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Abstract. We study degenerate curves in pseudo-Euclidean spaces of 
index two by introducing the Cartan reference along a degenerate curve. 
We obtain several different types of degenerate curves and present ex­
istence, uniqueness and congruence theorems. We also give some ex­
amples of such a curves in low dimensions.

1. Introduction

The aim of this paper is to find a good Frenet frame for degenerate curves 
in pseudo-Euclidean spaces of index two. The study of this type of curves is 
motivated because of the growing importance that degenerate geometry (null 
curves, null hypersurfaces, etc) plays in mathematical physics (see for instance 
[2,7-10]). Null curves in Lorentzian (index one) space forms has been studied 
by several authors ([1,3,5]) due to its importance in General Relativity. It is 
well known the important role played by the anti de Sitter space, so we focus 
on ambient spaces of index two. A first approach to this question has been 
made by Duggal and Jin, [4], from a different point of view.
Here, we are going to study degenerate curves in pseudo-Euclidean spaces of 
index two from a mathematical viewpoint.

2. Preliminaries

Let V  be an n-dimensional real vector space endowed with a symmetric bilinear 
mapping g : V  x V  —> R. We will say that g is degenerate on V  if there exists 
a vector £ /  0 of V  such that

g(£, v) — 0 , for all v E V
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otherwise, g is said to be non-degenerate.
The radical of (V, g) is the subspace of V  defined by

R a d F  =  { £ e y ; 3 (£ ,n ) = 0  for all v e  R} .

It is clear that V  is non-degenerate if  and only if  Rad V  — {0}.
A pseudo-Euclidean space (V, g) will be an n-dimensional real vector space 
V  equipped with a symmetric non-degenerate bilinear map g. The dimension 
q of the largest subspace W  C V  on which g\w  is definite negative is called 
the index of g on V. (V, g) will be denoted by IR”.

Let B — {Vi , . . . ,  14} be an ordered basis of a pseudo-Euclidean space and let 
,r.l and q, be the dimension of the radical and the index of span} 1/ . . . . ,  V}} for 
all i, respectively. The sequences [rL; 0 <  i < n \  and {qt ; 0 <  / <  n}, where 
r0 =  Qo — 0? will be called the nullity degree sequence and the index sequence 
of the basis B.
It is easy to see that |?y— 7y_i | and qi~q t-1 are either 0 or 1, for alH =  1 , . . . ,  n, 
as well as rn — 0 and qn — q.

Definition 2.1. Let B  =  {R . . . . .  Vn} be an ordered basis o f a pseudo- 
Euclidean space and let { :  1 <  i <  n } he the nullity degree sequence. The 
positive number

r =  -  2 E
2=1

is said to be the degeneration degree o f the basis B.

The following result, that extends the Gram-Smidt’s orthonormalization 
method, will be used in next sections.

Lemma 2.1. Let (E , ( , )) be a bilinear space and let F  be a hyperplane. Sup­
pose that F  =  F1-LF2, where F\ =  sp a n jL i,. . . .  L r} is totally lightlike and 
F> is non-degenerate. Then we have:

i) 7/’dim Rad(£') =  r +  1 (F1 4  Rad(f?)4 there exists a null vector L (not 
unique) such that

E  =  F1-LF2-L span{L} .

ii) I f  dim Rad(i?) =  r (F1 = Rad(f?)), there exists a non-null unit vector V  
such that

E  =  F1± F 2±  spanjld} .

Moreover, //'Rad(A) =  {0}, then V  is unique (up to the sign).
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iii) I f  dim Rad(L?) — r — 1 (Rad(L') Ff), there exists a null vector Nj 
such that (L j , Nj) = r], 7] =  ± 1, and

E  — (span{Lj} © span{iVj}) _L sp a n jL i,. . . ,  L j , . . . ,  L r}EF2 .

Furthermore, (/’Rad(E’) =  {0}, then N:] is unique.

Definition 2.2. A basis B  — {L l 7N 1, . . . ,  Lr, N r, W l 7 . . . ,  Wm} ofMf,  with 
2r <  2 q < n and m  =  n — 2 r, is said to be pseudo-orthonormal i f  it satisfies 
the following conditions:

(L^ Lj) =  (Ni, N f  — 0 , (Li, Nj)  =  rjiSij,
(Li, Wa) = (Nt, Wa) =  0 , (Wa, Wp) = s J aP ,

where i , j  G { 1 , . . .  ,r}, rji = ( U , ^ )  = ±1, a,/3 G { 1 , . . .  ,ra}, £Q =  - 1  i f
1 < a < q — r and ea = 1 i f  q — r + 1 < a < m.

Corollary 2.1. Let B  — {Vi , . . .  ,Vn} be an ordered basis o f a pseudo- 
Euclidean space and let r be the degeneration degree o f B. Then:

i) r is well-defined, that is, it is an integer.
ii) r < q, where q is the index o f V.

Proof: We know that r0 — rn — 0 and sequence {r,} satisfies that ei­
ther rt =  t v i +  1, or rt =  r*_i — 1 or rt =  r v i .  Then, from 
Lemma 2.1, we get a pseudo-orthonormal basis C = {C l7. . . ,  Cn} satisfying 
that span{Ri, . . . ,  Vt} = spanlC^, . . . ,  Cf\, for all* =  1, . . . ,  n, and

f Wi if  © -  Ti_! =  0 ,
Ci =  l L % if  ri -  rj_i =  1,

[Ni if  r% -  r,_! =  - 1 ,

where — ±1  and {Li7L f  — {Ni7N f  — 0. Then (i) is clear. To
show (ii), first observe that r =  card {ik; Cik =  Lik}. Now, for all L ik e  C, 
there exists Njk e C, with k in ( 1 , . . . , r},  verifying that span{Llfc, NJk} is a 
hyperbolic plane. Then r < q.

3. Frenet References Along Degenerate Curves

Let M2 be a pseudo-Euclidean space of index two and let 7 : I  be a
differentiable curve in Rff Assume that A  — ( f ( t ) , . . . . f n) ( f  ) } is a linearly 
independent system for all t G I,  and, for all i, r f  l) and qffi) are constant 
for all t e  / ,  where {rf i t ) ; 0 < i < n}  and { q f t ) ; 0 <  i < n}  stand for the 
nullity degree and index sequences of the basis A.  In this case, these sequences 
will be called nullity degree and index sequences o f the curve 7 , respectively,
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and the degeneration degree r (=  const) of A  will be called the degeneration 
degree of the curve 7 .

Definition 3.1. With the above notations, a curve 7  \ I  —> Md, is said to be a 
degenerate curve i f  r > 0. We will say that two degenerate curves C and C 
are o f the same type i f  =  r* and qi =  qi, for all i.

The relation “to be of the same type” defines an equivalence relation and each 
equivalence class defines a type of degenerate curves.
From definition and Corollary 2.1, the degeneration degree of a degenerate 
curve in a pseudo-Euclidean space of index two satisfies 0 <  r <  2. Observe 
that the index sequence is very conditioned by the nullity degree sequence. 
Indeed, two curves C  and C  with degeneration degree two are of the same 
type if and only if  they have the same nullity degree sequence.

Remark 3.1. The nullity degree and index sequences, as well as the degener­
ation degree, o f a degenerate curve do not depend on the chosen parameter 
and they are invariant under pseudo-Euclidean transformations.

Observe that we are dealing not only with null curves, but also spacelike and 
timelike ones. Now we aim to classify degenerate curves depending on the 
nullity degree and index sequences, said otherwise, to classify the types. To do 
that, we need to pseudo-orthonormalize the basis { f ( t ) , . . . ,  7 ^ (t )} , for all 
i =  1 , . . . ,  n, such as in Corollary 2.1. The pseudo-orthonormal bases obtained 
are just the Frenet references.
We will consider two cases according to whether the degeneration degree r is 
one or two.

3.1. Degenerate Curves in with Degeneration Degree One

In this case we will get a family-type of degenerate curves. The method to con­
struct a Frenet frame is quite similar to that used in [6]. It can be proved that the 
only nullity degree sequences are of the fonn { 0 , . . . ,  0 , 1, 1, 0 , . . . ,  0}, where 
1 , 1 , 0 . . .  can be moved along the sequence. The possible Frenet equations are 
as follows:

Family I

i  = s 1k1W 1 , 

w ;  =  E2 k2W 2 ,

W[ =  +  £i+ifci+iWj+i, 2 <  * <  s — 2
1 =  —£a- 2ka_ iW s- 2 +  fjsksL s ,

5
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L's — rjsks^iLg +  E s+i^s^^s+i 5
W '+1 = fjsks+zL s -  fjaks+2 N 8 ,

N s =  - £ s-ifcsW s-i — kjsks+1N s — fjs+ik s+sWs+i +  £s+2 ks+4 W s+2,

^/7s-|-2 T]s^ s+4- ŝ “I” £s+3 '̂s+5'^,"s-|-3 i

W[ =  — Si-iki+2 ’Wi-x +  £i+iki+3 Wi+-i , s + S < i < n  — 2 ,

^ ”n-l =  —£n-2^n+l^ri-2
where fjj = (L j , N j ) =  ±1  and 2 , =  (W j,W j) =  ± 1, existing only one j 0 
such that Ejo — —1.

3.2. Degenerate Curves in with Degeneration Degree Two

We will find two family-types of curves depending on the nul­
lity degree sequence is given by {0 , . . . ,  0 , 1, 1, 0 , . . . ,  0 , 1, 1, 0 , . . . ,  0} or 
{ 0 , . . . ,  0 ,1 , 2, 2 , 1 , 0 , . . . ,  0}. To do that we proceed as follows.
Assume that r 1 = r2 = ■ • ■ = rs_i =  0. By an iterative process, using 
Lemma 1, we obtain a set { W i , . . . ,  Ws- 1} of orthonormal spacelike vector 
fields along 7 . Now suppose that rs — 1. From Lemma 2.1 and Corollary 2.1 
the possible cases are collected in Figure 1. We will rule out those ones which 
are not admissible.

family III impossible

Figure 1. Tree of possibilities
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Way a: We have the following equations:
_r i  =  0 7 ' =  fcilTi

•i to 0 417/ -  k2W2
n + 1 =  0 W'  =  -  k W i-1  +  ki+iWi+1

rs ~  1 Ws_i — — ka—iWs—2 +  fjsksLs
rs+1 =  0 Lg —

It is clear that L s G span{7 ;, . . .  , 7 ^ } ,  so we write L s =  A17' +  • • • +  
As7 ŝ\  with As ^  0 . Then L's =  ■ ■ • +  As7 ^+1) =  fjsks+1L s and 7 (s+1) g 
span{7 / , . . . ,  7 ^ } ,  which is a contradiction.

Way bb: Now we obtain:

rs =  1 ITT,—1 — — ks—iW s —2 +  risks Ls
rs+i =  1 L'g =  fjsks+iLs +  fcs+2W + i

Since rs+2 — 1, then Rad(Es+2) — span{Ls} and (Ls, 7 ŝ+1 )̂ =  
(L s, 7 ŝ+2 )̂ =  0. We deduce that (L'g, 7 ^+1 )̂ =  0 and, using the above 
equations, we get (IRs+i,7 ^+1 )̂ =  0. Therefore Ws+1 G R ad(£’s+i), which 
can not hold.

Way be: We find that:

rs =  1 
r s+ 1 =  1 
r s + 2  =  2

W's- i  =  -  k s- i W s - 2  +  r)sk sL s 
Ls = r]sks+iLs 7  ks-\-2 V̂s-\-i 

tTg_|_i = Tjskĝ -sLg ks-\-̂ Ls-\-\

Then we write

0 + h+2 =  ( 7 , 7 + 1 )  =  -  ( 7 + 1 . 7 )  =  0 ,

getting again a contradiction.

Way ca: We have:

rs =  1 
rs+1 — 2
rs+2 = 1

t r j - i  =  — fcs- i  W s - 2  +  rjsks L s
L s — r]sks-\-iLs rjs-\-±ks-\-2Ls-\-i 

L 's+1 =  fjsks+3,Ls +  f7<,+ ifcs+4Ts+i +  rjZ/V

We obtain that either AT =  N s+1 or N  — N s. In the first case we find 
k =  ( L '+ 1, Z S+1) =  0 and in the second one we have k =  (L'S+1 , L S) = 
— (L s+1, L's) — 0 . In any case k — 0 , which can not be hold.
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Way ebb: Now the equations are:

rs = 1 
rs+1 = 2
rs+2 = 2

W '_  1 =  -  fcs-iTKs-2 +  r]sk sL s 
Ls — v]sks-\-iLs ~\~ T]s+iks-\-2Ls-\-i 

Ls-(-1 — Vs ks-\sLs ks + ALs + l "T&S + 5 ITs-|-2
Working as above, we get again a contradiction.

Way ebab: The Frenet equation write down as follows:

Two possibilities can be given: (i) N  — N s, and therefore L — L s+1, 
fj =  fjs+1 and k =  ks+1; and (ii) N  =  N s+1, and therefore L =  L s, fj =  fjs
and k = ks+4.
In any case, we find a contradiction.

Hence, we have only to consider two admissible families. As for Family III, it 
is clear that — 0, for i > s +  4. So the Frenet reference is given by

{IFi , . . . ,  Ws_i, Ls , Ls+1, Ws+2, N s+lj N s, W s+3, . . . ,  Wn—2 } •

As for Family II, calling s 1 = s, there is only one ,s2 >  .s, +  3 satisfying rS2 = 1 
and rj =  0, for i — s 1 +  2 , . . . ,  s2 — 1. We also have that rS2+1 — 1 and ry =  0, 
for all i > s2 +  2. Therefore, the Frenet reference for this Family is o f the 
form:

{ W l t . . . ,  LSI, W n+1, N n , W , l+2, . . .

• • • 5 ^ s 2- l 5 L S2, W S2 + l, N S2, WS2+2, . . . , Wn- 2} ■

Summing up, the general Frenet equations for degenerate curves in with 
degeneration degree two state as follows:

Family II
i  = kxW x 

WI = k2 W 2
W'i =  —k{Wi-\ +  ki+1W i + 1 , 2 <  i <  s — 2

K - i  =  — ̂ s i - i^ s i -2 +  kiSlkSlLSl
L 'S1 =  fjSlkSl+iL Sl +  kSl+2WSl+i
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Wai+1 r]SlkSl+sLSl T]s\ kSl-i-2^Vsi

■̂ si kSlWSl —\ TjSlkSljr\N Sl kSljr2,Wg1jr\ kSljr4W Sljr2
JlSlkg1+4L Sl /cs i^ 5 _|_3

W[ — —ki+2 Wi-\ +  ki+sWi+i , Si + 3 < ? < S 2  — 2
Wg2_! =  - ^ s 2+lW s2-2  +  fjS2kS2+2L S2

-ks2 Vs2ks2+3k/g2 kS2+4WS2+1

~^s2+i rls2ks2+3L S2 TjS2kS2Jr4N g2
K  =  — kS2+2WS2- i  — fjS2kS2+3N S2 — kS2+5WS2+i +  ka2+6W , 2+2

W„2+2 Vs2kg2-\-eLg2 -\- kg2jrfW S2jr3

Wl =  —ki+^Wi-i +  ^ 5^ 1 1 , S2 +  3 < A < n  — 3

^ n -2  =  ~ kn+2 ^ , - 3

Family III
y  =  fe j f i

it ; =  k2 \v 2
W ' — —k iW i_i +  y +iiy_|_i , 2 <  i  <  s — 2

=  —fcs_i W "s_2  +  'rjsksL s

L/'s — kjsks+iL s +  ^s+l^s+2-^s+l 

-^s+i =  kjgkg+zLg +  77s+ifca+4X a+ i +  ks+5Ws+2 

w ' +2  =  fjgkg+sLg +  y_ |_ iy+7L s+1 — y + 1y + 5iv s+1 ( i)

N ' +1 =  fjaka+&La -  ks+7Wg+2 -  fjs+1kg+4N s+1 -  f)sks+2Ng 
Ng — —ksWs_ i — fjs+1ks+sL a+1 — fjs+1ks+3Ng+1 

~  ^ J s+ l^ s  — ks+QWs+2 +  kg+gWs+s
Wg+3 — fjsks+gLs +  y + io v y +4 

W ' =  —ki+sWi-1 +  y_|_7iy_|_i , s +  4 < i < n  — 3

iTn —2 ^ 1+4^ 71—3

where f jj =  ( L j , N j ) .

4. The Cartan Reference of a Degenerate Curve

As we have seen, the Frenet equations for degenerate curves are quite compli­
cated and involve too many curvature functions. In the non-degenerate case,



Degenerate Curves in Pseudo-Euclidean Spaces of Index Two 217

it is well-known that choosing an arbitrary parameter t, there exists only one 
Frenet reference satisfying the Frenet equations. In particular, if  one chooses 
the arc length parameter, one obtains the usual curvature functions. However, 
this is not true here. Actually, for null curves it does not exit the arclength 
parameter, so we have to define a new one as follows.

Definition 4.1. Let 7 : /  —> IR7 be a differentiable curve, parametrized 
by t, satisfying that (7 ^  (7), 7 ^  (t)) — q for i = — 1, and
<Vmj (t), f  m>(f')) = ±1. Then t is said to be the pseudo-arclength parameter.

Even though we have chosen the pseudo-arclength parameter, we can not assure 
the uniqueness o f this Frenet reference. Then, we wondered whether there exist 
any “canonical” Frenet reference, in the following sense:

1) It is unique, that is, if  we have references B  and B  satisfying the same 
equations, then B  — B.

2) The number o f the corresponding curvature functions is minimal.
3) The corresponding curvature functions are invariant under pseudo-Euclid- 

ean transformations.

Theorem 4.1. Let 7  \ I  ^  W) be a degenerate curve and suppose that T7 7 Mr) 
is spanned by {7 '(7), 7 " (7) , . . . ,  7 ^  (7)} for all t. Then there exists only one (up 
the orientation) Frenet reference verifying the above conditions. Furthermore, 
the corresponding curvature functions are given by one o f the following set o f 
equations

Family I

Null curves Non-null curves

>-5IIC- -7 II

L'l -- /i2 £2 IT2 =  £2kXW2
W2 =  UikiLi -  U2Vi N i Wl — £ i - ik i - i W i - i  +  £i+ikiWi+i
N[ — —£2k\W2 +£3^21^3 W f i  =  - £ s- 2ks- 2Ws-2 +  UsVsLs
W3 =  -771 f o i l  +£4.k3W4 Ls =  £s-\-i_hs—iW s-\-i
Wl =  - £ i - i k i - i W z - i  +£ikiWi+i W 's+1 =  UsksLs -  rjsks-iNs
Wh-i  =  —£n-2kn-2Wn-2 N's =  —UsSs—lWs—l — £s + lksWs+l +  £s + 2ks+l Ws + 2 

W f 2 =  —rjsks+iLs +  £s+3ksjr2Ws+3 
Wl  =  Ei-iki - iWi-1  +  £i+ikiWi+i 
Wh_i — —£n-2kn-2Wn-2
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Family II

Null curves Spacelike curves
f  = U 
L'x =  W2
W2 — rjxkiLx — r/iNx
n ; =  -kxW2 +  k2W3
W3 — —T]ik2Li  +  k3W4, 
w [  =  - h - x W i - x  + k i W i+1
W f  1 — - k s- 2Ws-2 +  PsVsLs
Lg — ks—iLLLs+i
W 's+1 =  r]sksLs -  r]sks- i N s
N's — —fisWs- 1 -  ksWs+1 +  /cs+ i VFs+2
VFi+2 =  -ri sks+iLs +  /cs+2VFs+3
LF; =  - k j - x  Wj-x +  fcj-Wj+i
W '-2  =  ~kn- 3Wn- 3

i  = m
-  kxW2

W'  =  h-xWz-x +kiWi+i
FFsj — 1 — ks^—2Ws^—2 “L Ps\Vjs^Ls^
LSl — kSl—i Wsj+ i
Wii + i = r iSlkSlLSl -  r]SlkSl-xN Sl
N rSl — —rjs lW31-x ~ ks lWsl + x +  ksl+1Ws l + 2

Wgl+2 = -775l /cSl + iLSl + /cSl+2ll/s1+3
W/ =  h - x W z-x + k i W i+i

2 — 1 =  kS2 - 2 W S 2 - 2  +  p.s2 f)s2 Lg2

L.s2 k $2 — 1 ULs 2 + 1
H / s2 + l — Vs2 k.s2 L s2 — T)s2 ks2 -xN s 2 

-/Vg2 ?7s2 l l /7s2 —1 fcs2 VFs2+ i  “L kS2+ 1  H/7s2+2

H/52 + 2 *?s2 ̂ s2-|-ll'S2 ~P kS2 +2H7s2+3
W / -  ki-xW i-x  + hWi+x
C -2 -  - k n- 3Wn- 3

Family III

Null curves Spacelike curves

7 '  =  Lx

£11

V

L'x =  ii2rj2L2 1 4 7 '  =  f c i W 2£
II Wl =  —ki-xWi-x +  kiWi+x

W 3 —  Tj2kxL2 — Tj2 N 2 Ws—x =  — ks—2WS—2 +  hst)sLs
N2 =  r]xk2L x  -  /J.2ViNx -  k x W 3 L's =

N[ =  —r]2k2L 2 +  k 3W x =  & s  —  l W /s  +  2

W i  =  - r ] x k 3L x  +  kxWx, Ws+2 =  77s + i f c s L s + i  — r / s + i f c s - i  Ns+x
W'i =  -F -xW i-x +  kiWi+x ^ s + 1  =  r ) s k s + i L s — k s W s + 2 -  Ps+iVsNs
K - 2  =  - k n - 3 W n - 3 N's =  —ris + xk s+ xL s+ x  — P s W s  — 1 +  f c s  +  2 l 4 7 s  +  3  

1 4 7 + 3  = —Vsks+2LS +  f c s  +  3 W s + 4  

w ;  =  - h - x W i - x  + k i W l+ x
K _  2 =  - k n- 3w n- 3

where o.j — (W}, W}), r/7 =  (L j , N j ) and / /7 — ±1. Moreover, we can 
choose rjj and pj so that {7 ' , . . . ,  7 ^  } and {C \, . . . ,  C^} have the same orien­
tation, for all / = 1. . . . .  n — 1, and {C \ . . . .  .Cn} is positively oriented, where 
{C\ . . . . .  Cn } represents a Frenet reference as above.
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Proof: For families I and II we follow the ideas contained in [6]. As for 
Family III, let B  and B* be two Frenet references where we have chosen the 
pseudo-arclength parameter and let ks = fis and k* — /is, where / /s — ± 1. 
Then we have the following bases

and

B  — {FFi , . . . ,  FFs_i, Ls, L a+i, W s+2, N s+1, N s, Ws+3, . . . ,  FFn_2}

B '  =  {VF„. . . .  w , - u L „  l :+ i , w :+2, jv;+1, jv; , w ;+3, . . . .  »'„% }

with curvatures {/ci =  1, k2 , . . . , k s =  /is, A:s+i , . . . ,  km} and {k3 =  1, 
k2, . . .  , k s = iis, k *s+1 , . . . ,k*m}, respectively. □

As {Ls, L s+1, FFs+2 , N s+1, } and {Ls, L*+1, Ws*+2, iVs*+1, N *} are pseudo­
orthonormal and they have the same orientation, there exist a matrix P  =  (p*.,) 
such that

/  1
P 21
Psi
P41

\  P2lP41 ~  2 -P3I 1 P2lPg22 P22

T  \
i : +i
w ';+2 

a?  /
0 0 0 0\

P 22 0 0 0
P32 1 0 0
1 P%9. _  £ 3 2 . 1 02 P 2 2 P ‘22 P 2 2

_ P3lP32 ~ P 22PAI P 2 1 P 3 2  y  
P 2 2  ^ 31 _  P 2 1  

P 2 2 V

/  i ,  \
L s+1
W-+2
iVs+1

V ^  /

By choosing p22 k .s+ 2

Bs+i
and p21 ks+1

/A+i
and using the Frenet equations (1),

a straightforward computation leads to fc*+1 =  0 and fc*+2 =  , 1. Therefore
the problem can be reduced to the bases

B  — {PFi , . . . ,  Ws-i ,  L s, Ls+i, FFs+2, A^+1, Ws+3, • • •, FFn_2}

and

E* =  { W i , . , I T - ! ,  L „  l ,+u w ;+2, n ;+1, n ; ,  w ;+3, .. •, w ;_ 2}

where the curvatures are given by {k1 — 1, k2 , . . . , k s — 1, ks+1 — 0 , 
ks + 2 — 1, ks+3, . . . ,  km} and {ki =  1, k2 , . . . ,  ks — 1, ks+i — 0 , ks+2 — 1, 
K +3, ...,k*m}, respectively.
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Now, the pseudo-ortonormal bases are related by

L , \ /  1 0 0 0 o \ L , \
L s+ 1 0 1 0 0 0 L s + 1

w : +2 = P31 P32 1 0  0 IIjs+2
n :+1 P41 ~ \ P 232 P32 1 0 N s+1

V N :  y1 \  2 P31 - P 31P32- P 41 -P s i 0 l ) \  y

Choose p31 =  and p32 =  and use the Frenet equations to get /e*+3 =  0 
and k *+4 — 0. Therefore, we can now suppose that W s+2 — W:+2. We 
have again reduced the problem to a simpler one. Working as above, taking 
Pi i =  , we show that k *+6 =  0. We only have to rename curvatures and
use a suitable notation. Concerning to the orientation we stand out three cases 
corresponding to the three family-types.
Family I: There exist only one j 0 such that eJn =  —1, so we have several 
possibilities.
If jo < 5  — 1 < n  — 3, we take p s — rjs — —1. If j 0 <  s — 1 =  n  — 3, we 
choose ps = rjs — ±1 depending on { f l)} {<i<n is negatively or positively 
oriented, respectively. In these cases we have kj o _ 1 <  0 and kj >  0 for all
3 ~f~ {jo -  1, s}.
If jo =  5+1  <  n —1, we choose p s — r]s — 1. If j 0 — s+ 1  =  n —1, then we take 

— r/s — depending on {y(l) is positively or negatively oriented,
respectively. Now we obtain ks- i <  0 and kj > 0 for all j  ^  {s  — 1, s}.
Finally, if  j 0 > s +  1 take p s — rjs — — 1 to get kj o _ 1 < 0 and k:) >  0 for all
j  7*“ {jo -  1, S}.
Family II: If s2 < n —3 choose p Sl — p S2 =  r]Sl =  t)S2 =  — 1. If s2 — n —3 take 
lis- i =  FI = - 1, and p S2 = i]S2 =  ±1  depending on {7 (i)}i<i<ra is negatively 
or positively oriented, respectively. Then kj > 0 for all j  ^  { s i, s2|-
Family III: If s < 7i — 4 take /is+1 =  rjs+1 — —1 and p s — rjs =  1. If
s — n — 4 choose p s+1 =  t]s+1 = —1, and ps =  r]s = ±1  depending on
{y (l)} i<r*rn is positively or negatively oriented, respectively. Therefore k j>  0 
for all j  ^  {s, s +  1}.
The uniqueness follows now from Lemma 2.1.

Definition 4.2. A degenerate curve 7 satisfying the above conditions is said 
to be a degenerate Cartan curve. The reference and curvature functions given 
by those equations will be called the Cartan reference and Cartan curvatures 
o f  7 , respectively
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Corollary 4.1. The number o f Cartan curvatures o f a degenerate curve 7  : / —» 
is n — r — 1 , where r is the degeneration degree o f  7 .

Hence, degenerate curves with degeneration degree one (resp. two) have n — 2 
(resp. n — 3) Cartan curvatures.

5. Congruence Theorems for a Degenerate Cartan Curve in a 
Pseudo-Euclidean Space of Index Two

The following question naturally arises: Let C be a reference satisfying the 
Cartan equations for certain functions k3 . Is there a degenerate Cartan curve 7 
whose Cartan reference is C and his Cartan curvatures are k:j ? If it is affirmative, 
is that curve unique?
The answer is affirmative and the result sets out as follows.

Theorem 5.1. Let k i , . . .  , km : [—5, 5] —>• M be differentiable functions. Let p 
be a point o f anc  ̂ ^0 be an admissible pseudo-orthonormal basis o f 
TpM.2 'with degeneration degree 1 or 2, according to rn =  n — 2 or rn =  n — 3, 
respectively. Then there exists a unique degenerate Cartan curve 7  in IRC. 
with 7(0) =  p and the same nullity degree and index sequences that C0, whose 
Cartan reference at p is just C0.

Proof: See [5] and [6]. □

Theorem 5.2. (Congruence Theorem) Let C and C be two degenerate Cartan 
curves which are o f the same type and have the same Cartan curvatures 
{ k \ , . . . ,  km \, where k i : [—5, <J] —> M are differentiable functions. Then there 
exists a pseudo-Euclidean transformation ofMf which maps bijectively C into 
C.

Remark 5.1. The same results can be easily obtained in the de Sitter space §2 
and in the anti de Sitter space Wj. With some extra effort they can be extended 
to higher dimensions.

6. Examples

Example 6.1.
Spacelike degenerate curves in MR with degeneration degree 1, k\ = a > 0, 
k2 — 0, k3 — —1, £4 — — 1 and nullity degree sequence {0 , 1, 1, 0 , 0}:

7C0
a 2C a t2{t2 +  1) a t3 a t2 f 2 -  1)
120 4 \/6

2+4a t
1 120
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Example 6.2.
Timelike degenerate curves in with degeneration degree I, k } — a > 0, 
k2 — 0, k3 — 1 and nullity degree sequence { 0 ,1 ,1 ,0 ,0 } :

(  ( a 2t 4 \  a t2 (t2 + 1) a t3 a t2 (t2 -  1) a 2t 5 \

Example 6.3.
Null curves in with degeneration degree 1, — a 2, k2 — —2cr2 and
k3 — \ / 2a  > 0, =  — 1 and nullity degree sequence { 1, 1, 0 , 0 , 0}:

( (  1 a3t 4 \  a 2t 4 t 2 (  o2t 2\  t aH 5 \

7 ( ) - l A V 2 CT 30V 2 j ’ 1 2 ’ 2 ^  6 ) ’ V2<j’ 3 0 y 2 7

Example 6.4.
A null curve in with degeneration degree 2 and k\ =  k2 =  0:

r . _  / tC1 — t4) t2{i + t 2) t 3 t 2 { i - t 2) t{i + t4) \
7 [ t ) - {  4VT5 ’ 4 v^  ’ 6 ’ 4^6 ’ 4 \/l5 )

Since it is similar to the null cubic ofA:\, we will call it the null quintic o/'M3. 
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