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Abstract. In [1], the generalization of Laguerre’s function of direction
for a surface in ordinary space to a hypersurface of a Riemannian space
is obtained. The Laguerre’s function of direction for a hypersurface of a
Weyl space has been derived in [2]. In this paper, the generalization of
Laguerre’s function of direction to a hypersurface of generalized Weyl
space is made.

1. Introduction

An n-dimensional differentiable manifold W,, is said to be a Weyl space if it
has a symmetric conformal metric tensor g;; and a symmetric connection V
satisfying the compatibility condition given by the equation

ngij - 2Tkgij =0, (1.1)

where T}, are the components of a covariant vector field and V, denotes the
usual covariant derivative.

Let I‘;k denote the coefficients of the connection V. Then, from the compati-
bility condition given by (1.1) we get

T, = {jk } — (5ka + 6T, — g gjle> : (1.2)

Under a renormalization of the fundamental tensor of the form §;; = A®g;; an
object A admitting a transformation of the form A = AP A is called a satellite
with weight {p} of the metric tensor g;;.
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The prolonged covariant derivative of the satellite A relative to V, denoted
by VA is defined by [3]

ViA =V, A—pT,A. (1.3)

An n-dimensional differentiable manifold having an asymmetric connection
V* and asymmetric conformal metric tensor g;; preserved by V™ is called a
generalized Weyl space [4]. Such a generalized Weyl space will be denoted
by GW,,.

In local coordinates, we then have
Vigi; —2T.g; =0, (1.4)

where T} are the components of a covariant vector field called the comple-
mentary vector field of the generalized Weyl space.

The prolonged covariant derivative of the satellite A, with weight {p}, relative
to V* 1s defined as

ViA=ViA—pI;A, (1.5)

where V' denotes the usual covariant derivative.
Assume that g;; is broken up into the sum of its symmetric and anti-symmetric

sk

parts g(;;, and gj;;, respectively, so that we have

9 = 95 T I - (1.6)

Let us consider the generalized Weyl space GW,, having the same complemen-
tary vector field 1" as that of the Weyl space W,, having the symmetric part of
g;; as its metric tensor. The Weyl space W, is called the associate space to the

generalized Weyl space GW,, [5].
The coefficients L; .. of the connection V* are obtained from the compatibility
condition as [6]

ij = ij + B [QZlg(jh) + Q?lg(hk) + Q?kg(hl)]g (“) (1.7)
or, putting
kT 5 [QZlg(jh) + Q;‘ng(hk) + Q;‘Lkg(hl)}g " (1.8)
we have
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where Q) = L’ — L;, are the components of the torsion tensor of the
connection V™.

2. Frenet Formulas in a Generalized Weyl Space

*

Let t be the tangent vector field, normalized by the condition 9 j)titj =1, to
the curve C': 2 = 2'(s) in the associate Weyl space W, of the generalized

Weyl space GW,, and let s be the arclength of C' measured from a fixed point
on C.

The prolonged derivatives of t along C, relative to V and V" denoted, respec-

ot 0%t
tively, by 5 and 5
S s

are given by

St P
— =PVt =tV't, 2.1
0s 1 ds J @b
th = d_xh ]
ds
Frenet formulae for W, can be written as [3],
F5 = St TRl 2.2

where & is the r-th curvature of the curve C.
T

Similarly, the Frenet formulae for the space GW,, can be written in the form

55 Mt TRt = =0 @3

where ™ is the r-th curvature of the curve C' relative to GW,,.
T

If v" is the contravariant components of any vector v in GW,,, by using (1.9)
and (2.1), we get

St S o
so= ot Qi t" . (2.4)
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Replacing v* in (2.4) by t{, ¢!, ¢, ...t _ and using (2.1) we obtain respectively

0%t i i 4d
530 = Kty + @t
0*1; i i i 43
551 = (’;tz - ’ft )+ ijt{tk
5t , , o 2.5
; 2 — (kt! D+ Qiptht” (22)
s
ot
—5’;‘1:—mt1 L+ QL tF.
These formulae may be replaced by the single equation
S*tl i i o
Ss (Tfltr—l—l ’:}tr—l) + ijtrt : (26)

Let us find the relationship between the curvatures « and x* of the curve C
T "

relative to W,, and GW,,.

Since the vectors tq,%4,...,t,_; are mutually orthogonal

gaj)ptfl:c?p h,j=12,....,n; p,g=0,1,....n—1. (2.7

Multiplying (2.2) by gz‘ij)ti_l and summing over ¢ and j we find

< = g (S2)e1. 2.8)

Using (2.3), (2.6) and (2.8) we obtain
ﬁ* =K - Quj 10 131 1%, (2.9)
where g/, Qi = Qnjr-

3. Laguerre’s Function of Direction in a Generalized Weyl
Hypersurface

Let GW,, be a hypersurface with coordinates u*(i = 1,2,...,n) in a general-
ized Weyl space GW,, ., with coordinates z%(a = 1,2,...,n,n+ 1).

Suppose that the metrics of GW,, and GW,,; are elliptic and that they are
given respectively, by g;; du’ du’ and g, dz® dz® which are connected by the
relations

g”—gabxf:ﬁ?, h,j=12,....,n; a,b=1,2,...,n+1
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from which it follows that

% X a b * % a,..b
9iz) = GianyTi s> 9iig) = Jjao)¥i 5

where 27 denotes the covariant derivative of z“ with respect to .

Let n“ be the contravariant components of the vector field in GW,,; normal
to GW,, and let it be normalized by the condition g7, n*n® = 1. Then, we have

Glapynn® =1, (3.1)

The moving frame {z’,n,} on GW,, reciprocal to the moving frame {z¢,n®}
is defined by [7]

nen® =1, n.at=0, na’=0, z%2) = 5l (3.2)
On the other hand, differentiating covarianty z¢ with respect to u", we get
Vial = Vial = Agn® + Bl
which yields, with the help of (3.1) and (3.2)
A = glan(Viain®, Bl =2l (Vixy).

The normal curvature and the geodesic torsion of the curve C' in GW,, are
respectively,

g

If the generalized prolonged derivative of (3.3) in the direction of ' is taken
and if the fact that the weight of p} is {—1} is used, we find that

6" piy

ryale t"Vy p;
= t"(Vipy + Thpy)
= " |V (A )| + " Thp,
= t"(ViAu) )t + Aupt" (VitOt + Aupt" (Vit)t + " Tl
and hence

—52” = t"(V Ay )E + 2A0ut" (Vi) + " T, pl (3.5)
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By virtue of (2.1), (2.3) and (3.4) the equation (3.5) reduces to

5*p;kz h ® 147 ®, ok h 17
5 =1t (Vh A(U)>t t’ + 2Tgl€1 +t ThA(zg)t t! ,
or, putting
0ph
L= 5 27’9/<:1 ,
we obtain
L =t"(ViAup)tt + t" T, Aupt't? (3.6)

which is the generalized Laguerre’s function of direction to a hypersurface
in a generalized Weyl space. If, in particular, 7, = 0, i.e. if the space is
Riemannian, then we obtain the expression for Laguerre’s direction function of
a Riemannian hypersurface.

Definition. A curve in a hypersurface will be called a Laguerre line if and
only if the Laguerre function of direction along the curve vanishes identically.

The differential equation of Laguerre lines on a generalized Weyl hypersurface
is, by (3.6)

L= |(ViAu)t't’ + T, Aupt't [t =0.
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