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PLAMEN BOZHILOV

Department o f Theoretical Physics, Konstantin Preslavsky University 
9712 Shoumen, Bulgaria

Abstract. We consider the classical null p-brane dynamics in D- 
dimensional curved backgrounds and apply the Batalin-Fradkin- 
Vilkovisky approach for BRST quantization of general gauge theories. 
Then we develop a method for solving the tensionless p-brane equa
tions of motion and constraints. This is possible whenever there exists 
at least one Killing vector for the background metric. It is shown that 
the same method can be also applied for the tensile 1-branes. Finally, 
we give two examples of explicit exact solutions in four dimensions.

1. Introduction

The p-brane is a p-dimcnsional relativistic object, which evolving in space 
time describes a (p +  1)-dimensional worldvolume. In this terminology, p  =  0 
corresponds to a point particle, p  — 1 corresponds to a string, p =  2 corresponds 
to a membrane and so on. Every p-brane characterizes by its tension Tp with 
dimension of (m ass)p+1. When the tension Tp =  0, the p-brane is called null 
or tensionless one. This relationship between the null branes and the tensile 
ones generalizes the correspondence between massless and massive particles 
for the case of extended objects. Thus, the tensionless branes may be viewed 
as a high-energy limit of the tensile ones.
As is known, there exist five consistent string theories in ten dimensions: Type 
IIA with N  — 2 non-chiral supersymmetry, type IIB with N  — 2 chiral super- 
symmetry, type I with N  — 1 supersymmetry and gauge symmetry S O (32) and 
heterotic strings with N  =  1 supersymmetry with S O (32) or E 8 x Eg gauge 
symmetry.
The superstring dynamics unify all fundamental interactions between the ele
mentary particles, including gravity, at super high energies. The p-branes arise
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naturally in the superstring theory, because there exist exact brane solutions of 
the superstring effective equations of motion. The 2-branes and the 5-branes 
are the fundamental dynamical objects in eleven dimensional M - theory, which 
is the strong coupling limit of the five superstring theories in ten dimensions, 
and which low energy field theory limit is the eleven dimensional supergravity. 
Particular type o f 3-branes arise in the Randall-Sundrum brane world scenario.

The purpose of this paper is to present some investigations on the p-brane 
dynamics in curved backgrounds, which are part of the string theory back
grounds, with the aim of finding exact solutions of the equations o f motion 
and constraints, and further application of the received results. For example, if 
the branes are viewed as space-time probes, the obtained exact solutions may 
have relevance to the singularity structure of branes. On the other hand, these 
solutions may have cosmological implications especially in the early universe. 
It is worth checking if these solutions lead to self-consistent brane cosmology. 
The possible application in the framework of the modem concept of brane 
world universe is especially interesting. Another appropriate field o f realiza
tion of these results is the investigation of the solution properties near black 
hole horizons, where the tensionless limit is a good approximation and signifi
cantly simplifies the corresponding analysis. The approach of Batalin, Fradkin 
and Vilkovisky for BRST quantization of general gauge theories, applied to the 
null p-branes, gives the possibility for quantization of such systems in curved 
backgrounds.

2. Null Branes

2.1. Lagrangian Formulation

The action for the bosonic null p-brane in a D -dimensional curved space time 
with metric tensor gMN can be written in the form [1]:

To prove the invariance of the action under infinitesimal diffeomorphisms on 
the world volume (reparametrizations), we first write down the corresponding
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transformation law for the (r, s)-type tensor density of weight a

...Ks la] — Tk  ̂,,,k s [o] — £ dL Tk  ̂_ [a]

+  T k k 2j ’[K3 [a\dKleK H------ h TK\\"Jg g_i K [a]dKgeK

~  T i t t l e * ----------T £ ; ; Ĵ J [a]djeJr

+  aTKi"JKe \a\dL£L

where L £ is the Lie derivative along the vector field e. Using (2), one verifies 
that if  X M(£), ^ mat(0  are world-volume scalars (a =  0) and V m(£) is a 
world-volume (1, 0)-type tensor density of weight a =  1/2, then dmX N is a 
(0, l)-type tensor, dmX MdnX NgMN is a (0, 2)-type tensor and C is a scalar 
density of weight a — 1. Therefore,

S .S  =  J d ’>+,0 m (emC)

and this variation vanishes under suitable boundary conditions.
The equations of motion following from (1) are:

dm (v mv r‘dnx L) + r LMNv mv r‘dmx M dnx N =  o ,

V mdmX MdnX NgMN = o ,

where T ///v is the connection compatible with the metric gMN'

^ m n  =  2 ^ LR (®m 9n r  — dRgMN ) •

For the transition to Hamiltonian picture it is convenient to rewrite the La- 
grangian density ( 1) in the form (dT — d / d r , D:i = d / d a j ):

L =  4 (dr -  A39j) (9t - A‘ 3*) X 'v , (3)

where

Now the equation of motion for X N takes the form:

] n ( dT X kdk) x L —  dj X '  ( d T \ kdk) x L[ 2X°  v  /  J 2A °  v  /

+  lm n  (dr -  X d , )  x M (dr -  \ kdk) x N =  o .
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The equations o f motion for the Lagrange multipliers A0 and Xj which follow 
from (3) give the constraints:

3m n  (dr -  X d , )  X M (dr -  x kdt)  X K = 0 ,

ffM.V (dT - X kdk) X Md , X N =  0 .

In tenns of X N and the conjugated momentum PN they read:

To =  gMNPMPN =  0 , Td = PNd3X N =  0 . (4)

2.2. Hamiltonian Formulation

The Hamiltonian which corresponds to the Lagrangian density (3) is a linear 
combination of the constraints (4):

H 0 = J d”<7 (A°T0 +  A% )  .

They satisfy the following (equal r )  Poisson bracket algebra

{ T o fe J .T o fe )}  = 0 , a  =  (<t\ .  . .  , a r ) ,

{ T o ta O .T .fe )}  =  [T0(2 l ) + T 0(<72) ] a ^ ( f f i  -<Z2) , (5)

K f c J . T . f e ) }  =  \S‘Tk(a1) + S ( T , ( a 2)}d,S-’(a1 - a 2).

The equalities (5) show that the constraint algebra is the same for flat and 
for curved backgrounds. Having in mind the above algebra, one can use the 
Batalin Fradkin Vilkovisky approach for BRST quantization of general gauge 
theories, and to construct the corresponding BRST charge Q (* = complex 
conjugation)

n  =  n min +  7rmT m , { q , h } =  o , n* = n .

Qmm in (6) can be written as [1]

n mi„ =  j  d v fT o t ,0 +  T r f  + V 0((d,rf )V° + ( d , i f  ) , f )  + V k{d , r f ) r f }  

and can be represented also in the form

(6)

n min = / dpa {To + \ n h)ff  + {Tj + P f ‘)rf + I d v a i ^ p ^ V ) .

Here a superscript gh  is used for the ghost part of the total gauge generators
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We recall that the Poisson bracket algebras of and Tm coincide for first 
rank systems which is the case under consideration. The manifest expressions 
for T'fj' are:

T t  =  ZPodrf +  (d,V«) if .

T f  =  2P0dj1f  +  {djVo) i f  +  V A n ” +  Vkdjif  +  (dkVj) r,k .

Up to now, we introduced canonically conjugated ghosts (r/m. 'Pm ), (//,„. V " )  
and momenta 7rm for the Lagrange multipliers Am in the Hamiltonian. They 
have Poisson brackets and Grassmann parity as follows (em is the Grassmann 
parity o f the corresponding constraint):

{nm, v n } = K \  f ( v m) = <'Pm) = ( m + 1 ,

{ym,-Pn} =  , e fe ,)  =  e(Pm) =  €„ +  1,
{Am,7rn} =  C ,  f(Am) =  e(7T„,) =  em .

The BRST-invariant Hamiltonian is

+ = O } ,  (7)

because from H csmonica] =  0 it follows H mm =  0. In this formula y  stands for 
the gauge fixing fermion (y* =  — y). We use the following representation for 
the latter

X =  Xm>" +  Vrn ( x m +  , Xmi" =

where /ym) are scalar parameters and we have separated the 7rm-dependence 
from y m. If  we adopt that y m does not depend on the ghosts (i/m. 'Pm) and 
(f/rn. P m ), the Hamiltonian H x from (7) takes the form

H k = H ^  + V tnV m - i i m { x m + \ p ^ rn')

+  i}m {xm,Tn} Vn .

where
^■min _ ^min

} •

One can use the representation (8) for IIX to obtain the corresponding BRST 
invariant Lagrangian density

Lx ~  L  +  L Gh +  L gf .
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Here L  is given in (3), L GH stands for the ghost part and L GF — for the gauge 
fixing part o f the Lagrangian density. The manifest expressions for L GH and 
L gf are [1]:

L Gh = ~  dTfj0dTi]° -  drff jdrrf  + \°[2dTrJodjrf +  (djdTff0)rf]

+  \ 3[2dTfj0dJr f  +  (d3dTrj0)r f  +  dTr}kd3r\k +  dTr)3dkr)k +  (dkdTffj)rik}+ J d̂'{no(a')[{T0,x\̂ }v° + {T̂ x\̂ W]
+  Tfc (a1) [{To, ( a ! W  +  {Tk, (?!)}rik}} ,

L Gf — x-----(<9r A° — x °)(<9tA0 — Xo) +  x------(dT^ j — Xj ){dT\  — Xj)  •
ZP( o) l P(j)

If  one does not intend to pass to the Lagrangian formalism, one may restrict 
oneself to the minimal sector x mm, . In particular, this means

that Lagrange multipliers are not considered as dynamical variables anymore. 
With this particular gauge choice, H'"'" is a linear combination of the total 
constraints

A° U o t { a )  + AJTjot(a)l ,H f n =  / dpa

and we can treat here the Lagrange multipliers A0, Aj as constants.
As a result, we have the possibility to quantize this dynamical system living in 
curved background.

2.3. Solving the Equations of Motion

The brane equations o f motion and constraints in curved space-time are highly 
nonlinear and, in general , non exactly solvable. Different methods have been 
applied to solve them approximately or, if possible, exactly in a fixed back
ground. On the other hand, quite general exact solutions can be found by using 
an appropriate ansatz, which exploits the symmetries of the underlying curved 
space-time [1-3]. We will use namely this approach.
From now on, we will work in the gauge Am =  const, in which the equations 
of motion may be written in the form

9ln {dr -  A3a ,)2 x N +  rLMN (dr -  x a , )  x M (aT -  \ kdk) x N =  o .
First of all, we will look for background independent solution of these equations 
and of the constraints

(JMN (dT ~  XJd,) X M (dr ~  X”dk) X *  =  0 , (9)
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9m n  (dr -  \ kdk) X u d1X N =  0 . (10)

It is easy to check that the solution is [1,2]

X M(^) = F m {A^° +  C) = F m ( X t  +  K ) ,

where F M are D  arbitrary functions of their arguments. The next step is to use 
the existing symmetries o f the background metric. To this end, let us split the 
index M  — (//, a), {/ /.} ^  {0} and let us suppose that there exist a number of 
independent Killing vectors r//;. Then in appropriate coordinates =  3 / 3xA 
and the metric does not depend on X 11. Now our aim is to find an ansatz for 
X M, which will allow us to separate the variables and £''• on the one hand, 
and on the other hand, to find the first integrals of a part of the equations of 
motion, corresponding to the symmetry of the curved background space-time. 
It turns out that the appropriate ansatz is:

(r, a1) =  C MF(A V  +  a1) +  y ^ (r) , C11 =  c o n s t,

xa (r,<7') = y"(T).
Inserting it in the equations o f motion and constraints, one obtains the conserved 
quantities:

9 ^ V v +  9 ^ V a =  =  const .
The constraints (10) are identically satisfied when — 0. The remaining
equations and the constraint (9) are reduced to

9aNVN +  T a,MNy My N =  0 

9MNy My N =  0 .

Using the obtained first integrals, these equalities can be rewritten as

2 "Jr ( hab^ b) “  y by° +  daV  =  ^d[aA b]y b

h a b i la y b +  V  =  0 ,  ( 1 1 )

where

h a b  = 9 a b  ~  9 a ^ vgvb, V  = A l̂ Auk llu A a = gaiikAvA v ,

and k 1”' is by definition the inverse of y lu, : k^xgXu =  5%. Thus, using the ex
istence of an abelian isometry group G  generated by the Killing vectors 3 / d x 1' , 
the problem of solving the equations of motion and p  +  1 constraints in D-  
dimensional curved space-tim e X i D with metric qMn  is reduced to considering 
equations of motion and one constraint in the coset M. D/ G  with metric hab. 
As might be expected, an interaction with an effective gauge field appears in
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the Euler-Lagrange equations. In this connection, let us note that if we write 
down A a as

Aa = a : a „,

this establishes a correspondence with the usual Kaluza-Klein type notations 
and

9m n  dy M dy N = habdya dy b +  ( dy^  +  A% dy a) ( dy v +  A b dy b̂ j .

At this stage, we restrict the metric hab to be a diagonal one, i. e.

9 a b  =  9 a „ k ^ 9 u b  for a f b . (12)

This allows us to transform further the equations for y" and obtain

d
d r

(haay a) + y ada (haav )

b^a

h  \  /  \  2
Q  I aa \ I U „\b \ A O A l, „-.b

h bb
h bby ) -  4,d[aA b]haay =  0 .

(13)

To reduce the order o f the differential equations (13) by one, we first split the 
index a in such a way that y r is one of the coordinates ya, and ?/' are the 
others. Then we impose the sufficient conditions

< 9 a ( ^ ) = ° ,  da (hrry r)2 =  0 ,

dr (haay af  =  0 , A a = daf .
(14)

The result o f integrations, compatible with (11) and (12), is the following 

{hm r f  = D a (ya ±  y “) +  [2 (Ar -  drf )  -  V] = E a (y? ) ,

(hrrz r) — hr ( s * - i r - £
Dc
hfyf

i 2 (15)
S a (Ar - d rf ) — E r{yr ) ,

where D a, E a, E r are arbitrary functions of their arguments

r  =  r + f 2L( 4 - - 0 , . / ) ,

and S a is the number o f the coordinates i f  . To find solutions o f the above 
equations without choosing particular metric, we have to fix all coordinates y a 
except one. If  we denote it by y A, then the exact solutions o f the equations of
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motion and constraints for a null 7 -brane in the considered curved background 
are given by

X *  ( X A, a 3) = X £  +  C ^ F  (AJr  +  a3)
x '

rvr\ 91a T  A
K a
v °

1/ 2"

du

x 7

t ( X a =  T0 ±
h° XV211A A

y °
dw .

3. Exact Solutions for the Tensile 1-brane

To begin with, we write down the bosonic string action in D -dimensional 
curved space-tim e X i D with metric tensor gMN

S  = j d 2? £ , £  =  - 1 o/^ f~fmndmX M dnX N gMN(X)  ,

where, as usual, T  is the string tension and 7 is the determinant o f the auxiliary 
metric x rnn.
Here we would like to consider tensile and null (tensionless) strings on equal 
footing, so we have to rewrite the action in a form in which the limit T  —* 0 
could be taken. To this end, we set [4]

v -  =  ( - 1 A1 
7 ^ A1 (2A°T)2 — (A1)2

and obtain

£ = F gMK(x) (do -  A d , )  x M (do -  a1 a) x N
-  X°T2gMN( X ) d , X Md , X K ■

The equations of motion and constraints following from this Lagrangian density 
are (Am =  const):

gLN (do -  A1 SO 2 X N + T l m n  (do - A d , )  X M (do -  A d , )  X K

=  (2A°T)2 ( d \ X K + T f 1Nd , X u d , X N) ,

g u N ( X )  (d0 -  A d , )  X M (do -  A d , )  X N +  (2A°T)* gMN( X ) d , X Md , X N

=  0 .

gMN(X)  (do -  A d , )  X Md , X N =  0 .
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The background independent solution of the equations of motion (but not of 
the constraints) is [4]

X M (t , a) — F± [w ±(t , cr)] , w ±(t , a) — (A1 ±  2A °T)r +  a  .

The ansatz with the searched properties is given by

X M(r, a) — C±w±  +  ^ ( t ), C£ =  c o n s t,

X “(r,<7) =  ^ ( r ) .

Applying this ansatz for the equations of motion and constraints one obtains

9k l VL +  r K,M NVM y N ±  ^ ° T C ± T  K ^ N y N =  0 ,

9MN (ya)yMy N ±  2A°TC£ [g,N {ya)yN ±  2\°TC"±g^ ( y a)] =  0 ,

C l  l g M y “)y N ± 2A° T C ^ ( y ‘ )} = 0 .

Obviously, this system of two constraints is equivalent to the following one

9 m  n (ya )yM =  o ,

Gli  [9,N(ya)yN ± 2 \ ° T C l 9 » ( v “)\ = 0 ,

which we will use from now on.
The integration o f a part o f the Euler-Lagrange equations leads to the conserved 
quantities [4]

9 ^ y v + 9^ , ya ±  2A°TC±gl_lu =  A j  =  c o n s t, =  0 .

Using the obtained first integrals, one reduces the problem to solving the equa
tions

2 - ^  ( habVb) -  (dahbc)yby c +  daV ± =  4d[aA ^ y b 

haby a9b + V ± = 0 ,

where

v ±  =  A±Aik'"  +  (2A°T)2 C"±g^  , A i  =  gâ A f  .

Obviously, these equalities have the same form as before with the replacements 
V  —>■ V ± , A a —>■ Therefore, we can write down the exact solution in this
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case right now, and it is (under the same conditions on the metric):

{ X A,a)

r ( X A)

Xg + C'£(A1t + <t)

x A r
h -A A
y±o

1/ 2"

d w ,

TO ±

A
0

h°,la a
y±o

1/2

d u .

4. Explicit Examples

First of all, let us write down the generic structure o f the solutions as functions 
of the coordinate X A. For tensionless p-branes, i. e. T  =  0, p — arbitrary, it is

X ^  ( X A , a3) =  X g  +  C ^ F  (A3r  +  a3) ±  lim ( X A; T )

T ( X A) = T 0 ± K r a I t ( X A;T) .

For tensile strings, i. e. T  ^  0, p  =  1, we have

JW ( X A,a)  = X g  +  C£ (XV  + a) ± I £  (X A; T) 

t ( X a) = t0± I± (X a-,T) .

In our examples below, we will give the expressions for and I q .
Let us first consider an exact null p-brane solution for a four dimensional 
cosmological Kasner background. Namely, the line element is (x° = t )

3

d s2 =  Qm n  d x M d/r^ =  — ( d t)2 +  ^  t 2qM ( d x M)2 ,
£ t= i

^ ~ i  ^ = 1

Without using the Kasner constraints (16), the solution is given by [4]

(16)

I»{t)  =  c o n s t Y
( A i / A f ) 2k V

A i frj k’.r (1/2 -  k) V 2Fl [  2 + k' 2fe -  ch ) ’

2(<?2 — +  3^2 — +  1 — A
± 2

2(^2 -  tfl) A
±2

j.2 (q2- q i )

F  =  2 ( 92 —  ^ 3) ^  +  Q2 +  1 —  2g in ^  =  (9 1^ 2 , 93) ,  t o r q 1 > q 2
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and

.P (i)  =  const +
-  ( A f / A f ) 2k 

A f  t ^ 0 k\T ( 1 / 2 - k )  Q
Q

2(<?i -  q2) ’

2(gi -  q3)k  +  3gi -  2g2 +  1 -  2q)Ji _  / A | V  2(gi- Q2) 

Q = 2(^1 -  +  <?i +  1 -  2qll , for qx < q2 ,

5

where 2^1 (ft, &; c; 2:) is the Gauss hypergeometric function and r (^ )  is the Eu
ler’s E-function. The expressions for /y  are obtainable from the above ones by 
setting =  0. Because there are no restrictions on qlt, except qt /  </2 /  qn, 
this probe brane solution is also valid in generalized Kasner type backgrounds 
arising in superstring cosmology [5]. In string frame, the effective Kasner 
constraints for the four dimensional dilaton-moduli-vacuum solution are

n = l  £ t= l

- 1  -  ^ 3  (1 -  B 2) < 1C < - 1  +  y/3 (1 -  B 2) , B 2 e  [0,1].

In Einstein frame, the metric has the same form, but in new, rescaled coordinates 
and with new powers qfJ o f the scale factors. The generalized Kasner constraints 
are also modified as follows

E ? ,  =  1 > E C  =  ! - B 2 - ^ 2 . B2 + i / ? e [  0 , 1],

Actually, the obtained tensionless p-brane solution is also relevant to consid
erations within a pre-big bang context, because there exist a class of models 
for pre-big bang cosmology, which is a particular case of the given generalized 
Kasner backgrounds [5].
Our next example is for a tensile string, evolving in the Kerr space-time with 
metric taken in the form

2M r  \

r

r 2 +  a2 +

9 11 —
)

2M a 2r sin2 6 

P 2

922 — p

9 0 3  —

2M a r  sin2 9 

P 2

where
p2 — r 2 +  a2 cos2 9 , A  — r 2 — 2M r  +  a2 ,
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M  is the mass and a is the angular momentum per unit mass o f the Kerr black 
hole. Now the metric does not depend on x°  and x 3, so that p. =  0 ,3 , a =  1, 2. 
The corresponding exact string solution, as a function of the radial coordinate 
r , is described by the integrals {6 =  60 =  const):

r

1° (r; T)  — J d r
r  o

a 2 A sin2 On — 2 A t  M a r

A t ( r 2 + a*)‘ [ - A  3D 2{r ]T ) - 1/2

r

I ± ( r;T) = J dr A f  A
sin2 On

2 A ± M a r  -  A f a 2 [ - A 3D 2{r; T)] - 1/2

r  o

I o ( r ; T ) =  /  d rpo [~ A D 2(r; T)] 1/2, p20 =  r 2 +  a 2 cos2 0G
r  o

1
D 2{r]T) — — — (Ajj1) ( r2 +  a 2) +  A f M a r  +  )^ 2a2

+  (2A°T) 2 sin2 0o

+  (A^ ) 2 a2 sin2 0o +  \  +  (2A°T) 2 (C^.)2 (a 2 sin2 0O -  A
sin 0o v

(C| ) 2 ( r2 +  a 2) 2 -  4 C ^ C |M a r

— ( C i )2 a 2 A sin2 #0

Analogously, one can write down the solution as a function of 6 when the radial 
coordinate is kept fixed. Moreover, in the zero tension limit, one can find the 
orbit r  =  r(0),  which is given by:

where
ro

dr

A ( r ) E ^ 2 (r)
=  ±

d 0

E \ /2(6)

E l ( r ) =  ' h  LAq ( r2 +  a2y  +  4A 0A 3M a r  +  A 2a2
d
A ’

E 2(0) = d A 20a2 sin2 0 + d — const .

The possibility to obtain this result is due to the fact that on the one hand the 
conditions (14) are satisfied, and on the other hand that in (15) the variables r
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and 6 can be separated. This corresponds to the separation of the variables in 
the Hamilton Jacobi equation for the Kerr metric, connected to the existence 
of a nontrivial Killing tensor o f second rank for this space time.

5. Concluding Remarks

In this talk we gave a short review of the results on the p-brane dynamics in 
curved backgrounds, received in [1,4]. The new point here is the generalization 
of the previously obtained null p-brane solutions to the case of more general 
class of background metrics. The tensile 1-brane exact solution in Kerr space 
time is also new one.
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	+ I dvai^p^V).

	Tt = ZPodrf + (d,V«) if .

	Tf = 2P0dj1f + {djVo) if + VAn” + Vkdjif + (dkVj) r,k .

	{nm,vn} = K\ f(vm) = <'Pm) = (m +1,

	{ym,-Pn} =	, efe,) = e(Pm) = €„ + 1,

	{Am,7rn} = C, f(Am) = e(7T„,) = em .

	Hk = H^ + VtnVm-iim{xm + \p^rn')




	+ J d^'{no(a')[{T0,x\^}v° + {T^x\^W]

	(JMN (dT ~ XJd,) XM (dr ~ X”dk) X* = 0 ,

	xa (r,<7') = y"(T).

	Aa = a:a„,


	(s*-ir-£

	3.	Exact Solutions for the Tensile 1-brane

	S = jd2?£,	£ = -1o/^f~fmndmXM dnXN gMN(X) ,


	£ = FgMK(x) (do - Ad,) xM (do - a1 a) xN

	- X°T2gMN(X)d,XMd,XK ■

	gLN (do - A1 SO2 XN + Tlmn (do -Ad,) XM (do - Ad,) XK

	= (2A°T)2 (d\XK + Tf1Nd,Xud,XN) ,

	guN(X) (d0 - Ad,) XM (do - Ad,) XN + (2A°T)* gMN(X)d,XMd,XN

	v± = A±Aik'" + (2A°T)2	C"±g^ , Ai = ga^Af .

	4.	Explicit Examples

	(Ai/Af)2k


	Ai frj k’.r (1/2 - k) V 2Fl [ 2 + k' 2fe - ch) ’




	I±(r;T) = J dr

	5.	Concluding Remarks
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