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Abstract. The local Lie structure of the orientation-reversing involu
tions on M3 is used to construct a family of orthogonally invariant op
erators that produce all formal solutions, up to biharmonic equivalence, 
of Navier’s equation for elastic equilibrium. In this construction the 
value of Poisson’s ratio associated with each solution is determined by 
the hyperbolic geometry of s/2(M). Empirically feasible values of the 
ratio are associated with ‘spacelike’ operators whereas values outside 
of this range are associated with ‘timelike’ operators.

1. Introduction

In the theory of linear elasticity, Navier’s equation says that the displacement 
U =  (u\ 5 u2 •) ^3) of a point in a body subjected to surface forces and after 
acceleration has vanished must satisfy the equilibrium equation

V2u= -L-^vv-u,
2v — 1

where v is Poisson’s ratio, a dimensionless constant of the material that ex
presses the ratio of transverse compression to longitudinal extension under de
formation. In Poisson’s original formulation this constant was presumed to 
have the value of |  for all materials satisfying the generalized Hooke’s law 
hypothesis, thus prompting Poisson to characterize linearized elastic response 
as “directionless”. Later predictions by Cauchy and others (based on thermo
dynamic properties of the strain-energy function — an excellent discussion can 
be found in [1], Chapter 8) that v could vary over the interval (0, | )  were 
verified by photoelastic stress measurement ([5], 250 ff). Typically, hyperbolic

287



288 J. Sarli and J. Torner

contours with asymptotic angle 7 were generated by stressing the material be
neath a plate of glass, whereby v would be equal to the curvature at the vertex 
of the hyperbola tangent to the unit circle of reference. Since this curvature 
is equal to cot2 7 it is of phenomenological interest why 7 should be bounded 
below by tan -1 \[2. However, when this measurement is recorded in terms of 
distance 8 in the Poincaré conformal disc model of the hyperbolic plane, we 
find cot2 9 =  | ( 1  — ta n h s), a fact that does not appear to be noted anywhere 
in the literature. This “coincidence” suggests a description of U in terms of 
hyperbolic geometry.
Work dating back to Maxwell implies that the general solution to the equilibrium 
equation on a region fl is spanned by terms of the form U =  M V ^ +  ATx, 
where M  and N  are compatible endomorphisms, is harmonic on Vt with 
Hessian H^ and x is the position vector/1̂ Any U of this form will be called 
fundamental. We will construct representatives for the equivalence classes of 
fundamental solutions from involutions in M3 (R).

2. Notation

Formally the equilibrium equation can be studied in any dimension (and on 
smooth manifolds via the Hodge theory). We will work with ordinary Cartesian 
notation throughout because our construction is most easily described with basic 
matrix calculations. Let f and g be smooth functions from a region ( î c R n 
to Rn. Let adf be the Lie derivation defined by

adf g =  J f g -  J gf ,

where J f and J g are the Jacobians of f and g, respectively. Let =  {g ; g =  
harmonic on f)}. We say two solutions U and U ' of the equilibrium 

equation are biharmonic ally equivalent on Çt provided U — U ' G The 
following proposition is a straightforward exercise.

Proposition 1. I f  f is linear and g G $ ,  then adf g is divergence-free and

V 2 adf g =  —2V(V • J fg ) .

If f is linear so that J f is the endomorphism X  we write adx to mean adf. 
Denote the identity endomorphism by 1 and let V =  {X  G Mn{R) ; X  +  X T =  
c l, c G R}. Left action by members of V preserves \&, and V is conjugation 
invariant by 0{n). It follows from Proposition I that the function U obtained 
by replacing J f in adf g with Y, where eX  and Y  are congruent mod V 
(i. e., eX  — Y  G H), solves the equilibrium equation with v =  |( 3  — e). In

^  The reader is referred to the extensive literature on biharmonic functions. Chapter 13 of [4] 
presents a collection of historically significant problems.
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Section 3 we will use the geometry of orientation-reversing involutions on M3 
to construct Y  such that e is determined by a parameter that represents distance 
in the hyperbolic plane.
From here on let us suppose that n =  3. Then

adx g =  ^(TrX)V(2V> — r  • V ^) +  V x (X0r x V ^ ) ,

where X 0 =  X (T rX )l and r  =  (x i,x 2,x 3). Unless otherwise indicated,

lines and planes refer to subspaces of R3. For any plane II let M(II) denote 
its stabilizer in M3(R). Choose a unit normal n for II. If X  G M(II) we write 
X  =  (£,x) where £ G M2(R) and x =  X n. This will simplify notation by 
allowing us to identify x with (0,x), where 0 is the zero matrix. If M  is an 
invertible member of M  (II) that depends differentially on a parameter 8 then 
the Cartan image of M  is defined by

C(M ) =  MsM - \ s ) ,

where Ms =  All endomorphisms in our construction will depend
as

differentially on the hyperbolic parameter s that we define in Section 3.
We say x is an affine vector provided x =  n +  y, for some y G II. The 
affine group of II is AG(II) =  {(£, x); det£ /  0, x affine}. Let gn =  
{(£, x) ; Tr £ =  0}, considered as a Lie algebra under the commutator product. 
Note that for any affine vector x0 the map

X ^ X ( l - x 0)

is a Lie algebra homomorphism from gn onto sZ2(R) with kernel M3. By a 
hyperbolic basis for s/2(R) we mean an orthonormal triple (£,r/,£*) relative 
to the inner product (a, £?) i—► |  Tr (aß) such that |  [?/,£] =  £*, f [??,£*] =  £ 
and I [£*,£] =  rj. In particular, the members anti-commute.
An involution refers to any endomorphism with principal invariants 
(UU2U3) =  (1 ,1 ,—1). Endomorphisms with invariants (1 ,—1,1) will be 
called dual. The following proposition, which allows us to focus on these lin
ear maps, can be inferred from the orbit structure of SL(3, R) under conjugation 
by 0(3).

Proposition 2. If X  G SX(3,R) then X  is congruent mod V to an involution 
or to a dual (possibly both).

We show that involutions and their duals are related to spacelike and timelike 
elements, respectively, in hyperbolic space.
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3. Geometry of Involutions and their Duals

Let X  be an involution, let II^ be the plane fixed pointwise by X  and let x_ 
span the line with eigenvalue —1. Let II be any plane containing x _ . Then II is 
stable under X. Conversely, II contains x_ for any involution X  that stabilizes 
it. We write (II, X ) provided this relation holds. For any plane II with unit 
normal n, three parameters (s,i, </>) will suffice to describe the collection of 
all X  such that (II, X). We define these parameters as follows. Let x + span 
nnnx, let 9 be the angle between x + and x_, and set 8 =  tanh-1 (cos 9). That 
is, 9 is the angle-of-parallelism corresponding to distance s in the hyperbolic 
plane.
To define the parameters t and </>, we note there exists X* G gn H AG(II), 
unique up to inverse, such that (II, X*X) and the restriction of X *X  to II 
is a reflection. Thus detX* =  1 and X X * X  =  (X*)-1 . It follows that X  
and X * share a fixed line spanned by X*X + XX*  (with affine vector x0) 
and that (X*X  +  XX*  | (II, X)) is a plane containing n. Let e1 be a unit 
vector orthogonal to this plane and let f  be the angle between x 0 and n, where 
(/> G (— I , I ). Let e2 =  n x ei. Then x 0 =  n +  tan</>e2.
For any M  G M(U) let d(M)  =  (1 -  M) n. If M  G AG(U) we call d(M)  
the derivation of M  into II. In particular, if X  is an involution note that 
d{X)  G (x_). More generally, if y  G gn satisfies (1 — X )Y  G (x_) we say 
that Y  induces the normal derivation dY on X. An important case will be the 
normal derivation induced by the exponential shift (e -sy ) s which we denote 
by df.
X* is the dual of the involution X  with respect to II. Let H  =  HU(X)  =  X*X, 
the Cartan kernel of X  with respect to II. The triple (X, Ff, X*) is the frame 
determined by X. Let (£^, 7 7 be the image of the frame determined by X  
under the Lie homomorphism induced by x 0.

Proposition 3. The triple (£ ,̂ 77̂ , is a hyperbolic basis for s/2(M). Further; 
with respect to s, 77̂  =  C(X) =  C(X*).

Proof: Let

With respect to ( e i ,e 2,n ) , X =  (£,x) where £ =  (cosh s cos f)üüi +  
(cosh s sin t)o;2 +  (sinhs)c<;3 , for some t G [0, 27t), and x  =  x 0+tan</>[(sinhs — 
cosh s s in £)ei +  (cosh s cos t ) e 2]. Further, X* =  (£*,x*) where the dualiza- 
tions are obtained by applying the permutation sinh s <r-> cosh s. It follows that 

=  X s and =  X*. The assertions in the proposition now follow by direct 
calculations. □
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Remark. Since the Cartan map is a derivation of AG(H) into s/2(®0 
with respect to the action of conjugation we have C( X* X) =  C(X*)  +  
X *C(X)(X*)_1. However, X*7̂ (X *)_1 =  and so C (H ) is the zero 
map.

The proposition shows that every frame is associated with a copy of sl2(ßÏ) 
in gn and that these copies are parameterized by <j>. Let denote the copy 
spanned by ( ^ ,  77̂ , £J), and let (/? : 0n —» 0</> denote the homomorphism induced 
by x 0.

4. A Ruled 3-Surface

The frames (X, H , X*) are partitioned by the Cartan kernels H. Each equiv
alence class of frames corresponds to a pair of curves X(s) and X*(s) in 
AG(II) whose images in $$ are comprised of poles (spacelike unit vectors) 
and points (timelike unit vectors), respectively, of hyperbolic M3. The one
dimensional space SjH =  {<p(X +  X*) ; (X, H , X*) is a frame} is a generator 
of the corresponding light cone.

Definition. Ifd$(H)  =  (T rX )scf(iT) X is an s-character of H of weight 
X =  TrX. Wfe say X and X* arc co-characters provided X and X* arc 
s-characters of non-zero weight such that

dx+x*(H) =  XsX*sd ( H) .

A pair of co-characters X, X* are associated with the frame (X, H , X*) pro
vided the normal derivation on H  induced by X X  +  X*X* is xX*d(H).  In 
this case, set X  =  X (x) =  X  +  X and X* =  X* +  X*.

Lemma. For any frame (X, H , X*) t/zcrc arc unique associated co-characters 
X and X* such that C{ XX)  and C(X*X*) arc m (n). In particular, X  and 
X* are invertible.

Proof: The proof is computationally intensive. We outline the main points. By 
Propositions, C( XX)  =  77̂  +  X C ( X ) X  so we must have C(X) — C(X)  =  
an , a  G R. This condition implies that X n  =  (u,v,w)  where u,v  and w 
satisfy the linear system

u +  i (w — v) =  e1(̂ + 2 \ u s +  ius) +  [(sinhssint — cos t — coshs)

+  i(sinh 8 cos t  +  s in t )]ws .

Applying sinhs coshs provides the conditions on X*n. The condition 
that X and X* be co-characters implies w = x  and w * =  X* (whereby a  =  
[ln(l +  x)]s and =  [ln(l +  x*)]s)- The system may then be solved to find
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X  =  (  ̂ +  £*,xx ) and X* = (  ̂+  £*,y*x*), corresponding respectively to 
X  =  (£,x) and X* =  (£*,x*). But then y and y* must satisfy the system

+  * *x =xx
Xs +  X̂  =  X^Xs ,

which has the unique solution y =  1 +  tanh s, x* =  1 +  coth s. □

Corollary to the proof. X  is congruent to (2 +  tanh s ) X  and X* is congruent
to (2 +  coths)X* mod V.

Remark. From the proof we also infer that X  +  X* =  - X  +  -\X * . Thus, if
X X

9% is a ruled 3-surface in gn comprised of the lines Lx =  {r X + ( l —r) X* ; r  G 
M}, then 9% is mapped by p to the light cone and the pre-image of the generator 

is the collection of all Lx such that (X, H, X*)  is a frame.

5. Main Theorem and an Application to the Planar Strain Energy

We can now state our main theorem, which follows immediately from Propo
sitions 1, 2 and the above Lemma. For any involution X  and its dual relative 
to II let ad(n,x) g =  X g  — J gX r and let ad(n,x*) g =  X*g — J gX*r.

Theorem. Any fundamental solution of Navier’s equilibrium equation on ÇI
with v G (0, -), (resp.
U =  ad(n,x)g (resp. U* =

v  %
ad (n,x

> | )  is biharmonic ally equivalent to 
g) for some X, X *,II and g G

In particular, is — 7 (1 — tanh s) and is* =  7 (1 — coth s).

Corollary. The solutions U with 8 =  0 correspond to Poisson's “direction
less ” case is —

Remarks:
1. Since Aisis* =  is +  is* it follows that is and is* are related by the linear 
fractional transformation which fixes 0 and |  and which interchanges |  and 
00. That our construction approaches the values 0 and |  asymptotically per
haps relates to the interpretation of these ratios: is =  |  corresponds to the 
constant divergence situation which implies that all directions are characteristic 
whereas linear isotropic elasticity requires no characteristic directions (see [2]); 
is =  0 implies that the stress and strain tensors are related by a scalar matrix, 
effectively, that the equilibrium equation is independent of the divergence of 
the displacement.
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2. Let e = — . Then the symmetric identityx x

{ \ +t‘) x + (3c~t) x' = {ir.+t) x‘ + (h ,~t) x:
is satisfied by the co-characters Af and X * .

Finally, our construction has the following consequence regarding the strain- 
energy function

where the Lamé constant fi has been normalized to 1. The case of plane strain 
(which applies to prismatic solids with forces orthogonal to the longitudinal 
axis) is obtained by taking <f =  0, and g =  /  for some complex analytic 
function f (z)  on fL Write Z 1 Z2 = Re(Z1Z 2) for any two complex quantities 
Z 1,Z 2 and let R  be the hyperbolic rotation x i—► x cosh 8 +  ysinhs, y i—► 
x sinh s +  y cosh s. Then

and that of its dual ‘timelike’ solution is independent of v.
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W (U ) =  2 [ ( e2s +  1 ) ( /  • e_it)2 +  |Ä ^ | 2|/"|2

+  (2es -  e-*)[(£U ) • ( i /7 ") +  (2es -  \2\ ,

W (U*) =  2 De2s -  1 )(/' • e_it)2 +  |i? 7 |2| / " |2’

+  (2es +  e - s)\(R'sz ) • ( i f f")  +  (2es + e - * ) | / f ' ,

whereby

W( U)  -  W (U *) = ( f  • e_it)2 -  4 | / f  +  (z -  3iz) • ( i /7 " )  •

That is, the difference between the strain potential of a ‘spacelike’ displacement

1951.
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