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Abstract. In this paper we give a summary of the geometrical back
ground of the idea of spontaneous symmetry breaking. For this purpose, 
we set out to discuss Yang-Mills-Higgs gauge theories from the per
spective of reducible bundles. From this viewpoint, “elementary parti
cles” are identified with vector bundles, and sections are considered to 
geometrically represent the states of the corresponding particle. Some 
physical background on the notion of “mass” is given in the introduc
tion. Since the geometrical interpretation of a gauge boson is that of 
a connection, we proceed to discuss how, from a geometrical point of 
view, the Higgs boson can also be considered a connection. We start 
out with Connes’ algebraic approach, where the “shifted Higgs boson” 
is considered a gauge potential on a non-commutative space. We sum
marize how a specific generalization of the notion of a Dirac operator 
can be used in order to define a generalization of de Rham’s algebra. 
This generalization is used to define the non-commutative equivalent of 
the Yang-Mills action where its minima spontaneously break the gauge 
symmetry. In the last section we summarize how the Higgs boson can 
be considered a connection on a Clifford module bundle.

1. Introduction

The concept of a “spontaneously broken gauge theory” has been introduced in 
physics, for instance in solid state physics, within the phenomenon of super
conductivity. This idea has also been adopted in elementary particle physics in 
order to describe the notion of the mass o f an elementary particle, as such as 
of the electron.
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142 J. Tolksdorf

To begin with, the notion of “mass” in the context of particle physics is quite 
different from that used in Newtonian mechanics. In the latter “mass” is a 
fundamental attribute of any (pointlike) particle; It can be mathematically de
scribed by a positve number (m  E M+), and it expresses its inertia against the 
action of some force. Since gravity is the most fundamental force we are all fa
miliar with, “mass” and “weight” are widely considered as the same. However, 
from a physics point of view such an identification is not suitable. In particular, 
we cannot define the mass of a particle by its weight. There is even no strikt 
definition of mass at all, neither in Newtonian mechanics nor in elementary 
particle physics. Other than in Newtonian mechanics, however, in elementary 
particle physics the notion of mass is not considered a fundamental attribute of 
a particle. Instead, it is believed to be generated by the fundamental interaction 
of elementary particles with another one, called the Higgs boson.
At present we distinguish three ways of how elementary particles interact: 
the first results by the exchange of gauge bosons; the second way of how 
elementary particles interact results by the exchange of the above mentioned 
Higgs boson and which gives rise to the “mass of matter” that is in harmony 
with the gauge symmetry. Finally, the third kind of “communication” between 
elementary particles results by gravity. However, this interaction is usually 
believed to be too weak compared to the other two and is thus neglected within 
the phenomenology of particle physics.
How does “mass” manifest itself in the case of elementary particles? The an
swer to this simple question turns out to be tricky indeed, for various reasons. 
This holds true especially for particles from which matter is built of and which 
are called fermions^ . Generally speaking, the notion of the “mass of a par
ticle” makes sense only if the particle can be regarded as a free particle. The 
reason is that every kind of energy contributes to mass, according to Einsteins 
most famous formula E  =  me2. Thus, in general the masses of the fermions 
can be measured only indirectly. This is especially true for particles which 
do not have a “classical” counter part in nature as for instance the quarks. In 
contrast, the mass of an electron can be measured using methods of classi
cal physics. For instance, the electron mass can be determined by measuring 
its deviation from a straight line when it moves in a magnetic field. On the

^  There are two kinds of particles known in nature: the fermions, which carry a 1/2 representation 
of the (double cover of the) rotational group. These kind of particles form the “basic building 
blocks of ordinary matter”; the second kind of particles known today are called bosons. They 
constitute an integer representation of the rotational group and build the carrier of forces. In 
particular, the spin-one representation is realized by gauge bosons. In contrast, the Higgs boson 
is assumed to carry a spin-zero representation. But this particle is not yet found in nature. Its 
existence, however, is highly expected because of the great success of the “standard model of 
particle physics”, where the Higgs boson is a basic constituent.
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is U(l)  gauge invariant. Assuming that T =  vac is a nonzero and constant 
function we end up with

j  = — 2 (vac, vac) A . (8)

Thus, we may identify the positive constant 211 vac 112 with m 2 in (2)

m  =  \/2||vac|| . (9)

Note that, in contrast to current (8), our definition of mass is now gauge in
variant. But where does this “constant section” vac come from, and what is its 
geometrical significance? This and the corresponding geometrical description 
are summarized in the next paragraph.

2. The Geometry of the Bosonic Mass Matrices

In order to geometrically describe the idea of “spontaneous symmetry breaking” 
let us denote by V ( M , G )  a G-principal bundle over a (compact) oriented, 
(pseudo-)Riemannian manifold (j\4. gM) of dimension dim(Af) =  n. Here, G 
denotes a compact, real, semi-simple Lie group (typically some subgroup of 
G L ( N , C)). Moreover, let £E be some associated Hermitian vector bundle with 
typical fiber CN:

E  : = V  x p CN M .  (10)

Here, G -G SU(N)  denotes a unitary representation of the structure group 
G of 'P(AL G). Let £ad be the adjoint bundle associated to the G'-principal 
bundle. We then denote by Q L(^ad) the gauge group of V(A4,G).  Any 
theory given by a (sufficiently smooth) functional

2 ym+ : r(£ E) x PI(^e)
(®, dE) ^  j YM(dE) + r +(®, dE) (11)

is referred to as a gauge theory if it is well-defined on the quotient space

(r (&) x a ((e))/s ■ (12)

Here, T(^E) denotes the set of all sections of the vector bundle £E. This is a 
module over the ring of smooth functions, denoted by 21. The set A(^E) is 
the affine space of (associated) smooth connections, represented by the corre
sponding (exterior) covariant derivatives on the respective vector bundle. The 
vector space of Pl(^E) is Q1(AT, p'(LieG)), where LieG is the Lie algebra of
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G and LieG s u (N ) is its “derived” representation. The functionals XYM
denotes the Yang-Mills functional

Iy „ (d E) =  ||F Ef ,  (13)

where F E G p'(LieG)) is the Yang-Mills curvature defined by a con
nection on £e. The 'I+ is some additional gauge invariant functional, which we 
will specify later.
A smooth G-invariant function

VH : CN —> I 
z i-> yH(z)

(14)

which is also bounded from below is called a general Higgs potential. Clearly, 
such a function gives rise to a mapping from the 21-module T(£E) into 21:

r (6 )  -  21
^  v*vH, (15)

which is defined for any x  G M. by 4/*Vh(:e) := 1/h(V;(p ))IpG7t- 1(̂ )- Here, we 
have used the canonical isomorphism T(£E) ~  C™(V,CN), so that 4/(x) — 
[(p,'^{p))]\Pe-K-1(x) £ E. Therefore, we obtain a functional

VH : T (£e) -  R
4/ i—> (4/*Th5 Mm)

— /
A4

(16)

Here, Mm € is the Riemannian volume form with respect to gM.
Now let z0 G C N be a minimum of the Higgs potential. We denote by / (z o) C 
G the corresponding stabilizer group. Up to equivalence, such a minimum 
determines a unique subgroup H  c  G of the structure group of V (M ., G). The 
group i f  is referred to as the little group. Note that, for a given (G,p,VH), 
there may or may not exist a nontrivial little group. In the case where (G, p. Vh) 
admits a nontrivial little group, more than one H  may exist, depending on the 
orbit structure. We associate the appropriate orbit bundle £0rbit(H) with typical 
fiber orbit (if) c CN to a given little group H.  Note that Grbit(ff) > G 'n a 
natural way. Then any section orb G T(Corbit(jr)) gives rise to an H -reduction of 
V{M ., G). This follows from the fact that orbit (if) c^G/H.  However, it can 
be proved that up to equivalence there is only one H -reduction of V  (M ., G). 
Let us denote this reduction by (Q,t),  where Q(M,  H)  (up to equivalence) is 
a uniquely determined if-principal sub-bundle over M. and /,: Q V  —A M.
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the corresponding inclusion mapping (considered as a bundle homomorphism 
that induces the identity on M).
Let V(M.7 G) be iT-reducible and z0 6 orbit (H) be a chosen minimum of the 
Higgs potential. We correspondingly identify the little group with the stabilizer 
group of this specified minimum and denote the orbit bundle by £Orbit(z0)- Let 
also (z0,orb) be a specific reduction of V(A4,G),  with orb 6 r (^ orbit(Zo)). 
As we have previously mentioned, such a reduction defines a corresponding 
if-principal sub-bundle of V{M.7G) which is isomorphic to Q(A4,H).  We 
therefore denote the chosen reduction (z0,orb) by (Q..t. z0), where now H  = 
/ ( z0). For every specific reduction (Q , i , z 0) of V (M , G ) ,  there exists an 
associated reduced vector bundle £E,z0- It can be proved that £E;Z0 ~  £E,ẑ  
if and only if orbit (z0) =  orbit (zq). Therefore, up to equivalence, there 
is a unique reduced vector bundle, red, associated with an if-reduction of 
V{M.7G). It can be shown that the realification r(£E red) of £F rcd decomposes 
into the Whitney sum of two real vector sub-bundles, called the Higgs bundle 
and the Goldstone bundle:

t (<^e , red) (jHiggs ©  (iGoldstone • (17)

Within the so-called “semiclassical approximation” of a full quantized theory, 
this Higgs bundle geometrically models what we previously have called the 
Higgs boson. The Goldstone bundle corresponds to “spurious” gauge degrees 
of freedom of the Higgs boson and might be “gauged to zero” using the unitary 
gauge condition. As it turns out, the rank of the Goldstone bundle corresponds 
to the number of “massive gauge bosons”, whereas the dimension of the little 
group corresponds to the number of “massless gauge bosons”. To see how all 
of this can be made precise geometrically, we note that there exists a canonical 
section of the appropriate reduced vector bundle that corresponds to a specific 
reduction. To be specific, let again z0 G orbit (if) be a specific minimum 
of the Higgs potential. Correspondingly, let £E,z 0 be the associated reduced 
vector bundle with respect to the reduction (Q,i,  z0). Then we define

vac: M. —> E Zo
x ^ [ ( q 7 z 0)]\q̂ - ± {x). (18)

This constant (and covariantly constant) section is called the vaccum section 
corresponding to the reduction (Q,i,  z0). Note that it explicitly refers to a 
chosen minimum z0 G orbit (H) of the iT-reduction of V{M.7G). Also note 
that the vacuum section may also be considered as a section in using the 
definition x  G M  i—> vac(x) := [(p, p(<?- 1)z0)]\pen- i ^ ,  where p := i{q)g and 
q G 7Tg1(x ). This section generalizes the physicists’ notion of a semiclassical



148 J. Tolksdorf

vacuum which is usually identified with the chosen m inim um  itself. Indeed, 
if V ( M , G ) denotes the trivial G'-principal bundle Ai  x G —̂  A4, then 
the vacuum section with respect to a chosen minimum z0 G orbit ( i f ) of the 
Higgs potential corresponds to the canonical H -reduction Q := M  x H
(x, h) i—> (x, h).
What does all this have to do with spontaneous symmetry breaking? The notion 
of spontaneous symmetry breaking usually refers to the assumption that the 
Euler-Lagrange equation of the “general Yang-Mills functional” 1YM+ admits 
a solution that is not Q invariant. To make this geometrically more precise, let 
us specify the functional XY\i+ to XY\iii

ŶMH := ^YM +  5 (19)

where the Yang-Mills-Higgs functional reads

2 ymh(^ , dE) := ||F E||2 +  || d ^ f  +  VH W  . (20)

Note that the relative signs refer to a definite signature of the underlying metric 
structure of M .  Also, we have assumed that the base manifold M  is compact. 
Otherwise we have to work with compactly supported sections or with sections 
fulfilling suitable boundary conditions. In what follows we will always assume 
that (A4,gM) denotes a compact Riemannian manifold (and for reasons that 
will become clear later we will also assume that dim M  =  2n).

Definition 1. The gauge theory built on the “Yang-Mills-Higgs functional” 
Xymh is called “spontaneously broken” if  there is a “vacuum pair” (vac, dE) G 
T (<(/.-) x A fiE), consisting o f a covariant derivative dE that corresponds to a 
flat connection on ^E and a vacuum section vac G T (^ ) defined by a specific 
H-reduction o fV(Ai ,G) .

Note that a vacuum pair (vac, <9E) is a minimum of the Yang-Mills-Higgs 
functional and thus fulfills the Euler-Lagrange equations

dEF E =  0

dE * F E =  *)ym (2 1)
5E dETr =  .

Here, *1 := is the Hodge map defined by gM, and <5E is the formal adjoint 
of the exterior covariant derivative dE. The mapping Xf : CN —► M denotes the 
gradient of the Higgs potential, where the canonical identification TZCN = CN 
(z G CN) has been taken into account.
Let us denote by vaiy (X+) the variation of a general functional T+ with respect 
to a connection on £E. This “Lie algebra valued” one-form is referred to as the
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Yang-Mills current with respect to the functional X+ and usually denoted by 
j 'y m  6  H1 (j\4. p'(Lica))- In terms of the Higgs functional TH the corresponding 
Yang-Mills current reads

Jym(X )  :=2Re(W , dEV(X) )  (22)

for all tangent vector fields X  E r ( r M) on AL Here, ( ,)  denotes the bilinear 
mapping on the 21-module L (fH) that is induced by the Hermitian product on 
the vector bundle £E. Thus, j'ymPO  E 21 % LieG.
In what way is this related to mass? Because of *4(£E) — 0 1 (AT,p,(LieG)) 
we may consider any connection on as a “disturbance” of a chosen flat 
connection and thus write (t E [0,1]) dE =  <9E +  tA. Likewise, we may 
consider the “disturbance” of any section T E r(£E) with respect to a chosen 
vacuum section and write T =  vac+f\PH- Note that X  E T(rM) for all 
A(X)  E r(e,,-i), where the vector bundle £ad is the ad-bundle defined by the 
adjoint representation of the Lie algebra on itself. Physically, the pair (din, A) 
is interpreted as representing the state of the Higgs and the gauge boson “against 
the chosen vacuum” (vac, dE). Rewriting the above Euler-Lagrange equations 
with respect to these sections one obtains^ up to 0 ( t 2)

* dE *dEA  +  M 2UA  =  0, 
*dE *dEd/n +  M ^ h =  0 .

(23)

Here, respectively, the mass matrices of the gauge boson and the Higgs boson 
are defined by

(m ym)ab ■= —2(vac, {T a, T 6} vac)
M l  := vac* .

Here, ( T \ , . . ., T dimc.) c  p'(LieG) is abasis, such that A  =  ^.a<8)Ta and
{ , } is the anticommutator in EndffY ). The mapping Vj" denotes the bilinear 
form induced by the Hessian of the Higgs potential. The number of zeros of 
M? M equals the dimension of the little group H  c  G and is thus independent 
of the chosen specific if-reduction of V ( M ,  G) that gives rise to the vacuum 
section we actually work with. In other words, although the vacuum section is 
not gauge invariant the eigenvalues of the quadratic form MyM are nonethless 
gauge invariant. These eigenvalues are physically interpreted as the masses of 
the gauge bosons. Likewise, this holds true for the eigenvalues of the quadratic 
form Ml,  which are considered the masses of the Higgs bosons.

(E Actually, this simple result holds true only when the above mentioned unitary gauge condition 
is used, where the Goldstone degrees of freedom become zero. This is analogous to the “Coulomb 
gauge condition” in ordinary electrodynamics, which is known to exhibit in the clearest way the 
physical degrees of freedom of the electromagetic field.
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Note that so far we have talked about the Higgs boson, which is geometrically 
modeled by £E, and about the gauge boson, which is geometrically modeled 
by However, the quadradic forms defined by the respective mass matrices 
give rise to an additional structure in the case of a spontaneously broken gauge 
symmetry which does not exist in a “usual unbroken” gauge theory. Moreover, 
so far the chosen flat connection (if it exists at all!) has been assumed to be 
arbitrary. However, because of the additional structure introduced by the mass 
matrices it is reasonable to choose only flat connections that are “compatible” 
with the extra structure. We call a flat connection on (resp. £ad) to be 
compatible with the mass matrix (resp. MyM), if the eigenbasis of the 
corresponding quadratic form is also an eigenbasis of the connection form 
defined by the flat connection. In this case the exterior covariant derivatives 
become “diagonal” with respect to the eigenbasis of the corresponding mass 
matrices. Therefore, in this eigenbasis the Euler-Lagrange equations (up to 
O it2)) decompose into a set of decoupled equations, each of which physically 
represents the dynamics of a state of a free boson. Formally, these free bosons 
correspond to Hennitian line bundles and we say that the vector bundle (£ad) 
decomposes into the Whitney sum of Hermitian line bundles up to order 0 { t 2). 
Note that in the case where V(M.,G)  is trivial, we can simply use (vac, d), 
where d is the covariant derivative that corresponds to the trivial connection 
on M. x CN -'-A M. (resp. M. x End(CAr) J\4), and vac corresponds to 
the canonical H -reduction of V(Ai ,  G). The triviality of V{Ai.  G) becomes 
necessary if all of the free gauge bosons are massive.
So far, we have indicated how the gauge bosons may aquire mass using the 
mechanism of spontaneous symmetry breaking. However, one may ask why 
there are two kinds of bosons: the gauge boson and the Higgs boson. As is 
well-known, the geometry of the gauge boson is that of a connection on some 
G'-principal bundle. However, what is the geometrical origin of the Higgs 
boson? Correspondingly, one may ask what the geometrical significance of the 
Higgs potential is. A huge amount of work has been done over the last decade 
to answer these questions. In what follows we will summarize Connes’ idea 
to regard the Higgs boson as a gauge potential on a non-commutative space. 
From this point of view the Higgs potential becomes a particular Yang-Mills 
functional.

3. The Higgs Boson as a Connection

In this section, we want to discuss Connes’ idea to consider the Higgs boson 
as a connection on a non-commutative space. For this, we will (very) briefly 
summarize the basic construction of a non-commutative differential algebra that 
generalizes the well-known de Rham algebra of “commutative” differential
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geometry. Before doing so, however, we discuss the “mass matrix of the 
fermions” as a motivion for what follows.
In the former section we have discussed how the notion of mass of the bosons 
can be brought into harmony with the dogma of gauge invariance. For this 
purpose, one postulates the existence of a new particle the Higgs boson. 
The interaction of this Higgs boson with the gauge boson gives rise to the 
bosonic mass matrices. The eigenstates of the corresponding quadratic forms 
associated with the mass matrices are physically interpreted as the states of “free 
bosons”. But what about the masses of the fermions, known to be the basic 
building blocks of matter? How does the Higgs boson act with the fermion in 
order for the latter to aquire mass? This turns out to be more subtle than in 
the case of the bosons. The reason is that in the case of fermions not only the 
“inner degrees” are involed but also the degrees of freedom that are connected 
with space time. In the last section, we discussed only the inner degrees of 
freedom of the bosons. For instance, we considered the gauge bosons to be 
represented by the vector bundle £ad. However, the gauge bosons define a spin 
one representation of the rotational group SO(3) and thus are also represented 
by the cotangent bundle of the base manifold A4. Consequently, with respect 
to a chosen vacuum pair, the gauge boson is represented by

^gauge Tm  <S> £ a d  • (25)

In contrast, the Higgs boson is believed to be in the trivial representation of the 
rotational group and thus is geometrically represented only by the vector bundle 
£e of the inner degrees of freedom. The free bosons have to fulfill a second 
order differential equation since the “exterior bosonic degrees of freedom” form 
an integer representation of the rotational group.
In the case of a fermion, one has to take into account that it forms a one-half 
representation of the (double cover of the) rotational group. As a consequence, 
the admissible states of a “free fermion” have to obey a first order differential 
equation — the Dirac equation. Therefore, a fermion is represented by a 
specific Clifford module bundle

& := Zs ® 6 , • (26)

Here, we assume that (-M,(/mAm) is an oriented Riemannian spin-manifold 
with spin-structure sm and i s  denotes the appropriate spinor bundle. This 
geometrically represents the “exterior fermionic degrees of freedom”. The “in
terior fermionic degrees of freedom” are represented by yet another Hermitian 
vector bundle £E/. If the dimension of M. is even, the spinor bundle i s  is 
Z2-graded with respect to the canonical involution y5 £ End (S')

i s  — is,, © isi , , (27)
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representing the left handed and the right handed part of the fermion in question. 
Concerning the fermion there is still another subtle point one has to take into 
account. This point is tied to the experimentally well established fact that a 
specific interaction of the fermions, called the weak interaction© and repre
sented by the gauge group S U (2)-differentiates between left and right handed 
fermions (actually, this is how the above mentioned Z2-grading of the spinor 
bundle is realized in nature). As a consequence, also the inner fermionic de
grees of freedom become Z2-graded

£ef — © ^Ef'H • (28)

Here, the Hermitian subvector bundles £E/, and £E/ H are defined with respect 
to the fundamental representation and the trivial representation of SU(2), re
spectively. ft is exactly this Z2-grading which offers us an understanding of 
the Higgs boson as a connection! To clarify this, let us consider the following 
example.
Let (A4, <?m) again be Minkowski’s space time. The corresponding (complex
ified) Clifford algebra can then be identified with End(C4). Correspondingly, 
the spinor bundle £s can be identified with the trivial Hermitian vector bundle

M  x (C* 2l © C2r ) 22-L M  . (29)

The inner fermionic degrees of freedom are assumed to be represented by the 
Hermitian vector bundle £S;.

M  x (C2l © CR) ©A M  . (30)

Moreover, we assume that

& *  • (31)

We write a state which represents the inner fermionic degrees as ip =  
('ipLi'fpR) C C°°(.Ad,C| © C r). Now let us assume that such a state repre
sents a free fermion of mass m  and thus obeys Dirac’s original equation12’

i^qt =  777, fk, (32)

where =  (d' /,. d' H) represents the total degrees of freedom, i. e. d/ = 
Y?j=\ sj © ©j and (sj) a frame of the spinor bundle. The first order dif
ferential operator $ ]©) 0 is the Dirac operator, where € End(C4)

This kind of interaction, e. g., is responsible for the decay of a nucleus.
(2) This equation was introduced by P. A. M. Dirac around 1928 in order to relativistically gener
alize Schrodinger’s equation of ordinary quantum mechanics. Note that the Dirac equations is the 
“square root” of the equation that an admissible state of a free Higgs boson has to fulfill.
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generates the Clifford algebra. As a consequence of the canonical involution 
75 =  i7°7 17 27 3, the Dirac equation (32) decomposes into the system

i fi'&L =  rn^fR ,
= m ^L  . (33)

This decomposition, however, is not SU{2) gauge invariant because of the 
presence of the mass parameter m  7  M+ . This “mess of the mass” is analogous 
to the problem encountered with London’s equation (2). To remedy this flaw, 
one uses again the Higgs boson and postulates a new kind of interaction, besides 
the gauge interaction of the fermions, called the Yukawa interaction. For this 
purpose, let us denote by ip 7  C°°(A4 , C2) a state of the Higgs boson. We then 
introduce the odd endomorphism <fi 7  E n d - (77)) by

0
SVukV7*

#Yuk

0 (34)

where the new parameter gYuk 7 M, is referred to as the Yukawa coupling 
constant. The action of the above endomorphism is defined as follows (x 7 
M ):

<j>(x)if)(x) := (gYukP(x)'ipR(x), gYuk(p(x),'4)L(x))) 7  © C r . (35)

Note that this action is indeed SU(2) invariant. Therefore, we may rewrite the 
Dirac equation (32) in a SU(2) gauge invariant manner

= (36)

where, respectively, A is a SU(2) gauge potential, such that $ a  =  7 ^  +
11 ® Am) and T> := 11 C 0.
In the case where the state of the Higgs field is identified with some chosen 
vacuum state <p — vac, we may identify the mass of the fermion withn)

m  := #Yuk||vac|| , (37)

which is SU{2) gauge invariant.
All this can also be worked out for the case of non-trivial bundles (not obvious, 
but true). The crucial point here is that we have to introduce two new oper
ators in order to describe fermions: a first-order differential operator (a Dirac 
operator) and the odd zero-order differential operator (34) defined by the Higgs

F) That this is indeed a reasonable definition is again most obvious with respect to the unitary 
gauge condition, mentioned in the previous section. Note that in our specific example the rank of 
the real subbundle Ĥiggs C V"(7r. red) ecluals one- As a result, the vacuum section is defined by a 
single real number, which in the context of a full quantum theory is referred to as the “vacuum 
expectation value” of the Higgs boson.
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boson. In other words, besides the gauge coupling the fermions also interact 
with the Higgs boson via the Yukawa coupling. The main mathematical feature 
of the Yukawa coupling is that it exchanges left with right handed fermions, i. e. 
it is an odd operator (in contrast to the covariant derivative, which is an even 
operator). Note that this holds also true for the twisted spin Dirac operator 
0A. This will be crucial for all that is following.
Regarded as an endomorphism, the gauge group Q acts by conjungation on q!>, 
that is 07 — p(7 -1) 0 p(y), for all 7 e Q. With respect to some chosen vacuum 
section vac 6 r(£E) (where again we assume that £Higgs — (7  ) we consider 
the endomorphism that corrsponds to the “shifted state” of the Higgs boson
cp0 =  cp — vac

00 =  </>-£>• (38)

Here, the endomorphism V  is defined by the vacuum section vac in the same 
way than 0 is defined by <p. The reason why we interpret the Higgs boson as a 
gauge boson results from the following observation: The reduced gauge group 
H  acts on the shifted endomorphism 0O as

0o =  p(7_1)0op(7) +  p { T l ) [D ,p { l ) \  , (39)

which indeed looks very much the same as the well-known transformation 
law of a gauge potential under a gauge transformation. For this to really make 
sense, however, one has to ensure that the derivative [D, •] on End(£0) actually 
defines an exterior derivative. How this can be achieved will be explained in 
the next paragraph.

3.1. Connes’ Differential Algebra

To get started, let again (Ai , o rM, gM,q) be a compact, oriented Riemannian 
spin manifold. Also, let dim M  =  2n. As a vector bundle we may identify the 
Clifford bundle Cl(M,gM) with the Grassmann bundle ( a m - We denote by 0 
the spin Dirac operator on the associated spinor bundle ( S- This operator is 
uniquely determined by the following two conditions:

[ 0 , / ] =7 ( d f ) ,  /G21
[0, a] = 7(<9cla), a e gM) ) ,

where T * M  End (S') denotes the induced Clifford action, d the covariant
derivative defined by the Riemannian connection on the cotangent bundle 
and d°  the appropriate lift of d to the Clifford bundle. From the first condition 
and the above mentioned identification between the Clifford and the Grassmann
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bundle one recognizes that de Rham’s exterior differential can be expressed in 
terms of the spin Dirac operator

d = [ ) M .  (41)

To make this point more precise, let (B, A) be an involutive differential algebra 
over an associative, involutive, unital algebra 03. Also, let 21 be an associa
tive, involutive, unital algebra. The differential algebra (H21, <5) is called the 
universal differential envelope of 21, provided it fulfills the following universal 
property: For every involutive and injective homomorphism 21 B° =  03 
there exists exactly one homomorphism h, so that the diagram commutes.

21 -------- - ------- - B

m

Let a fc-form in u> G Clk21 be written as Co := a08a,i ■ ■ ■ 8ak with a0, a±, . . . ,  ak G 
0°2l := 21. The existence of the universal algebra associated to 21 can be 
proved, for instance, by an explicit construction of a free algebra consisting 
of “words” like Co, subject to appropriate relations. The uniqueness of (H21, 8) 
follows as usual from the universal property. Note that the universal differential 
envelope is cohomologically trivial, that is every closed form is actually exact. 
In order to construct out of 21 non-trivial differential algebras we follow Connes’ 
construction using spectral triples, see [5] and [7]. Let (H,tt,V)  be a spectral 
triple consisting of a Z2-graded Hilbert space 77, a faithful and involutive 
representation 21 -A End(77), and a “generalized Dirac operator” V  G End(77). 
This means an unbounded linear operator on the Hilbert space 77, such that the 
resolvent and the operators [D, ir(a)] are bounded for all a G 21. Then, it can 
be verfied that the mapping

7r : f2(2l) -»• End(77)

Co := a0<5ai • • • 8ak i—» ft (Co) := 7r(a0)[D, 7r(ai)] • • • [D, 7r(a*;)]
(42)

defines an algebra homomorphism. However, to define a differential S on the 
subalgebra 7r(D2l) by the relation 8 ft (Co) := ft (8 Co) generally fails. For this 
reason we consider the quotient differential algebra Cl(21)/3 , where G H(2l)
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is the two-sided ideal generated by

(J)[kerfe(7r) +  <5(kerfe-1 (7r))]. (43)
ke z

Resulting from the above construction

tt : f i(2 l)/3 -► End(ft) (44)

is now a faithful homomorphism of differential algebras, where the differential 
SD on

fiuSl := 7r (m/Z)  ~  7r(Q2l)/d(d) C End(H) (45)

is defined by 5D[Co\ [<5o>]. We denote the equivalence class of a fc-form [cu] 
by uj G f l^ 2l.
A very remarkable thing to be noted is that in the case of 21 := C°°(A4,C) 
and (L2(^s ) ,7t, </)) and denoting the Dirac triple, one obtains the following 
isomorphism:

{SlD% 8 D) ~  (Q(M),  d ). (46)

Here, the representation it is simply defined by multiplication, i. e. 7r(/)’k := 
/4> for all square integrable sections 4/ of the spinor bundle Note that any 
information contained in the metric structure on M. is lost. This is due to the 
“junk” 3, which contains the entire “even part of the Clifford multiplication”. 
For instance, let (u^, cu2) be one-forms. Then, the multiplication in the Clifford 
algebra yields: l o il o 2 — —^ ( < ^ 1 ,^ 2 )  +<^1 A u ;2. Here, the even part ^ M(cui,cu2) 

is an element of J  (not obvious, but true). Moreover, the above given construc
tion involves commutators, only and therefore is independent of the chosen spin 
structure. Actually, there is no dependence at all. Therefore, the construction 
of the de Rham algebra out of a Dirac operator works also for general Clifford 
modul bundles.
According to Gelfand’s theorem a certain class of topological spaces X  can 
be fully recovered from the commutative algebra of continous functions on 
X  (so-called “normal spaces”). The same holds true in the case of a smooth 
manifold A4. Its structure is encoded in the commutative algebra of smooth 
functions on A4. Correspondingly, in Connes’ non-commutative geometry a 
non-commutative space is given by a non-commutative algebra 21. The above 
summarized construction allows us to costruct a Yang-Mills gauge theory also 
on non-commutative spaces. To do so, however, we have to generalize the 
scalar product in the de Rham algebra to the non-commutative case. This 
is one of the most subtle points encountered in non-commutative geometry 
(“integration” being always more subtle than “differentiation”!). Again, Connes
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has found the equivalent of integration — the so-called Dixmier trace. We 
only mention that this kind of trace indeed generalizes the usual inner product 
in de Rham’s algebra, see again [5].

3.2. The Non-Commutative Yang-Mills Action

As we have already mentioned the set of sections £ := T(£E) of a vector 
bundle £E over a smooth manifold A4 is an 21-module, where in this case 
21 =  C°°(.Ad). According to Swan’s theorem, a vector bundle of finite rank 
over a smooth manifold can thus be regarded as a finitely generated, projective 
%-module. This terminology just means that for every £ there is a number 
N  e  N and an 21-module £', so that

21* ~  £ © £ '.  (47)

In other words, for every vector bundle £E there exists a vector bundle 
so that the Whitney sum of both is equivalent to the corresponding trivial 
vector bundle. Note that the direct complement £' is by no means unique, 
and a choice of it is in one-to-one correspondence to a choice of a finite rank 
projector p  E Enda (2l*), so that £ ~  Im(p). As a consequence, the covariant 
derivative of any linear connection on the vector bundle reads

dE =  p o d , (48)

with the curvature^1)
F e : £ ^ £ ® v Q2(M)

, \  J (49)
u i—> (p o d p A d p)u .

A gauge potential A  can be defined by

e <g) A  := d p ( e ) , (50)

where e =  (ci . . . . .  c iV) C 21* denotes the standard basis of the free module 
21*. Note that this is in fact an 2l-bimodule. If we write u — p(u) with 
u G 21* then

dEu =  p( du +  Au) =: p ( V u ) . (51)

The corresponding curvature reads

F EM =  p ( ( d 4  +  4 A 4 )u ) )  =: p (T u ). (52)

The up-shot of all of this is the simple message that in order to define the 
Yang-Mills curvature one only needs the differential algebra (1721, d). The

^  Note that any projector p fulfills p o  dp o p =  0.



158 J. Tolksdorf

connection fonn is defined by an anti-Hermitian one form A  6 A 1 A {A* =  —A) 
on which the group o f unitaries

Q := {g e 21; g*g = gg* = e} (53)

acts on via the usual transformation (please, compare this also with formula
(39))

A  i—> A 9 := g 1 Ag +  g 1 dg . (54)

Note that Q c 21 =  Q°2l, so that dg e
Let us again denote by ( ,)  the inner product on f22l (i. e. the “Dixmier trace” in 
the case of 2! equals the commutative algebra of smooth functions, or just the 
usual trace if 21 is some matrix algebra). The (non-)commutative Yang Mills 
functional is then defined in the analogues manner as in the commutative case

1y m := (F ,F ) .  (55)

However, this definition does not depend on whether or not the algebra 21 
is commutative or not. All the above constructions are at their very heart 
“algebraic”. In particular, one may consider the algebra of quaternions, which 
we denote again by 21. Note that the corresponding group of unitarities can be 
identified with SU(2). Then, as a kind of miracle one obtains

Zym ~  trace(1 — </>*</>)2 . (56)

Here, (f> := <j)0 + V  where ©0 G 0 );2l denotes a gauge potential and V  g 
End(C2) is the corresponding fennionic mass matrix, we have discussed in the 
above example. But now it is considered a generalized Dirac operator in the 
sense of Connes. In these terms a state of the Higgs boson appears as a shifted 
gauge potential and thus transforms homogeneously with respect to the “gauge 
group” SU (2). So, in some sense this point of view is the flipside of the 
viewpoint we have started out with in the second section. For a fine reference 
of the details see, e. g., [9,14] and [12]. In particular, we recommend the 
latter reference for a pedagogical treatment of the notion of the tensor product 
of a spectral triple in the case of Yang-Mills-Higgs theory. Note that the 
Yang-Mills functional (56) is positive semidefinite and each minimum of this 
functional necessarily breaks the SU(2) gauge symmetry. Finally, we should 
mention that the above mentioned constructions can be generalized to what is 
nowadays called a real geometry, see cf. [7,8] and [15] and the appropriate 
references therein.
We finish this work with some remarks concerning the relation between Dirac 
operators and connections within the framework of commutative geometry. We
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also mention how the Higgs boson might be considered as a connection also 
within this frame.

4. Clifford Modules and the Higgs Boson

In the previous section we have considered the states of the Higgs boson as 
odd endomorphisms on the twisted spinor bundle . Moreover, we have seen 
how Dirac’s original equation can be made S U (2) gauge invariant by use of the 
Higgs boson. As it turns out, the sum of the twisted spin Dirac operator dA and 
the odd endomorphism <F defines again a Dirac operator in a mathematically 
reasonable sense. This general first operator

D : = 0 a + $  (57)

is referred to as the Dirac-Yukawa operator in the case that T> defines the 
Yukawa coupling. This, however, can be generalized to arbitrary Z2-graded 
Clifford module bundles, also denoted by £s , see, e. g., [2] and Chapter 3 in 
[3]. A Dirac operator in this general setting is then defined by any first order 
differential operator that acts on T(£f ) and satisfies the basic relation

[D, /] — 7 ( d /)  (58)

for all /  G 21. Here, C(A4,gM) End(^g) denotes the given Clifford action. 
Let us denote again by A((g) — O' (AT E n d ! (8)) the affine set of all linear 
connections on the Clifford module bundle and by X>(££) the set of all Dirac 
operators compatible with the given Clifford action. It is not hard to check 
that the set T>{8) is an affine set, such that T>{8) ~  fI°(Ad,End (^)). For 
this reason, the difference of two Dirac operators is an odd endomorphism. 
Moreover, it can be shown that (see, e. g., [13])

£>(&)-  *4(£f)/ker7- (59)

Thus each Dirac operator is represented by a class of connections on the Clifford 
module bundle.
It exists a distinguished class of connections, called Clifford connections, on 
each Clifford module bundle over an even dimensional manifold AL On a 
twisted spinor bundle these Clifford connections correspond to twisted spin 
connections. We denote by dA the covariant deriviative of a Clifford connection. 
These connections are fully characterized by the relation

[dA,a\ = 7  (da a) (60)
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for all a G F(Cl(M7gM))- Moreover, on every Clifford module bundle there 
exists a distiguished one-form £ G fE(.AT, End_ (£)) subject to the relations

dA^ = 0,  
7(0  =  U e

(61)

This one-form £ gives rise to a linear mapping

St : n k (M ,E n d ± (^)) -► n k+1 (Ow,EndT(£))

^  1-3- £\I>.
(62)

In particular, we obtain a one-form uxf, G C  (AT Eiid+(£)) to every <b G 
Q ° (M , End“ (£)). We call this form a Dirac form. If D G £>(£) is given, we 
can associate a covariant derivative to this Dirac operator

V :— dj± +  5 (63)

where T> := D — </)A.
From this point of view, every state 0 of the Higgs boson also defines a con
nection on the twisted spinor bundle. However, note that the mapping (62) is 
not a differential and thus in the present approach the algebra Q,(M, End(E)) 
can only be considered a bi-graded algebra. This is in contrast to the previously 
discussed approach where a certain subalgebra of End(E) was constructed as 
a differential algebra.
Since is assumed to be a Riemannian manifold every Dirac operator
on a Clifford module ££ is an elliptic operator. Therefore, one can define 
the heat trace of the square of the Dirac operator at hand. Each coefficient 
in the asymptotic expansion of the heat trace is known to encode geometric 
information. In particular, the subleading term can be expressed by a specific 
trace evaluated by a certain power of the corresponding Dirac operator. This 
trace is called the Wodzickis’ residue (see [16] and [15]). Actually, it is the 
trace on the algebra of classical pseudo differential operators. Note that in 
four dimension the subleading coefficient is the only term in the asymptotic 
expansion that can be expressed in terms of the Wodzicki residue. Moreover, 
this coefficient is the only which is linear in the scalar curvature of the base 
manifold M ..
As it turns our there exists a generalization of the Dirac-Yukawa operator such 
that the Wodzicki residue evaluated with respect to this Pauli-Dirac-Yukawa 
operator is but the Yang Mills Higgs functional with the Higgs potential used 
in the standard model of particle physics (see cf. the second part in [13]). 
However, in this approach a non-trivial condition on the metric of the base
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manifold A4 is also involved. This condition is given by the well-known 
Einstein Hilbert functional

which is but the Wodzicki residue evaluated with respect to any Dirac operator 
that is defined by some Clifford connection (see [10], or [11]). Since this is 
independent of the chosen Clifford connection one has to deal with more general 
Dirac operators, i. e. those that are not defineable by Clifford connections 
in order to describe the Yang-Mills action in terms of Dirac operators (see [1] 
and the given references therein). Therefore, the metric involved in the coupled 
Euler-Lagrange equation of the gauge and Higgs bosons can no longer be 
chosen at will but has to satisfy the Einstein equation. From this perspective the 
Einstein equations occur as a kind of “constraint”. This is quite different from 
the approach mentioned in the previous section (see, however, [4]). As a final 
remark we mention that the Yang-Mills functional, when derived from a Dirac 
operator, only depends on the equivalence class defining the corresponding 
Dirac operator. Since two representatives of a connection class defining a 
Dirac operator are not gauge related in general, the symmetry of the Yang- 
Mills action seems in fact bigger than in the usual appproach discussed in our 
first section.
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