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1. The Mylar Balloon: Industrial and Geometrical

The Mylarr is a trademark of an extremely thin polyester film, which is flexible
but superior inelastic – when folded it can neither stretch nor shrink. In geometry
the term Mylar is the name coined by Paulsen [12] in order to designate a special
surface of revolution. He called this surface “Mylar balloon”, or shortly “Mylar”,
as it almost perfectly approaches the shape of a fully inflated balloon, made from
two sewn together equal circular disks of Mylarr foil. Due to the great tensile
strength of the foil, the resulting shape of the Mylar balloon is somewhat surpris-
ingly not spherical in form and the surface area is not preserved – a fact extremely
evidenced by the wrinkled area showing up along the sewn boundaries of the two
disks. Such wrinkling and crimping are apparently observed for the commercially
produced Mylarr balloons widely used for decoration purposes and kids toys.
The inflating of the Mylar balloon, as pictured above, clearly implies the following
mathematical problem: Find a surface of revolution, enclosing maximum volume,
for a given directrice arclength. Inflating of the balloon to the maximum and the
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non elasticity of the balloon’s material are the physical conditions that presup-
pose this formulation. In order to pose the problem rigorously, we assume that the
OZ-axis is the axis of revolution, and the curve in the XOZ-plane, z = z(x),
is taken to be the upper half of the right hand side of the balloon’s directrice (see
Fig. 1). Physically it is obvious that this curve smoothly decreases from its max-
imum height on the OZ-axis to a point on the OX-axis, i.e., z(r) = 0, for some
positive r, and the derivative ż(x) is negative for 0 < x < r. Also, it is intuitively
clear that the profile curve must cross the OX-axis perpendicularly. In order to
meet these requirements we have to assume ż(0) = 0 and limx→r ż(x) = −∞.

Figure 1. The profile curve of the Mylar balloon in the XOZ-plane,
where a is the radius of the disks (deflated radius), r is the radius of the
balloon (inflated radius) and τ is the thickness of the balloon.

Let a be the radius of the initially flat disks. On inflating of the balloon the disks
start deforming, but the Mylar foil resists stretching, so that the length of their radii
remains unchanged. Consequently, the arclength of the graph of z(x) from x = 0
to x = r remains fixed to a (Fig. 1). It follows from symmetry considerations that
the bottom half of the Mylar balloon is obtained by reflection of its upper half part
through the XOY -plane.
Now, we can state the problem in calculus of variations settings: Find the profile
curve (directrice) of the Mylar balloon

z = z(x), z(r) = 0, ż(x) ≤ 0, 0 ≤ x ≤ r

by maximizing the volume

V = 4π

r∫
0

xz(x)dx (1)
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subject to the constraint
r∫

0

√
1 + ż2(x)dx = a (2)

and satisfying the transversality conditions

ż(0) = 0, lim
x→r

ż(x) = −∞.

Then, as it can be shown (cf also [8,9,11]), the constraint Euler-Lagrange equation
takes the form

dz

dx
= − x2√

r4 − x4
· (3)

Thus far, we have introduced the problem of finding the shape of a fully inflated
circular Mylar balloon using the same variational settings as they were given by
Paulsen [12] in the first geometrical depiction of the balloon in 1994. Based on the
equation (3) Paulsen succeeded in determining three characteristic measures of the
balloon: the inflated radius r, the thickness τ = 2z(0) (see Fig. 1) and the volume
V . His results are expressed in terms of the Gamma function. In [11], solutions of
the equation (3) were evaluated numerically via certain Maple subroutines, needed
for obtaining the plotted picture of the balloon and expressing the three quantities
r, τ and V in terms of the radius a of the deflated balloon. Explicit parametrizations
of the Mylar via Jacobian elliptic functions and elliptic integrals have been derived
in [7–9] and this leads to a deeper understanding of the geometry of the balloon.
In Section 2 we will present new alternative parametrization of the Mylar balloon
by employing the Weierstrassian functions. In Section 3 we will derive systemat-
ically the basic geometrical characteristics of the balloon – the first and the sec-
ond fundamental forms, the mean, the Gaussian and the principal curvatures. In
Section 4 we proceed with determining the surface area, the volume and other
measurable quantities of the balloon including the so called “crimping factor” and
the moment of inertia of the “solid” Mylar, obtained again analytically with the
help of the Weierstrassian functions. The graph of the balloon’s profile (see Fig.1)
and most of the lengthy and tedious analytical computations were accomplished
with the help of the software package Mathematicar. The last section summarizes
the obtained results and contains a comment about the fundamental in this setting
lemniscate constant.

2. Parametrization via the Weierstrassian Functions

Looking for solutions of the variational problem posed in Section 1, we recast
the related Euler-Lagrange equation (3) into the form of the following system of
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equations

dx

du
=

√
r4 − x4

(4)
dz

du
= x2

where u ∈ R is a new variable and the minus sign has been omitted which results
in replacement of z by −z. Actually, the above system can be readily integrated in
terms of the Weierstrassian functions and in this way we obtain the parametrization
of the profile curve of the Mylar balloon (traced counterclockwise) in the form

(x(u), z(u)) =

(
r
2℘(u)− r2

2℘(u) + r2
, 2ζ(u) +

2℘′(u)

2℘(u) + r2

)
, u ∈

[
−ω

2
,
ω

2

]
(5)

where ℘(u) ≡ ℘(u; −r4, 0), ℘′(u) ≡ ℘′(u; −r4, 0) and ζ(u) ≡ ζ(u; −r4, 0)
are respectively the Weierstrassian ℘-function ℘(u), its derivative ℘′(u) and the
Weierstrassian zeta function ζ(u) built with the invariants [5, 13]

g2 = −r4, g3 = 0 (6)

and ω is the real-valued half-period of ℘(u). The discriminant of ℘(u)

∆ ≡ g32 − 27g23 = −r12

is obviously negative and this implies the relation

ω = ω1 + ω2

in which ω1 and ω2 are the primitive (complex-valued in general) half-periods of
℘(u). In view of the concrete values of the invariants g2 and g3 specified in (6)
the Weierstrassian functions involved here are directly reducible to the so called
pseudo-lemniscatic case with g2 = −1, g3 = 0 [1]. A pleasant consequence of this
fact is the possibility to express the real half-period ω as a ratio of the lemniscate
constant

ω̃ ≈ 2.6220 (7)

and the radius r of the balloon

ω =
ω̃

r
· (8)

Because the surface of Mylar is obtained by rotating the directrice (5) about the
OZ-axis, the position vector of any point on this surface

x(u, v) = (x(u, v), y(u, v), z(u, v))
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is given by the formulas

x(u, v) = r
2℘(u)− r2

2℘(u) + r2
cos v, y(u, v) = r

2℘(u)− r2

2℘(u) + r2
sin v

(9)

z(u, v) = 2ζ(u) +
2℘′(u)

2℘(u) + r2
, u ∈

[
−ω

2
,
ω

2

]
, v ∈ (0, 2π].

Thus, the profile curve and the surface of Mylar are parameterized as specified by
the equations (5) and (9) in terms of the Weierstrassian functions ℘(u), ℘′(u) and
ζ(u). Note that the meridians (cf Fig. 1) are traced counterclockwise from S (the
South Pole corresponding to u = −ω/2), through the equator E (where u = 0), to
N (the North Pole where u = ω/2).
Let us also mention some facts about the Weierstrassian functions. The Weier-
strassian ℘-functionan ℘(u) and its derivative ℘′(u) are elliptic functions, hence
doubly-periodic with a pair of complex-valued (primitive) periods 2ω1 and 2ω2,
ℑ(ω2/ω1) ̸= 0. Related to ℘(u) there are two additional functions – one of them is
the so called Weierstrassian zeta function ζ(u) which appears above, and the other
is the Weierstrassian sigma function σ(u), defined by the equations

ζ ′(u) = −℘(u),
σ′(u)

σ(u)
= ζ(u).

Neither of them is doubly-periodic, but each one satisfies a quasi-periodicity con-
dition

ζ(u+ 2ωk) = ζ(u) + 2ηk, ηk = ζ(ωk), k = 1, 2

σ(u+ 2ωk) = − e2ηk(u+ωk)σ(u).

The Weierstrassian ℘(u) is even function, while ℘′(u), ζ(u) and σ(u) are odd
functions.
Very useful for practical applications are the homogeneity relations that are valid
for any t ∈ C∗

℘′(tu; t−4g2, t
−6g3) = t−3℘′(u; g2, g3)

℘(tu; t−4g2, t
−6g3) = t−2℘(u; g2, g3)

ζ(tu; t−4g2, t
−6g3) = t−1ζ(u; g2, g3)

σ(tu; t−4g2, t
−6g3) = tσ(u; g2, g3).

(10)

They allow us, by taking in particular t = r, to reduce our considerations to the
pseudo-lemniscatic case. For ℘(u) we have

℘(u; −r4, 0) = r2℘(ru; −1, 0)
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thus discovering the expression (8) for the real half-period of ℘(u) on knowing
that the real half-period of the pseudo-lemniscatic ℘ is actually the lemniscate con-
stant ω̃. Similar reductions hold for the functions ℘′(u), ζ(u) and σ(u). In the next
section, when we calculate certain values of the Weierstrassian functions, we will
avail from the homogeneity relations again.

3. Geometry of the Mylar Balloon

We turn now to the geometry of the Mylar balloon, starting from the basic concepts
of the differential geometry of surfaces – the first I and the second II fundamental
forms [10]

I = Edu2 + 2Fdudv +Gdv2, II = Ldu2 + 2Mdudv +Ndv2

with the coefficients, defined by

E = xu · xu, F = xu · xv, G = xv · xv

L = xuu · n, M = xuv · n, N = xvv · n

where the sub-indices denote the respective partial derivatives (xu = ∂x/∂u,
xuu = ∂2x/∂u2, . . .) and n is the unit normal vector to the surface

n =
xu × xv

|xu × xv|
·

For the Mylar balloon we obtain

E = r4, F = 0, G = r2
(
2℘(u)− r2

2℘(u) + r2

)2
(11)

L = 2r3
(
2℘(u)− r2

2℘(u) + r2

)
, M = 0, N = r

(
2℘(u)− r2

2℘(u) + r2

)3
·

The mean H and the Gaussian K curvatures of the surface are calculated using the
well known classical formulas (cf [10])

H =
EN +GL− 2FM

2(EG− F 2)
, K =

LN −M2

EG− F 2

and in our case we find respectively

H =
3

2r

(
2℘(u)− r2

2℘(u) + r2

)
, K =

2

r2

(
2℘(u)− r2

2℘(u) + r2

)2
· (12)

Two other characteristic curvatures, the so called meridional kµ and parallel kπ
principal curvatures are connected with H and K through the equations H =
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(kµ + kπ)/2 and K = kµkπ, whereby

kµ = H +
√

H2 −K, kπ = H −
√

H2 −K.

For the Mylar we compute directly

kµ =
2

r

(
2℘(u)− r2

2℘(u) + r2

)
, kπ =

1

r

(
2℘(u)− r2

2℘(u) + r2

)
· (13)

Let us notice that the principal curvatures are related by the equation

kµ = 2kπ

which is satisfied identically everywhere on the balloon surface S. Among other
things this means that our surface is a representative of the so called Weingarten
class of surfaces. Being in this class, it has been proven that the above relation
defines uniquely S (cf [8]) and that the solution of another geometric equation

(ν3)uu + 6ν = 0, ν = ν(u) (14)

can be used for its generation as well (see [3]).
Looking at (5) and (13) one can conclude also that the curvature of the profile curve
k = kµ is related to its x-coordinate by the equation

k =
2

r2
x. (15)

The latter can be easily recognized in another setting as the equation behind the
rectangular Euler elastica (see [4] and [2]).

4. Various Applications

After all these preliminaries we are going to determine the thickness τ , the surface
area A(S), and the volume V of the Mylar balloon, as well as some other impor-
tant geometrical and mechanical characteristics of the balloon. Before turning to
details let us mention that from now on the differentiations with respect to u will
be denoted by dots.
Our first task will be to establish how r and a are related to each other. Despite that
the Mylar is fully determined by its radius r, yet it is instructive to know the ratio
between r and the radius of the Mylar disks a, which means to find the ratio of the
radius of the inflated and the radius of the deflated balloon. To this aim we make
use of the constrained condition of Section 1 by calculating the arclength along the
meridian of the Mylar starting from the equator and ending at N (North Pole), see
Fig. 1

ω/2∫
0

√
ẋ2(u) + ż2(u) du = r2

ω/2∫
0

du =
ωr2

2
= a. (16)
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In the above calculations use has been made of the fundamental differential relation
satisfied by the Weierstrassian ℘-function [6, 13]

℘̇2(u) = 4℘3(u)− g2℘(u)− g3. (17)

Combining the result in (16) with the already known relations (7) and (8) one
immediately obtains the very useful formulas

a =
ω̃r

2
≈ 1.3110 r, r =

2a

ω̃
≈ 0.7627 a. (18)

Other truly geometrical quantity is the thickness τ of the Mylar, as it is usually
called the distance SN between the South and North Poles of the balloon (Fig. 1)

τ = 2z(ω/2) =
πr

ω̃
=

2πa

ω̃2
· (19)

On the way of establishing the above result we have made use of the values of the
Weierstrassian functions (cf [1])

℘(ω/2) =
r2

2
, ℘̇(ω/2) = −r3, ζ(ω/2) =

π

4ω
+

r

2
· (20)

The relations (19) reveal the invariance of the ratio of the thickness τ versus the
diameter d = 2r of the inflated balloon

τ

d
=

π

2ω̃
≈ 0.5990.

Our further considerations are based upon the derivation of explicit expressions for
the quadratures

Jk =

ω/2∫
−ω/2

du

(2℘(u) + r2)k
, k = 1, 2, . . . . (21)

For example, in order to calculate the total surface area of the Mylar A(S) we need
to know the first quadrature J1 as in this case we have

A(S) =

∫
S

∫
dA =

2π∫
0

ω/2∫
−ω/2

√
EG− F 2dudv

= 2πr3
ω/2∫

−ω/2

2℘(u)− r2

2℘(u) + r2
du = 2πωr3 − 4πr5

ω/2∫
−ω/2

du

2℘(u) + r2
·

In order to obtain J1 we make use of the integral formula [5]∫
du

℘(u)− ℘(̊u)
=

1

℘̇(̊u)

[
2uζ (̊u) + ln

σ(̊u− u)

σ(̊u+ u)

]
(22)
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where ů is a complex number defined by the equation

℘(̊u) = − r2

2
· (23)

Based on the homogeneity relations (10), we observe that combining the values of
℘ in (20) and (23), the following chain of equalities holds

℘(∓iω/2; −r4, 0) = −℘(ω/2; −r4, 0) = − r2

2
= ℘(̊u; −r4, 0)

in which by i is denoted the imaginary unit. Hence, we can conclude that

ů = ů∓ = ∓ iω

2
· (24)

Again on the base of (10), (20) and (24) and following a similar mode of reasoning
we obtain also the relations

℘̇(̊u∓) = ±i r3, ζ (̊u∓) = ±i
( π

4ω
+

r

2

)
. (25)

For calculating the quadrature J1, besides the formulas for ℘(̊u), ℘̇(̊u) and ζ (̊u),
given by (23) and (25), we need to know the difference of the values of the loga-
rithmic term in (22), calculated at the two extremal points u = −ω/2 and u = ω/2
of the integration interval. By making use of (24) and the homogeneity relation

σ(i (ω/2 + iω/2); −r4, 0) = iσ(ω/2 + iω/2; −r4, 0)

the sought difference is easily obtained in the form

2 ln
σ(̊u∓ − ω/2)

σ(̊u∓ + ω/2)
= ∓ i π.

With this result at hand we compute the quadrature

J1 =
2rω − π

4r3
(26)

and thence deduce the surface area of the Mylar balloon

A(S) = π2r2.

Our next concern are the area of the meridional section Σ, the volume V and the
moment ot inertia J about the symmetry axis of the balloon considered as a rigid
body of uniform mass density. Computation of all these quantities goes through
the higher degree quadratures Jk, up to order k = 6. Fortunately for that purpose
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we have at our disposal the recursion formula [14]

℘̇(ω/2)

2k [℘(ω/2)− ℘(̊u)]k
− ℘̇(−ω/2)

2k [℘(−ω/2)− ℘(̊u)]k

(27)

= −2k℘̇2(̊u)Jk+1 + (1− 2k)℘̈(̊u)Jk + 6(1− k)℘(̊u)Jk−1 +

(
3

2
− k

)
Jk−2

valid for k = 1, 2, . . .. Applying (27) repeatedly as many times as needed, and
making use of (17), (20), (23) and (26), we obtain

J2 =
r2ω2 − πrω + π

4r6ω
, J3 =

2r2ω2 − (3π + 2)rω + 6π

16r8ω

J4 =
2r2ω2 − (3π + 6)rω + 9π

24r10ω
, J5 =

32r2ω2 − (33π + 120)rω + 120π

384r12ω

J6 =
60r2ω2 − 5(9π + 40)rω + 156π

640r14ω
·

In this way we can compute the area of the meridional section of the Mylar bal-
loon (see Fig. 2) by expanding the fourth integral below and then integrating and
summing up the respective terms

Σ = 4

ω/2∫
0

xdz = 2

ω/2∫
−ω/2

xdz = 2

ω/2∫
−ω/2

x3(u)du = 2r3
ω/2∫

−ω/2

(
2℘(u)− r2

2℘(u) + r2

)3
du

(28)

= 4r3
(ω
2
− 3r2J1 + 6r4J2 − 4r6J3

)
= 2r2.

This can be done however much more easily by applying the Gauss-Bonnet theo-
rem which in our setting says

∫
S

∫
KdA =

2π∫
0

ω/2∫
−ω/2

K
√

EG− F 2dudv = 4πr

ω/2∫
−ω/2

(
2℘(u)− r2

2℘(u) + r2

)3
du = 4π

and therefore we obtain directly the identity

ω/2∫
−ω/2

(
2℘(u)− r2

2℘(u) + r2

)3
du =

1

r
· (29)
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Replacing this identity back in (28) we produce the final result thereby a simple
cancelation!
Regarding the volume of the balloon we have respectively

V = 2π

ω/2∫
0

x2dz = π

ω/2∫
−ω/2

x4(u)du = πr4
ω/2∫

−ω/2

(
2℘(u)− r2

2℘(u) + r2

)4
du

= 2πr4
(ω
2
− 4r2J1 + 12r4J2 − 16r6J3 + 8r8J4

)
=

1

3
πω̃r3.

Next in this sequence of integrals is that one of the fifth degree for which we have
not an appropriate candidate. However that one of the sixth degree is related to
another important mechanical characteristic of the “solid” balloon, namely – its
moment of inertia J about the symmetry axis as it is given by the formula

J =
πρ

2

ω/2∫
−ω/2

x4dz =
πρ

2
r6

ω/2∫
−ω/2

(
2℘(u)− r2

2℘(u) + r2

)6
du

= πρr6
(ω
2
− 6r2J1+ 30r4J2− 80r6J3+ 120r8J4− 96r10J5+ 32r12J6

)
=

3π2r5ρ

10ω̃
·

Figure 2. One fourth of
the meridional section of
the balloon.

Figure 3. Aspect ratios
of the ellipsoid and the
mylar balloon with the
same radii and volumes.

Here ρ denotes the mass density and one can express J as functions of V and the
total mass M = Vρ of the balloon as follows

J =
9π

10ω̃2
Vρr2 = 9π

10ω̃2
Mr2. (30)
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The numerical factor in front of the last expression equals approximately to 0.41127
and has to be compared with that for the axially symmetric ellipsoid with the same
mass and equatorial radius which is just 0.4. The aspect ratio of such ellipsoid, i.e.,
η = c/r (2c is the length of the symmetry axis of the ellipsoid) is

η =
ω̃

4
≈ 0.6555.

The profiles of the ellipsoid and the balloon are shown together in Fig. 3.
Another interesting observation is about the area of the deflated balloon (which
is 2πa2 since it consists of two disks of radius a) compared with the area of the
inflated one – we find that the ratio of these two areas is larger than one

2πa2

π2r2
=

2

π

(a
r

)2
=

2

π

(
ω̃

2

)2

≈ 1.09422. (31)

Following Paulsen [12] this strange result can be easily explained. Our initial
model assumption was that Mylar cannot stretch, but this did not mean that it could
not shrink. In reality however, the Mylar does not shrink and the shape of the true
Mylar balloon differs slightly from the ideal shape above by forming crimping or
wrinkling along the sewn equator of the inflated balloon in order to accommodate
this 9% excess area. While the total redundant area is known, it is interesting to
also know its local distribution. For that purpose, following Paulsen, we introduce
the so called crimping factor, which is defined as the ratio of the surface area of
a small patch on the deflated balloon to the corresponding patch on the rectified
balloon. The formula derived for this factor in [12] is

C(x) =
r2

x

x∫
0

dt√
r4 − t4

, 0 ≤ x ≤ r. (32)

In our notation (see (4)) the above elliptic integral reduces to one that is trivial to
evaluate

C(x) = C̃(u) = r
2℘(u) + r2

2℘(u)− r2

ω/2∫
u

dũ = r
2℘(u) + r2

2℘(u)− r2
(
ω

2
− u). (33)

As it is expected, there is no crimping at the North Pole of the balloon at which

C(0) = lim
x→0

C(x) = C̃(
ω

2
) = lim

u→ω
2

C̃(u) = 1 (34)

and the maximum crimping occurs at the equator

C(r) = lim
x→r

C(x) = lim
u→0

C̃(u) =
rω

2
·

Obviously there is no crimping at the South Pole either.
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The expression for the maximum crimping however is nothing else (see (18)) than
the ratio of the radii of the deflated and inflated balloon

a

r
=

ω̃

2
≈ 1.31103. (35)

5. Concluding Remarks

In Section 1 of the paper, the mathematical model of the Mylar balloon is pre-
sented in the same variational settings, as it was suggested by Paulsen [12]. He had
observed that the obtained Euler-Lagrange equation has no closed form solution
in terms of elementary functions. By making use of the Gamma function he suc-
ceeded to determine three geometrical characteristics – the radius r of the inflated
balloon, its thickness τ and the volume V , as being measured versus the radius
a of the initially given Mylar disks. In [11], by relying on Maple routines these
quantities were obtained numerically.
The first fully analytical depiction of the Mylar balloon has been achieved in [7–9]
using elliptic integrals. Here, in Section 2 we give another parametrization of the
Mylar balloon via the Weierstrassian functions, and then in Section 3, by exploring
with Mathematicar, we obtain analytical expressions for the fundamental geomet-
rical characteristics of the balloon. As a result in Section 4 we derive formulas that
not only reaffirm the previously obtained expressions, calculated elsewhere via the
Gamma function [12] or the elliptic integrals [7–9], but in addition some of them
have a more compact form, as it can be seen by a direct comparison of the related
expressions.
The constant that plays a key role in the whole description of the Mylar balloon and
contributes most for the compactness of the expressions is the lemniscate constant.
Historically the lemniscate constant ω̃ has been discovered as the half-period of
the inverse of the lemniscatic integral

x∫
0

dt√
1− t4

and can be defined in relation with the Gauss’s constant

G =
2

π

1∫
0

dt√
1− t4

≈ 0.8346

by the equation

w̃ = πG.
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