DC )  = (sL-ClDÇb, for all a  e O(n).
Consider now the following bilinear form on 0 ( M )

Qa = ± ( f f  + a ( i | | C | | 2 )  ± ( D C f  + b ( i | | C | | 2)  ( E W )  • (? )

It is symmetric, semi-positive definite and basic. Moreover, since the following 
diagram

O(M)  x Rn T ( M)

projj T

M0 ( M ) p
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is commutative, we have é*gA =  Qa - (For details see [13, §4] and [4, §3].) □

Again, we have to find an almost complex structure on T(M) ,  call it Ja , which is 
compatible with the metric g a - Inspired from the previous cases we look for the 
almost complex structure Ja of the following form

JAX g u) = a X V +  ßgp(X,n)nV

j a X ^ u) = x X H +  pgp(X,  \i )vlh
(8)

where X  e  x(M)  and a , ß, 1 and p are smooth functions on T ( M )  which will be 
determined from J \  =  —I  and from the compatibility conditions with the metric 
g a - Following the computations made in [6] we get first a  =  ± - ^  and 7  =  ^fs/a.  
Without lost of the generality we can take

a  =  —= and 7  =  —\fa .

Then one obtains
0 1 (  13  =  — — —= +  e- ^ and p =  — (^s/a +  eV a +  2btJ

2t \ y / a  \ /a +  2bt 
where e =  ± 1 .
Thus we have the almost complex structure JA

J a X h  = ~ ^ X V -  — ( ^ =  + e 1
a 2t \ y /E  aJa +  2bt

1
2t

and the almost Hermitian manifold (T ( M ) , g A, Ja )-

g ( X , n} ,v

Ja X v  =  —\/ä X H H----- (^s/ä +  eV a +  2btj g(X,  \i)\iH
(9)

Remark 2. In this case JA is defined on T (M)  \  {0} (the bundle of nonzero tangent 
vectors), but if we consider e =  —1 the previous relations define J a on the whole
T(M) .

Remark 3. If we take e =  —1 , a 
(T(M) ,  gs, Js)  and for e =  —1 , a 
(T ( M) ,g c G , Jc g )-

1 and b =  0 we get the manifold 
b =  we obtain the manifold

If we denote by the Kählerian two-form (i.e., Qa (U, V)  = gA(U, J a V),  for 
a l  U, V  e  x (T(M)) )  one obtains

Proposition 3 (see [6]). The almost Hermitian manifold (T(M) ,  g a , Ja ) is locally 
conformal almost Kählerian, that is

dfl^4 — Lü A 0^4 (10)
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where lu is a closed and globally defined one-form on T (M )  given by 

lü( X h ) =  0 and u>(Xv ) =  ~^= ( — 7 =  +  (>/a +  ca/ o +  2bt)) g(X,  u).
y  £X y y  £X y

As a consequence of the above one can state also the following

Theorem 1. The almost Hermitian manifold (T(M) ,  g a , J a ) «  almost Kählerian
if and only if

2a'(t) (ta '(t) +  a(t))
M f  = ------ :----- 77\-------- --a(t)

and for  e =  — 1, a(t) is an increasing function, while for  e =  + 1, ta(t) is a 
decreasing function.

Proof: The condition lu =  0 is equivalent to

2ta (f) +  a(t) = —esja(t)sja(t) +2tb(t).

From here, we get 6(f). Moreover it follows that a(f)s/t  is a monotone function, 
namely it is increasing if e =  —1 and decreasing for e =  +1. Since 6(f) is positive 
we conclude

• if e =  —1 : 2a't +  a > 0 <----► 2(a!t + a) > a — ► a't + a > 0 — ► a' >
0 — » a increases (this implies as/t, at are also increasing functions)

• if e =  + 1 : 2a't +  a < 0 <— > a?f +  a < —a't — » a?f +  a < 0 — » at 
decreases (this implies that as/t, a are also decreasing functions).

3.4. The Integrability of Ja

In order to have an integrable complex structure Ja on T ( M )  we have to compute 
the Nijenhuis tensor N ja of Ja and to check that it vanishes identically.
We have the following relations for N ja

N ja ( X H , Y H) = ( - ^  +  (g (X, n)Y  -  g{Y, n ) X f  +  (R x y u)V

N ja ( X v , Y v )

=  ( -  a R x y u  +  sfaB(t)g(Y,  u)RXn^ ~  sfäB(t )g(X,  u)i?yuu) ^  ̂

- 7 s ( 2 7 S  +  B (t)) (9 (r ’" ) x - 9 ( i ' " )y)V’

where A(t) = ±  +  e ^ = 5| )  and B(t)  = ±  ( ^ i  +  eVa +  26f).

(The expression for N ja ( X h , Y v ) is very complicated and will be omitted.)
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Thus if Ja is integrable then

R x y u =  ( +  ^ ± # -A ( f )  ) (g(Y,u)X -  g(X,xi)Y)
2 a? a^/a

for every X , Y  6 and for every point u e  T(M) .  It follows that M  is a
space form M  (c) (c is the constant sectional curvature of M). Consequently,

a +  ta'
2a2 rw a

.4(f) =  c. (12)

Example 1. In the Sasakian case (a(t) = 1, 6(f) =  0, e =  — 1) it follows that 
c =  0, i.e., the manifold M  is flat.

Example 2. Looking for a locally conformal Kahler structure on T (M )  for which 
the metric is of Cheeger-Gromoll type, namely a(f) =  6(f), we obtain

e-\/i ■ '->/
a(t) =  6(f) =  — ,----- ------ ------------------------------ r­

- - 2 (ce2v/î+ 2îf +  (1 +  f +  V T + 2 i ) k )

with k  being a positive real constant and c must be nonnegative.

Question: Can (T(M),  g a , J a ) be a Kählerian manifold?
If this happens then the base manifold is a space form M (c) and the functions a 
and 6 satisfy

2a’(ta1 +  a)
b =

and
a' = 2ca(2ta! +  a).

If c =  0 (M  is flat) then a is a positive constant and 6 vanishes. 
If c /  0 the ODE (14) has general solutions

1 ±  \ / l  +  Kt
aiMf )  = 4cf

(13)

(14)

(15)

in which k a real constant. Taking into account that a and 6 are positive functions 
and using (13) one gets:
Case 1.

1 +  \ / \  +  Kt
a = ----------------  and 6

4cf
/c(l +  \ / \  +  Kt) 

8cf(l +  Kt)
(16)

Here c > 0, f > 0, k <  0, f < and e =  +1. 
Case 2.

4c(l 4" "\/l T* Kt) 8c(l 4" Kf)(l 4" "\/l 4~ Kt)
(17)
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Here kc < 0, c < 0 (then k > 0), t  < and e =  —1.

Consider B K =  j v  e T( M) ;  gT(v)(v , v)  <  - | |  m d È K = B K\ M .

Theorem 2. The manifolds B K in Case 1 and B K in Case 2 are Kühler manifolds.

Now we give

Proposition 4. Let (M, g) be a Riemannian manifold and let T (M)  be its tangent 
bundle equipped with the metric g a - Then, the corresponding Levi-Civita connec­
tion V A satisfies the following relations:

V a h Y h  = ( V X Y ) H -  ^  (J?xyu)v 

V x h Y v  = ( V x Y ) v  +  I  (RuYX ) h

V a v Y h  = I  (RuX Y ) h  (18>

=  L (g(X,  n )Y V +  g(Y, n ) X V) +  Mg(X,  Y )n V 

+ Hg(X,u.)g(Y,u.)uv

where
_  a f t )  _  26(f) -  a f t )  a(t)bf t)  -  2aft)b(t)

2a(t) ’ 2(a(t) + 2tb(t)) 2a(t)(a(t) + 2tb(t)) '

Proof: The statement follows from Koszul formula by usual computations. □

Having determined Levi-Civita connection, we can compute now the Riemannian 
curvature tensor R A on T(M) .  We have

Proposition 5. The curvature tensor is given by

R x hy h Z  — (RX Y Z)  +  -  [RaRxzuY -  RaRYZuX  +  2RaRxYUZ\ H

+  ö [ ( yzR)xYv \ V

Ä A ryY  XHyH& — R x y Z  +  - ( R YruZx ^  -  R x R̂ z Yv)
V

+  Lg(Z,  u)(Rx y Y)

H

V

+  mg ( R x Y ^  Z)nv  +  I  [(Vx R ) uz Y  -  ( Vv R)uZX

R a Hy VZ h  = £  [(Vx R)uyZ]h

+  - R x z Y  — - R xr^y Z'o- +  Lg(Y, u) RX zvl +  Mg ( Rx z ^ ,  T )u
v
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R x h y v Z v  = ( R y z X ) h  -  ^ { R ^ y R uzX ) h  (19)

+  I  [g(Z,u}(RvYX ) H -  g(Y,u}(RuZX ) H]

Ä £vyv Z H = a(RXy Z ) H +  [g(X,n)R^yZ -  g(Y,n)R^x Z]H 

a2
+  -j- [RuX R uyZ  — R ay R aXZ}H 

R i v y v  Z V = F1(t)g(Z,  u) [g(X,n)YV -  g ( Y , n ) XV]

+  F2(t) [g(X, Z ) Y V -  g(Y,  Z )X y ]

+  F i(t) [g(X, Z)g(Y,  u) -  g(Y, Z)g(X,  u)] uy 

where F i =  L?- L 2-N (l+ 2 iL ), F2 =  L-M (l+2tL) andFs =  N-(M?+M2+2tMN).

Remark 4. a) In the case of the Sasakian metric we have: L =  M =  N =  0,
F i =  F2 =  Fs =  0 (cf. also [8]).
b) In the case of the Cheeger-Gromoll metric we have (see also [10,19]):

2(t2 +  2)
L =  — 2 , M =

t 2 +  1
N =  —r, L? =  -r . M? =  - -

1 +  2fL =  F| =
ir

r2 -  1
F2 =  -

t 4 +  t 2 +  1
^3 =

r°
v2 — 2

where t  =  a/1 +  21

In the following let QA(U, V)  denote the square of the area of the parallelogram 
with sides U and V  for U, V  e  x{T(M))

Qa (U, V)  = gA(U, U)gA(V, V) -  gA(U, V ) 2.

We have

Lemma 1. Let X ,  Y  £ TPM  be two orthonormal vectors. Then 

QA( X h , Y h ) = 1

Qa ( X h , Y v ) = a(t) +  b(t)g(Y, u)2 (20)

Qa ( X v , Y v ) = a { t f  +  a(t)b(t) ( g ( X , n f  +  g ( Y , u f )  .

We compute now the sectional curvature of the Riemannian manifold (T ( M ), gA), 

namely K A(U, V) = for U, V  £ x(T(M )).Q^{U,V )
Denote by Tq(M)  =  T ( M )  \  {0} the bundle of non-zero tangent vectors tangent 
of M.  For a given point (p, u) e  Tq(M)  consider an orthonormal basis {ej}i=j-^
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in the tangent space TP(M)  of M  such that e\ =  Consider on T^pujT(M)  the 
following vectors

Ei = e f , i =

E-m+l —
1 Vel\ /  a -H 2tb

R'm ■ k /= ) k  2, . . . .

(21)

It is easy to check that { E \ , . . . ,  £ 2»»} is an orthonormal basis in T^puyT{M)  (with 
respect to the metric g a )- We will write the expressions for the sectional curvature 
K a in terms of this basis. We have

K A(Et ,Ej )  = K(e t ,e3) -
3 a(t)

-Rr.r.U- K A(Et , E m+1) =  0

K A(Ei, E m+k) =  -  \Rueket \J , K A(Em+iE m+k) =  —
E> +  2/ E ’

a(t)
(22)

K A(Em+kEm+i) =  -
F2

a(f)' i , j  = 1 m, k, l  = 2 , . . . ,  m.

Here | • | denotes the norm of the vector with respect to the metric g (in a point).

Question: Can we have constant sectional curvature c on T ( M )  ?
If this happens, then it must be 0, so T ( M )  is flat. First, one gets easily that M  is 
locally Euclidean. Then, we should also have F2(f) =  0 and Fs(i) =  0 for any 
t. It follows that M =  1+L2fL and N =  ^_^L. (Hence F'i(t) =  0.) These equalities 
yield two ordinary differential equations (involving a and b), namely

o) t(a')2 +  2aa' — 2ab =  0 
ah' — 2a'b 2a" a — 3(a?)2 

a +  2tb 2 (a +  ta')
A  simple computation shows that 00) is a consequence of o). So, we must have

It is interesting to fix our attention to the following special cases 
Case i) 6(f) =  ka'(f), where k is a real constant.
If a' =  0 then 6 =  0 and a is constant, so g a is homothetic to Sasaki an metric.
If a ' #  0 then a(t) = a0t 2̂ ~ 1\  (k > 1 or k < 0, uq > 0) and in this case we have 
to consider Tq(M).
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Case ii) b(t) = a(t). We obtain ^  =  1;bf 1+2< which gives

a(t) = a0
(1 +  v T + 2t)2!

CLq >  0 (*)

or

a(t) = a0-
i-2 v/l+21

1 + t - V T T 2t 
and in this case we have to deal with non-zero vectors.

Remark 5. The manifold T ( M )  equipped with the Cheeger-Gromoll metric has 
a non constant sectional curvature.

Putting a0 = 1 in (*), we can state the following 

Proposition 6. Consider g± on T (M )  given by 

9l ( X H, Y H) = g ( X , Y )

g i ( X H, Y v ) = 0
e-\/i ■ '->/

g i ( X v , Y v ) = ^ — ^ = ^ ( g ( X , Y ) + g ( X , u ) g ( Y , u ) )  

The manifold (T(M) ,g i )  is flat.

(24)

We compare now the scalar curvatures of (M , g) and (T(M) ,  9a ).

Proposition 7. Let (M, g) be a Riemannian manifold and endow the tangent bun-
~ A

die T ( M )  with the metric g a - Let seal and seal be the scalar curvatures of g and 
g a  respectively. The following relation holds

seal =  seal +
2 - 3 a E

t<j
Re +

1 — m
(mF'2 +  4:tF$) (25)

where is a local orthonormal frame of T(M) .

Proof: Using that seal =  Y  KU -i- ej ) and the formula

we get the conclusion.

E  if i.
i,3=1

^  ] I Re-i ej n 
»•:/ I

□
Let us consider the case when M  = M(c)  is a real space form.

Question: Could we find functions a and b such that T ( M )  equipped with the 
metric g a has a constant scalar curvature?
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First of all let us consider the case when a =  k  (a positive real constant). After 
some computations we obtain that 6(f) should satisfy the following ODE

c2(2 — 3k)k^t  +  b(t)(k(m +  4c2 (2 — 3 k)kt2) (26)
+  2t( — 2 +  m  +  2c2 (2 — 3k)kt2)b(t)) +  2ktb'(t) =  constant.

Let us give some examples:

Example 3. If we take a =  |  and 6 =  0 we obtain that ( T ( M ) , qa) has a constant 
~  A

scalar curvature seal =  m ( m  — 1 )c.

Example 4. For a = k = |  and if the constant in (26) vanishes (and 6 /  0) we 
can integrate the ODE obtaining

b = e - B m- 2̂ t+rĴ 1\.
.__ _ ̂ 4

Then, (Tq(M),  g a ) has a constant scalar curvature seal =  m ( m — l)c.

. 9. c2k 2(3k — 2)t
Example 5. If we take a = k  e (0, #) and 6 =   ---------- — — „ , . ,  „ then

v 3; 2 +  m  +  2c2(2 -  3k)kt2
___ _ ̂ 4

(T ( M ), g a ) has a constant scalar curvature seal =  m ( m  — l)c.

Let us consider now 6(f) =  a(t), as in the case of Cheeger-Gromoll metric. Then 
(T ( M ), g a ) has a constant scalar curvature if and only if a satisfies the following 
ODE

-  2(1 +  2f)2a(f)3 [ _  2^m +  2 _̂ 2  +  _  4*(c +  2cf)2a (f)3

+  6f(c +  2cf)2a(f)4 +  (—6 +  m )f(l +  2 f)a?(f)2 

+  2a(i)((m  +  2(—1 +  m )t )a ( i )  +  2 f(l +  2f)a??(f))] =  con st.

which seems to be very complicated to solve.
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	gs(XH, Yh) = gs(Xv,Yv) = g(X, Y) o r, gs(XH, Yv) = 0	(1)

	JcgA',vf.u) = -\xH -	gr(X,u)nH

	gAM(xH, rH) = gp{x, n gAM(xH, yv) = o

	Qa = ±(ff + a (i||C||2) ±(DCf + b (i||C||2) (EW) •	(?)

	2a'(t) (ta'(t) + a(t))

	Mf = 	:	77\		

	a(t)

	2ta (f) + a(t) = —esja(t)sja(t) +2tb(t).

	+ ö [(yzR)xYv\



	Ei = ef, i =

	R'm ■ k /=	) k 2,....

	(1 + vT+2t)2!



	E ifi.


