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Abstract. We construct g-Taylor formula for the functions of several vari
ables and develop some new methods for solving equations and systems of 
equations. They are much easier for application than well known ones and 
very useful when the continuous function does not have fine smooth prop
erties. Especially, we will demonstrate their power in solving the equations 
where the function is defined by some g-integral. We will discuss the con
vergence and accuracy of those methods and compare them with well known 
methods. The conclusions are illustrated by examples.

1. Introduction

We will start with basic notions from g-calculus which can be found, for example,
in [31 and [51.
Let q e  (0,1). A g-natural number [n\q is defined by

[n\q := 1 +  q +  • • • +  qn -1 , n  G N.

Generally, a g-complex number [a\q is

We define the factorial of the number [n]q and the g-binomial coefficient by
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Also, g-Pochammer symbol is defined as follows
ft—1

(z — ci)(0) =  1, (z — ciYk) =  (z — aq1), k e  N.
i=0

( 1)

2. On Partial g-Derivatives and Differentials

Let f ( x ) ,  where x  =  (xi,  x 2- . . . .  x n) be a multi-variable real continuous function. 
We introduce an operator eq̂  which multiplies the coordinate of the argument, by

Furthermore,

{Zq,if){x ) = f  O l- • • • • x i - 1- Qx i‘ x i+1- • • • • xn)-

{Zqf)ix ) ■= =  /(?# ) .

We define the partial g-derivative of the function f ( x )  with respect to the variable
x i by

D q,Xifix ) f i x ) -  {£q,if){x) x i ^  0.q'M J ' (1 — q)xi
DqiXJ { x )  | o  =  lim D q,x . f (x) .

In the similar way, high partial g-derivatives are defined as

D i I?m  ■.= D q,Xi( D " - L , m ) .  :=  A,,*™(d " i ?m ) .

Obviously,
T-vm+n _ F)

w / .
m+nq x7} x™f ( x ) .  i , j  = 1 , 2 . . . ,n,  m , n = 0 , l , . . .  .

Also, for an arbitrary a =  (ai, a2, . . . .  an) e  we can introduce g-differential 
by

d q f(x .a ) := (x 1- a 1)D QjXlf(a )  +  ( x 2 -a 2)D QjX2f(a)H----- h(xn - a n)D QjXnf(a )

and high g-differentials by

i \  (k)
Y , i x z -  ai)DqjXi f{a)dkf ( x . a )

<i=1

E - D f t

nH--- \-in=k
ij €-Nq

X i - a ^ l

Notice, that a continuous function f ( x )  in a neighborhood, which does not include 
any point with a zero coordinate, has also continuous partial g-derivatives.
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3. About g-Taylor Formula for a Multi-Variable Function

Now we can discuss one new expansion of a function whose variable is from Xn. 
First of all, we need the next lemma.

Lemma 1. It is valid that

D qjX(x — c t ) ^  =  [n]q(x — x, a  G X. h g N,

Proof: For the proof see, for example, Cigler [2], □

Theorem 1. Suppose that all partial q-derivatives o f f ( x .  y) exist in some neigh
borhood o f (a. b). Then

;f{a.b)oc n  j j n

f ( x . y )  =
n = 0 i = 0 W ' l n  l W '

{ x - a Y r> ( y - b f n — t )

Proof: Suppose that the function can be written in the form
0G n

/0 - ;y )  =  -  a){t)(y -  b){n~z).
n = 0  i= 0

Application of partial g-derivative operators Dq x̂ and D qiV gives us
0G n

n = 0 i= 0

According to the previous lemma, we conclude

)k+m. i =  0.

{ x - a ) ^ { y - b ) {n- rf

k > i A m  > n — i.

In other cases, we have

<hxn-,y‘

= (,T -  n  [i -  :> + 1], (V -  n  I" -  i :i + A
3 = 1 3 =  1

The assumed expansion is valid in some neighborhood of (a. b). Putting x  = a and 
y =  6, all members of the sum vanish, except for i =  k and n — i =  m. Hence,

d J A V / ( “ -6) =  c*+™.* h a

□

In the same manner, we can prove the analogous theorem for the general case.
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Theorem 2. Suppose that all q-dijferentials o f f ( x )  exist in some neighborhood of 
a. Then

0G
/(* )  =  S

fc=0

dkqf {x . a )

w

4. On g-Newton-Kantorovich Method

We consider a system of nonlinear equations

f{3) =  0

where ,f(x) = (.fi(x), f 2(x), . . . .  /„(.?)) and x  = (x1, x 2, ---- x n), n e  N. We
will suppose also that this system has an isolated real solution f  Using g-Taylor 
series of the function f ( x )  around some point x  (m) ^  ^ we have

n

f S  «  M 3 {m)) + E £ W ^ m,) t e  - * T T  i = 1-2 .......
j =1

In a matrix form, we rewrite the above system as

/ ©  -  / V m)) +  3 (",))

where
Wq(x) = Dqf ( x )  = [Dq,Xjfi(x)]„x„

is the Jacobi matrix of g-partial derivatives. If the matrix Wq is regular, there exists 
the inverse matrix W f 1, so that we can formulate q - New to n -  K a n toro vi c h method 
in the form

x {m+1) =  -  H 7 1( ^ ”,))/(5 ?{m))-

5. On g-Newton Method

If in the previous speculation we take n  =  1, the system of equations reduces to 
one equation f ( x )  =  0. A few methods for solving equations of this form were 
developed in our previous papers [61 and [81.
The g-derivative of a function f ( x )  is

(Dqf ) { x ) :=  x f O .  (Dqf ) { 0) := lim (Dqf ) ( x )  (2)
x — qx x—>o

and high g-derivatives D®f  := / ,  D™f := Dq(Dq~1 f ) ,  n = 1. 2. 3 . . . .  .
From the above definition, it is obvious that a continuous function defined on an 
interval, which does not include the zero, is continuously g-differentiable.
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For deriving the method we need g-Taylor formula for g-differentiable functions 
[31 and [4], That is why we will start with ^-integral, which is defined by

W )  =

Notice that (see [51) it holds

r(f)-

Also,

f i t )  dq{t)

fit) dq{t) :=  a (l -  q)
n =  0

n

fit) dt =  Um / , ( / ) .
q fi

o
f{t)dq {t.)- f { t )d q{t.)

o
The next is the g-Taylor formula with remainder term

,i l k )  , n  „  ,
f ( x ) = 2 ^  — f r n — (x  -  °) + RA f - x -a- 9)

k = 0

where

Rnif.x.a.q) t=x ( x - t Y n> (Dq f ) ( t )
dq(t). (3)

jn i

h.=a x - t  [ n - l ] ql q
Suppose that an equation f ( x )  = 0 has the unique isolated solution x  =  £. If x n is 
an approximation to the exact solution £, by using Jackson’s g-Taylor formula, we 
have

0 =  /(£ ) % f ( x n) +  (Dqf ) ( x n)(£ -  x
hence

e ~ x
"  (Dqf)(x„y

So, we can construct the q-Newton method

f{Xn)
X-n+l — Xr iDqf) ( l„) '

According to (2), we can rearrange the above expression in the form
r

X-n+l = Xn  ̂ 1
1

1 _  f{qxn) 
,f{Xn) )

This method written in the form

Xn+1 = x n
Xn -  QXn

f{Xn)  -  f { qxn) 
resembles the method of chords (secants).

/On)

The next theorem is a g-analogue of the well known statement about convergence 
(see Bakhvalov [11).
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Theorem 3. Let the equation f ( x )  =  0 has a unique isolated root x  =  £ and 
a > 0, 1 < p < 2. Let the function / ( x) satisfies

i) \ ( DJ) ( x ) \  > M f 1 > 0
'0  l / M  -  f ( y )  -  {Dqf ) {y) (x  - y )< -  t/|"

where M\ and L are some positive constants. Then, for all initial values xq G 
(£ — b.fi +  b), where b =  min{a, Mi / L} ,  the q-Newton method converges to the 
exact solution o f the equation f ( x )  =  0 and

{ T \P n_1

Proof: We can write g-Newton method in the form

(Dqf ) ( x n)(xn+1 -  x n) = - f ( x n).

From the condition ii) we have

I/(£) -  /On) -  (Dqf ) ( x n)(t  -  xn)| < L ' ^ l f  -  xn \p.

Hence, using /(£ ) =  0. we yield

\{Dqf ) { x n){f -  ®n+i)| < -  x n \p.

By the condition i) we have

Now, if x n e  (£ — b, £ +  b), then

/ T \ P-1 / T \ P-1

' « -  — l < ( i t )  M aO

Denote by c =  Lj M\ .  Now

|£ -  x n+1\ < c^-1 ^  -  x n \p => c\f -  x n+1\ < -  x n \p

wherefrom we get the final conclusion. □

6. Analysis of the Convergence and Error Estimation

Our purpose is to formulate and prove the theorem for scanning the convergence 
of an iterative process

Xk+i =  $ 0 0 -  fc =  0 .1 .2 . . . .

by g-analysis.
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Theorem 4. Suppose that <3?(ie) is a continuous function on [a, b] (0 f. [a, 6]), 
which satisfies the following conditions:

i) $  : [a, b] h-► [a, b]

»») Vg G ( maxfcb}- 1) • \{Dqf){x)\  < X < 1.

Then the iterative process x k+\ =  A =  0.1. 2 , . . . ,  with initial value xq g
[a. b], is converging to the fixed point of$(x) ,  i.e.,

lim x k = $(£) =  6
k—̂OC

Proof: Notice that for a continuous function <3?(;e) on [a, b] (0 f. [a, b]), for all x 
and y such that a < x  < y < b, it is valid

$(y) -  $ 0 )  =  iDx/y^){y){y -  x), ®(y) -  $ 0 )  =  (Dv/X$) (x) (y  -  x).

Consider oo
£ Xq -H 'y ] (j f̂c+i Xk). 

k = 0

Let x ^ 1  ̂ =  maxjifc, x k- \ } .  x ^  =  min{:Efc, x k- \ }  and q =  x ^  f x ^ MK Now 
we have

$Ofc) -  $(Xfe-l) =  i D q ^ ) i X LM ) ) i X k -  X k - l ) -
So, it is valid

\xk+i -  x k\ = \{Dq$ ) { x {(M))\ \xk -  x k - 1| < A|xfe -  x fe- i | .

Since \xk+i — x k \ < Xk \xi — rro|, we get
OO OO | |

\xk+1 -  x k \ < \xi -  x0| j r  x k = Xl _  .
fc=0 fc=o A

Hence, the series S  converges and £ =  limn_*oc Sn =  limn_*oc x n+i. Since 3? (a:) 
is a continuous function, we have

£ =  lim x n+1 = lim $ ( x n) = $ (  lim x n) =  $(£)•' n--->oo n-->oo n—*oo
□

Definition 1. An iterative method x n+i =  <J?(a:n), n  =  0 . 1 , 2 , . . . ,  with the fixed 
point £, has (r: q)-order o f convergence, if there exists Cr G 5l+ such that, for a 
large enough n, it is valid that

\t -  x n+1\ < Cr\(t -  x nw>\ 

where the last exponent (r) is defined by (1).

We have proved the next theorem in [61.
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Theorem 5. Let f ( x )  be a continuous function on [a, b] and Rn (f,  z, c, q), z, c G 
(a. b), be the remainder term (3) in the q-Taylor formula. Then there exists q G 
(0.1) such that for all q G (g. 1), can be found r  G (a. b) between c and z which 
satisfies

T) f f  \ W n )R n{f.  z, c, q) = — p-y-— (z - c ) ( K
ln \q-

Now, we are ready to prove the main theorem of this section.

Theorem 6. Suppose that a function / ( x) is continuous on a segment [a. b] and 
that the equation / ( x) =  0 has a unique isolated solution £ G (a. b). If the 
conditions

\(Dqf )(x) \  > M l  \(D2qf )(x) \  < M2 
are satisfied for some positive constants M \ and M 2 and all x  G (a. b), then there 
exists q G (0.1), such that for all q G (g. 1), the iterations obtained by q-Newton 
method satisfy

i.e., q-Newton method has (2; q)-order o f convergence.

Proof: From the formulation of g-Newton method, we have

x k+i -  f  = x k -  f  -  777-777— r(Dqf ) ( xk)
hence

f ( x k) +  (Dqf ) ( x k)(f  -  x k) = (Dqf ) ( x k)(f  -  Xfe+i).
By using the g-Taylor formula of order n = 2 at the point x k for /  ((), we have

/(£ ) = f  Ofc) +  {Dqf ) { x k)(f  -  x k) +  R 2 { f , Z , x k,q).
Since /(£ ) =  0, we get

{Dqf ) { x k)(f  -  x k+1) =  - R 2 { f , £ , x k,q)

i.e.,

l£ -  x k+i\
\R2{f ‘f ‘Xk.q)\

\{Dqf ) { x k)\
According to Theorem 5, there exists q G (0.1) such that for all q G (g. 1) it can 
be found £ G (a. b) such that

(D2j m
R2{f - f i -xk-q) = -(£ -  x k) {2).

Now,
[2] ,

\{Dqf ) { x k)\ 1 +  g
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Using the conditions which the function f ( x )  and its ^-derivatives satisfy, we ob
tain the statement of the theorem. □

7. The Functions Defined by Infinite Products

For computing the infinite product

t e C .=  I l ( 1 -  t(i
n=1

n\ \q\ < 1

Sokal [7] suggests a quadratically convergent algorithm based on the identity

f(t a) =  V  _____[ } q_____________
A  ' ^ 0 ( 1 - ? ) ( 1 - ? 2) . . . ( 1  - q mY

Here, we are interesting in finding the solutions of the equation

F(t)  = f { t . q)  -  a = 0
for a fixed value q and a given value a e C. Let us notice

- qD q,tf(t ,  q) / ( l q)-( l - q ) ( l - t q )  

Applying our g-Newton method, we find iterative process
1 — q (

tk+1 =  tk H-----— (1 -  atk) 1 a
q ' v f{tk,q)J

which leads us to the solution of the previous equation.
Now, there is no problem to use our considerations for solving the systems of the 
type

# ( / ( ? . ? ) )  =  0.

We will demonstrate this in the last section.

8. Zeros of the Functions Defined via g-Integrals

Let us consider the equation

F(x)  =  h(t) dqt. — a =  x( l  — q) ^  h(xqk)qk a
k =  0

where a and q are real numbers and \q\ < 1.
Since DqF{x)  =  h(x),  we can apply g-Newton method

F{xn)
^n+1 — *E-n h(xr

n = 0,1,
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with some initial value xq (for example, xq =  a). Instead of g-integral we evaluate 
partial sum with a proper exactness. Now,

lim x n =  x.YL—>OC

9. Examples

Example 1. Let us consider the following system of nonlinear equations

x f  +  7x2 — * | =  2. x f  — 49x2 +  *f =  6. x f  + 7(x2 — 1) — *§ =  —3.

If we use g-method, we yield the next Jacobi matrix

Wq
(1 +  q)x i 
(1 +  q)x i 
(1 +  q)x i

7
49(1 +  q)x 2 

7

(1 +  g)( 1 +  g2)*f' 
(1 +  q)x 3 

—(i +  q)x 3 .

Using q =  0.9, we find the solutions (*i =  y/5, X2 =  1/7. *3 
accuracy on five decimal digits after n  =  7 iterations:

y/2) with

'2' '1.613' '2.199' '2.1794' '2.2331' '2 .23607 '
0 5 0.705 5 0.353 5 0.1937 1 0.1450 0.142871

. 1 . .2.299. .1.747 .1.4633. .1.4078. .1.41427.

The next example will show the advantages of g-Newton-Kantorovich method 
with respect to the classical one.

Example 2. Let us consider next the system of nonlinear equations

\x? — 4| +  e7x2 36 log 10
12*5

X2
i 4+  * i 10.

If we use the g-method for g =  0.9, this gives the following iterations for the exact 
solutions (* i, *2) =  (a/3 . 36/7):

g(k) 2
5

1.78067
5.29844

1.73405
5.20213

1.73208
5.15274

1.73205
5.14302

1.73205 
5.14286. ‘

The classical New ton-Kantorovich method with initial values x \  =  2, *2 =  5 
can not be used in this case because the partial derivative of the first function with 
respect to the first variable does not exist.

Example 3. Let us consider the equation

/(* )  =  v7*3 -  9x2 +  24* -  20 +  ex/2 = 0.

The function /(* )  is not differentiable at the point * =  2. However, it is not a 
problem for our g-Newton method. Really, starting with the initial value *0 =  2, 
we find the solution with six exact digits after five iterations (see Figure 1).
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Iteration Value

0 2.000000
1 1.592916
2 1.043515
3 0.970143
4 0.969425
5 0.969426

Figure 1. The function is not differentiable in the initial point, but it 
does not have influence to convergence.

Example 4. Advantages of g-Newton method with respect to the classical Newton 
method can be seen in the case of the equations with multiple zeros.

So, for solving the equation

f ( x )  =  x 6 — 5x5 +  8.25a;4 — 10a;3 +  13.5a;2 — 5a; +  6.25 =  0. xq =  2

the classical Newton method must be changed by the special Newton method for 
multiple zeros (£ =  2.5 is a double root). But g-Newton method has large enough 
intervals of convergence, what can be seen in Figure 2.

—----—----■ q1.5 2

Figure 2. Solving of the equation with multiple roots. The values of 
the iterations from n =  100 to n =  140.
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Example 5. For a given g, 0 < \q\ < 1, the solutions x  and y of the system with 
some infinite products

0G 0G
n u - x o / n  d - ^ )  =  1/2
n= 1 n= 1
0G / OO \

(1 — xqn) +  exp I (1 — yqn) J =  5
n = 1 \ n = l  /

can be also found by this method.
For example, for q =  3/4, we have the solutions x  =  0.104199... and y =  
—0.127765 . . .  . ( Another approach to this system is to solve the system introduc
ing new notation for products, and then, to find x  and y by our g-method from the 
fifth section.)

Example 6. Let us consider the equation

* 5 /2  d  m t
64^8

128 -  27\/3

Applying g-Newton method with initial value equal to the number on the right side, 
we get

k 0 1 2 3 ••• 10

x k 1 1.45871 1.39966 1.41999 ••• 1.41421

Really, the exact solution is x  =  y/2.

Remark. All presented examples were evaluated by the Mathematica® soft
ware package.
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