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Abstract. Let (M, g) be an arbitrary pseudo-Riemannian manifold of di-
mension at least three. We determine the form of all the conformal symme-
tries of the conformal Laplacian on (M, g), which are given by differential
operators of second order. They are constructed from conformal Killing two-
tensors satisfying a natural and conformally invariant condition. As a conse-
quence, we get also the classification of the second order symmetries of the
conformal Laplacian. We illustrate our results on two families of examples in
dimension three. Besides, we explain how the (conformal) symmetries can
be used to characterize the R-separation of some PDEs.
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1. Introduction

We work over a pseudo-Riemannian manifold (M, g) of dimension n ≥ 3, with
Levi-Civita connection ∇ and scalar curvature Sc. Our main result is the classifi-
cation of all the differential operators D1 of second order such that the relation

∆YD1 = D2∆Y (1)

holds for some differential operator D2, where ∆Y := ∇ag
ab∇b− n−2

4(n−1)Sc is the
conformal Laplacian. Such operatorsD1 are called conformal symmetries of order
two of ∆Y . They preserve the kernel of ∆Y , i.e., the solution space of the equation
∆Y ψ = 0, ψ ∈ C∞(M).
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232 Jean-Philippe Michel, Fabian Radoux and Josef Silhan

Over flat pseudo-Euclidean space, the classification of conformal symmetries up
to second order is due to Boyer, Kalnins and Miller [6], who use it to study the
R-separation of variables of the Laplace equation ∆Ψ = 0, where ∆ denotes the
Laplace-Beltrami operator. More generally, Kalnins and Miller provide an intrinsic
characterization for R-separation of this equation on (M, g) in terms of second
order conformal symmetries [17]. Thus, classifying those symmetries happens to
be a basic problem in the theory of separation of variables.

A new input into the quest of conformal symmetries has been given by the work
of Eastwood [13]. He classified indeed the conformal symmetries of any order
over the conformally flat space and exhibited their interesting algebraic structure.
Actually, using the principal symbol map, we obtain from the equation (1) that the
principal symbol of D1 has to be a conformal Killing two-tensor, i.e., a constant of
motion of the geodesic flow, restricted to the null cone. In the conformally flat case,
there is never any obstruction to the existence of conformal symmetries. Namely,
for all conformal Killing two-tensor K, there exists always a conformal symmetry
that has K as principal symbol.

If the pseudo-Riemannian manifold (M, g) is Einstein, i.e., if Ric = 1
nSc g (where

Ric denotes the Ricci tensor), Carter proved in [8] that there is never any obstruc-
tion to the existence of second order symmetries of ∆Y . In other words, on these
pseudo-Riemannian manifolds, for all Killing two-tensor K, there exists always a
symmetry whose the principal symbol is given by K.

The description of conformal symmetries on an arbitrary pseudo-Riemannian man-
ifold (M, g) is more involved, even at order two. Indeed, if K is a (conformal)
Killing two-tensor on M , the tensor K has to verify an additional property to be
the principal symbol of a (conformal) symmetry. The main goal of this paper is to
give this additional condition and to give the structure of the space of all the (con-
formal) symmetries that have K as principal symbol if this condition is satisfied.

We illustrate our result on two examples in dimension three. In the first one, there is
no obstruction to the existence of symmetries of ∆Y . In the second one, we exhibit
a family of pseudo-Riemannian metrics on R3 that admit conformal Killing two-
tensors. In a generic situation, if K is the conformal Killing tensor associated with
a metric inside this family, there is no conformal symmetry of ∆Y that has K as
principal symbol.

At the end of the paper, we explain how the second-order (respectively conformal)
symmetries of ∆Y + V can be used to characterize the existence of R-separating
coordinates systems for the Schrödinger equation (∆Y +V )Ψ = EΨ (respectively
the Schrödinger equation at zero energy (∆Y + V )Ψ = 0), extending in this way
the results in [17] and [19].

We detail now the content of the paper.
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In Section 2, we introduce the basic notions that are necessary for a good un-
derstanding of the paper. We define first the space of tensor densities Fλ(M) of
weight λ ∈ R, the one of differential operators Dλ,µ(M) acting between λ- and
µ-densities, the one of symbols Sδ(M) with δ = µ− λ. Then, we define the con-
formal Laplacian ∆Y as an element of Dλ0,µ0(M), with λ0 = n−2

2n and µ0 = n+2
2n ,

so that it is a conformally invariant operator. At the end of this section, we define
the spaces of conformal symmetries of ∆Y and the spaces of conformal Killing
tensors, which can be viewed as the symmetries of the null geodesic flow.
In Section 3 lies our main result. We introduce first the natural and conformally
invariant quantization

Qλ,µ(g) : Sδ(M)→ Dλ,µ(M)

which will be used to analyze the existence and the structure of the conformal
symmetries. Next, we give the condition under which a conformal Killing tensorK
is the principal symbol of a conformal symmetry of ∆Y in terms of some curvature
tensors arising in conformal geometry. Finally, we give the structure of the space of
conformal symmetries in the case where this condition is satisfied using Qλ,µ(g).
In Section 4, we provide two examples illustrating our main result. In the first
one, there is no obstruction to the existence of symmetries of ∆Y . In this example,
we consider Di Pirro metrics. These metrics are diagonal metrics on R3 admitting
diagonal Killing tensors. In the second one, there is in general obstruction to the
existence of conformal symmetries. The metrics occuring in this example are some
conformal Stäckel metrics on R3 (a conformal Stäckel metric is a metric for which
the Hamilton-Jacobi equation admits an additive separation in some orthogonal
coordinate system).
In Section 5, we explain how the (conformal) symmetries of ∆Y + V can be used
to characterize the R-separation of the equations (∆Y + V )Ψ = EΨ and (∆Y +
V )Ψ = 0, where V ∈ C∞(M) is an arbitrary potential and where E is an arbitrary
real parameter. In particular, we can thus obtain a simple condition by means of
curvature tensors for theR-separation of the equations ∆Y Ψ = EΨ and ∆Y Ψ = 0
because the R-separation of these equations can be characterized by means of the
existence of (conformal) symmetries of ∆Y .

2. Problem Setting

Throughout this paper, we employ the abstract index notation from [25]. That is, on
a smooth manifoldM , va denotes a section of the tangent bundle TM , va a section
of the cotangent bundle T ∗M and e.g. vabc a section of TM ⊗ TM ⊗ T ∗M . The
letters a, b, c, d and r, s, t are reserved for abstract indices. Repetition of an abstract
index in the covariant and contravariant position means contraction, e.g. vabb is a
section of TM . In few places we use concrete indices attached to a coordinate
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system. This is always explicitly stated and we denote such indices by letters
i, j, k, l to avoid confusion with abstract indices. We always use the Einstein’s
summation convention for indices, except if stated otherwise.

2.1. Differential Operators and Symbols

Let M be a n-dimensional smooth manifold. If λ ∈ R, the vector bundle of λ-
densities, Fλ(M) → M , is a line bundle associated with P 1M , the linear frame
bundle over M

Fλ(M) = P 1M ×ρ R
where the representation ρ of the group GL(n,R) on R is given by

ρ(A)e = | detA|−λe, A ∈ GL(n,R), e ∈ R.

We denote by Fλ(M) the space of smooth sections of this bundle. Since Fλ(M)
is associated with P 1M , the space Fλ(M) is endowed with canonical actions of
Diff(M) and of Vect(M). If (x1, . . . , xn) is a coordinate system onM , we denote
by |Dx|λ the local λ-density equal to [(Id, 1)], where Id is the identity frame in the
coordinates system (x1, . . . , xn).
Actually, a λ-density φ at a point x ∈M can be viewed as a map on ∧nTxM with
values in R such that

φ(cX1 ∧ . . . ∧Xn) = |c|λφ(X1 ∧ . . . ∧Xn)

for all X1, . . . , Xn ∈ TxM and c ∈ R. The λ-density |Dx|λ is then the λ-density
equal to one on ∂1∧ . . .∧∂n, where ∂1, . . . , ∂n denotes the canonical basis of TxM
corresponding to the coordinate system (x1, . . . , xn).
If a λ-density φ reads locally f |Dx|λ, where f is a local function, then the Lie
derivative of φ in the direction of a vector field X reads locally

Lλ
Xφ = (X.f + λ(∂iX

i)f)|Dx|λ. (2)

It is possible to define the multiplication of two densities. If φ1 reads locally
f |Dx|λ and if φ2 reads locally g|Dx|δ, then φ1φ2 reads locally fg|Dx|λ+δ.
On a pseudo-Riemannian manifold (M, g), it is possible to define in a natural way
a λ-density. In a coordinate system, this λ-density reads

|volg|λ = | det g|
λ
2 |Dx|λ

where | det g| denotes the absolute value of the determinant of the matrix represen-
tation of g in the coordinate system.
We shall denote by Dλ,µ(M) the space of differential operators from Fλ(M) to
Fµ(M). It is the space of linear maps between Fλ(M) and Fµ(M) that read in
trivialization charts as differential operators. The actions of Vect(M) and Diff(M)
on Dλ,µ(M) are induced by the actions on tensor densities: if LXD denotes the
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Lie derivative of the differential operator D in the direction of the vector field X ,
we have

LXD = Lµ
X ◦D −D ◦ L

λ
X , D ∈ Dλ,µ(M) and X ∈ Vect(M).

ϕ ·D = ϕ ◦D ◦ ϕ−1, D ∈ Dλ,µ(M) and ϕ ∈ Diff(M).

The space Dλ,µ(M) is filtered by the order of differential operators. We denote by
Dk

λ,µ(M) the space of differential operators of order k. It is well-known that this
filtration is preserved by the action of local diffeomorphisms.
On a pseudo-Riemannian manifold (M, g), it is easy to build an isomorphism be-
tween Dλ,µ(M) and D(M), the space of differential operators acting between
functions. Indeed, thanks to the canonical densities built from |volg|, all opera-
tors D ∈ Dλ,µ(M) can be pulled-back on functions as follows

Fλ(M)
D // Fµ(M)

C∞(M)

|volg|λ
OO

|Volg|−µ◦D◦|volg|λ
// C∞(M)

|volg|µ
OO

(3)

The space of symbols is the graded space associated withDλ,µ(M): it is then equal
to

grDλ,µ(M) :=

∞⊕
k=0

Dk
λ,µ(M)/Dk−1

λ,µ (M).

The canonical projection σk : Dk
λ,µ(M) → Dk

λ,µ(M)/Dk−1
λ,µ (M) is called the

principal symbol map. As the actions of Diff(M) and of Vect(M) preserve the
filtration of Dλ,µ(M), they induce actions of Diff(M) and Vect(M) on the space
of symbols.
Let δ = µ−λ be the shift of weights. If the sum of the k-order terms of D ∈ Dk

λ,µ

in a coordinate system (x1, . . . , xn) reads

Di1···ik∂i1 . . . ∂ik

and if (xi, pi) is the coordinate system on T ∗M canonically associated with (x1,
. . . , xn), then we get the following identification

σk(D)←→ Di1···ikpi1 . . . pik .

Thus, the space of symbols of degree k can be viewed as the space Skδ (M) :=

Polk(T ∗M) ⊗C∞(M) Fδ(M), where Polk(T ∗M) denotes the space of real func-
tions on T ∗M which are polynomial functions of degree k in the fibered coor-
dinates of T ∗M . The algebra S(M) := Pol(T ∗M) is clearly isomorphic to the
algebra Γ(STM) of symmetric tensors and depending on the context we will refer
to its elements as symbols, functions on T ∗M or symmetric tensors on M .
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Let us recall that, if S1, S2 ∈ S(M), then the Poisson bracket of S1 and S2, denoted
by {S1, S2}, is defined in a canonical coordinate system (xi, pi) of T ∗M in the
following way:

{S1, S2} = (∂piS1)(∂xiS2)− (∂piS2)(∂xiS1). (4)

We conclude this subsection by two properties of the principal symbol map linked
to the composition and to the commutator of differential operators. For all k, l ∈ N,
we have:

σk+l(A ◦B) = σk(A)σl(B) (5)

σk+l−1([A,B]) = {σk(A), σl(B)} (6)

where A and B are elements of D(M) of order k and l respectively.

2.2. Pseudo-Riemannian and Conformal Geometry

Let (M, g) be a pseudo-Riemannian manifold. The isometries Φ of (M, g) are the
diffeomorphisms ofM that preserve the metric g, i.e., Φ∗g = g. Their infinitesimal
counterparts X ∈ Vect(M) are called Killing vector fields, they satisfy LXg = 0,
with LXg the Lie derivative of g along X .
Given the Levi-Civita connection ∇ corresponding to the metric g, the Riemann-
ian curvature tensor, which reads as Rab

c
d in abstract index notation, is given by

[∇a,∇b]v
c = Rab

c
dv

d for a tangent vector field vc. Then, one gets the Ricci ten-
sor by taking a trace of the Riemann tensor, which is indicated by repeated indices:
Ricbd = Rab

a
d. By contraction with the metric, the Ricci tensor leads to the scalar

curvature Sc = gabRicab.
The Riemann tensor admits the following decomposition

Rab
c
d = Cab

c
d + 2δc[aPb]d + 2gd[bPa]

c (7)

where Cab
c
d is the totally trace-free Weyl curvature

Pab =
1

n− 2

(
Ricab −

1

2(n− 1)
Sc gab

)
is the Schouten tensor, δba is the Kronecker delta and square brackets denote anti-
symmetrization of enclosed indices. The Weyl tensor Cabcd is zero for the dimen-
sion n = 3. Note also that Cabcd obeys the same symmetries of indices as Rabcd

does.
In the sequel, we will also need the Cotton-York tensor Aabc. It is defined in the
following way

Aabc = 2∇[bPc]a.

Recall simply that the Weyl tensor Cab
c
d is always conformally invariant, whereas

Aabc is conformally invariant in dimension three.
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A conformal structure on a smooth manifold M is given by the conformal class
[g] of a pseudo-Riemannian metric g, where two metrics g and ĝ are conformally
related if ĝ = e2Υg, for some function Υ ∈ C∞(M). The conformal diffeomor-
phisms Φ of (M, [g]) are those which preserve the conformal structure [g], i.e.,
there exists Υ ∈ C∞(M) such that Φ∗g = e2Υg. Their infinitesimal counterparts
X ∈ Vect(M) are called conformal Killing vector fields, they satisfy LXg = fXg,
for some function fX ∈ C∞(M).
According to the transformation rule |volĝ|λ = enΥ|volg| if ĝ = e2Υg, we have the
conformally invariant object gab = gab⊗|volg|−

2
n , termed conformal metric, with

the inverse gab in Γ(S2TM) ⊗ F2/n. The conformal metric gives a conformally
invariant identification TM ∼= T ∗M ⊗ F−2/n. In other words, we can raise and
lower indices, with expense of the additional density, in a conformally invariant
way. For example, we get Cabcd ∈ Γ(S2(Λ2T ∗M)) ⊗ F−2/n. Note also that gab
and gab are parallel for any choice of a Levi-Civita connection from the conformal
class.

2.3. The Conformal Laplacian

Starting from a pseudo-Riemannian manifold (M, g) of dimension n, one can de-
fine the Yamabe Laplacian, acting on functions, in the following way

∆Y := ∇ag
ab∇b −

n− 2

4(n− 1)
Sc

where ∇ denotes the Levi-Civita connection of g and Sc the scalar curvature. For
the conformally related metric ĝ = e2Υg, the associated Yamabe Laplacian is given
by

∆̂Y = e−
n+2
2

Υ ◦∆Y ◦ e
n−2
2

Υ.

According to the transformation law |volĝ| = enΥ|volg| and to the diagram (3), this
translates into the conformal invariance of ∆Y viewed as an element ofDλ0,µ0(M),
for the specific weights

λ0 =
n− 2

2n
, µ0 =

n+ 2

2n
and δ0 = µ0 − λ0 =

2

n
· (8)

Thus, the data of a conformal manifold (M, [g]) is enough to define the operator
∆Y ∈ Dλ0,µ0(M). We write it below as ∆M

Y (g) and we refer to it as the Yamabe
or conformal Laplacian. One easily gets

Proposition 1. The conformal Laplacian is a natural conformally invariant oper-
ator, i.e.,

• it satisfies the naturality condition

∆N
Y (Φ∗g) = Φ∗ (∆M

Y (g)
)

(9)
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for all diffeomorphisms Φ : N →M and for all pseudo-Riemannian metric
g on M
• it is conformally invariant, ∆M

Y (e2Υg) = ∆M
Y (g) for all Υ ∈ C∞(M).

More generally, a natural operator over pseudo-Riemannian manifolds is an op-
erator that acts between natural bundles, is defined over any pseudo-Riemannian
manifold (M, g) and satisfies an analogue of the naturality condition (9). It is said
to be conformally invariant if it depends only on the conformal class of g. For a
general study of natural operators in the pseudo-Riemannian setting, see the book
[20].
From Proposition 1, we deduce that the conformal Laplacian ∆Y is invariant under
the action of conformal diffeomorphisms, which reads infinitesimally as

Lµ0

X ◦∆Y = ∆Y ◦ Lλ0
X (10)

for all conformal Killing vector fields X . Here, as introduced in (2), Lλ0 and Lµ0

denote the Lie derivatives of λ0- and µ0-densities.

2.4. The Algebra of Symmetries of the Conformal Laplacian

Let (M, [g]) be a conformal manifold of dimension n. Fixing a metric g ∈ [g],
we can regard the conformal Laplacian, ∆Y = ∇ag

ab∇b − n−2
4(n−1)Sc, as acting

on functions. The symmetries of ∆Y are defined as differential operators which
commute with ∆Y . Hence, they preserve the eigenspaces of ∆Y .
More generally, conformal symmetries D1 are defined by the weaker algebraic
condition

∆Y ◦D1 = D2 ◦∆Y (11)

for some differential operator D2, so that they only preserve the kernel of ∆Y .
The operator ∆Y can be considered in equation (11) as acting between different
line bundles and in particular as an element of Dλ0,µ0 , where λ0 = n−2

2n , µ0 =
n+2
2n . With this choice, ∆Y is conformally invariant and the space of conformal

symmetries depends only on the conformal class of the metric g. It is stable under
linear combinations and compositions.
The operators of the form P∆Y , i.e., in the left ideal generated by ∆Y , are obvi-
ously conformal symmetries. Since they act trivially on the kernel of ∆Y , they are
considered as trivial. Following [13, 14, 23], this leads to

Definition 2. Let (M, [g]) be a conformal manifold with conformal Laplacian
∆Y ∈ Dλ0,µ0 . The algebra of conformal symmetries of ∆Y is defined as

A = {D1 ∈ Dλ0,λ0 ; D2 ∈ Dµ0,µ0 , D2 ◦∆Y = ∆Y ◦D1}
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and the subspace of trivial symmetries as

(∆Y ) = {A∆Y ; A ∈ Dµ0,λ0}.

Thus, A is a subalgebra of Dλ0,λ0 and (∆Y ) is the left ideal generated by ∆Y

in Dλ0,λ0 . The filtration by the order on Dλ0,λ0 induces a filtration on A and we
denote by

Ak := A ∩Dk
λ0,λ0

the algebra of conformal symmetries of order k. Obviously,A0 ≃ R is the space of
constant functions, identified with zero order operators on λ0-densities. Moreover,
the invariance of ∆Y under the action of conformal Killing vector fields, see (10),
shows that A1 is the direct sum of A0 with the space of Lie derivatives Lλ0

X ∈
D1

λ0,λ0
along conformal Killing vector fieldsX . SinceA is an algebra,A2 contains

in particular Lλ0
X ◦ L

λ0
Y for X , Y conformal Killing vector fields.

2.5. The Algebra of Symmetries of the Null Geodesic Flow

Let (M, g) be a pseudo-Riemannian manifold and (xi, pi) denote a canonical co-
ordinate system on T ∗M . The inverse metric g−1 pertains to Γ(S2TM) and iden-
tifies with H := gijpipj ∈ S0, where S0 = Pol(T ∗M) ∼= Γ(STM) (see Section
2.1). Along the isomorphism T ∗M ∼= TM provided by the metric, the Hamilton-
ian flow of H corresponds to the geodesic flow of g.
The symmetries of the geodesic flow are given by functionsK ∈ S0 which Poisson
commute with H . They coincide with the symmetric Killing tensors. The null
geodesic flow, i.e., the geodesic flow restricted to the level set H = 0, depends
only on the conformal class of g. It admits additional symmetries, namely all the
functions K ∈ S0 such that

{H,K} ∈ (H)

where {·, ·} stands for the canonical Poisson bracket on T ∗M , defined in (4), and
(H) for the ideal spanned by H in S0. The linearity and Leibniz property of the
Poisson bracket ensure that the space of symmetries of the null geodesic flow is
a subalgebra of S0. Besides, remark that all the functions in (H) are symmetries
which act trivially on the null geodesic flow.

Definition 3. Let (M, g) be a pseudo-Riemannian manifold and H ∈ S0 the func-
tion associated to g. The algebra of symmetries of the null geodesic flow of g is
given by the following subalgebra of S0,

K = {K ∈ S0 ; {H,K} ∈ (H)}.

In particular, the algebra K contains the ideal (H) of trivial symmetries. It inherits
the gradation of S0 by the degree

Kk := K ∩ Sk0 .
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The space K0 is the space of constant functions on T ∗M . The Hamiltonian flows
of functions in K1 coincide with the Hamiltonian lift to T ∗M of the conformal
Killing vectors on (M, [g]). For higher degrees, the elements in K are symmetric
conformal Killing tensors whose Hamiltonian flows do not preserve the configu-
ration manifold M . They are symmetries of the whole phase space but not of the
configuration manifold and often named hidden symmetries by physicists.
The next proposition is essential to determine the algebra A of conformal symme-
tries.

Proposition 4. If D1 ∈ Ak then σk(D1) ∈ Kk. Under the identification grDλ0,λ0∼= S0, the associated graded algebra grA becomes a subalgebra of K and gr(∆Y )
identifies with (H).

Proof: Suppose that D1 is a conformal symmetry of order k, i.e., satisfies ∆Y ◦
D1 = D2 ◦ ∆Y for some D2. Working in the algebra Dλ0,λ0 we deduce that
[∆Y , D1] ∈ (∆Y ) and the property (6) leads then to {H,σk(D1)} ∈ (H), i.e.,
σk(D1) ∈ Kk. The inclusion grA ≤ K follows. As σ2(∆Y ) = H , the property
(5) of the principal symbol maps implies that gr(∆Y ) ∼= (H). �

3. Structure of the Second Order Symmetries of ∆Y

We give first the fundamental tool which will allow us to analyze the existence of
conformal symmetries and to give the structure of the space A2.

3.1. Natural and Conformally Invariant Quantization

Recall first the definition of a quantization on a smooth manifold M .

Definition 5. Let λ, µ ∈ R and δ = µ− λ. A quantization on M is a linear bijec-
tion QM

λ,µ from the space of symbols Sδ(M) to the space of differential operators
Dλ,µ(M) such that

σk(QM
λ,µ(S)) = S, S ∈ Skδ (M), k ∈ N. (12)

On locally conformally flat manifolds (M, [g]), for generic weights λ, µ, there ex-
ists a unique conformally equivariant quantization [10], i.e., a unique quantization
which intertwines the actions of the conformal Killing vector fields on Sδ and on
Dλ,µ. In the following, we need an extension of the conformally equivariant quan-
tization to arbitrary conformal manifolds. This is provided by the notion of natural
and conformally invariant quantization. The definition and the conjecture of the
existence of such a quantization were given for the first time in [21].

Definition 6. A natural and conformally invariant quantization is the data for ev-
ery pseudo-Riemannian manifold (M, g) of a quantizationQM

λ,µ(g), which satisfies
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• the naturality condition

QN
λ,µ(Φ

∗g)(Φ∗S) = Φ∗(QM
λ,µ(g)(S)), S ∈ Sδ(M) (13)

for all diffeomorphisms Φ : N →M and for all pseudo-Riemannian metric
g on M .
• the conformal invariance: QM

λ,µ(e
2Υg) = QM

λ,µ(g) for all Υ ∈ C∞(M).

In the following we refer to a quantization map by Qλ,µ, the dependence in the
chosen pseudo-Riemannian manifold (M, g) being understood. Accordingly, we
drop the reference to M in the spaces of densities Fλ, symbols Sδ and differential
operators Dλ,µ.
The concept of natural and conformally invariant quantization is an extension to
quantizations of the more usual one of natural conformally invariant operator, in-
troduced in the previous section. Restricting to conformally flat manifolds (M, [g])
and to Φ ∈ Diff(M) preserving [g], the naturality condition (13) reads as confor-
mal equivariance of the quantization map Qλ,µ. Thus, the problem of the natu-
ral and conformally invariant quantization on an arbitrary manifold generalizes the
problem of the conformally equivariant quantization on conformally flat manifolds.
The proof of the existence of such a quantization, at an arbitrary order and for
generic values of λ, µ, was given in [22], [7] and [27] in different ways.
The proof of the existence of a natural and conformally invariant quantization at
the second order was first given in [11], together with an explicit formula. We
provide this formula in the theorem below, because we will need it later on.

Theorem 7 ([11]). Let δ /∈
{

2
n ,

n+2
2n , 1,

n+1
n , n+2

n

}
. A natural and conformally

invariant quantization Qλ,µ : S≤2
δ → D2

λ,µ is provided, on a pseudo-Riemannian
manifold (M, g) of dimension n, by the formulas

Qλ,µ(f) = f, Qλ,µ(X) = Xa∇a +
λ

1− δ
(∇aX

a)

Qλ,µ(S) = Sab∇a∇b + β1(∇aS
ab)∇b + β2g

ab(∇aTrS)∇b (14)

+β3(∇a∇bS
ab) + β4 g

ab∇a∇b(TrS) + β5RicabS
ab + β6 Sc (TrS)

where f , X , S are symbols of degrees 0, 1, 2 respectively and TrS = gabS
ab.

Moreover the coefficients βi entering the last formula are given by

β1 =
2(nλ+ 1)

2 + n(1− δ)

β2 =
n(λ+ µ− 1)

(2 + n(1− δ))(2− nd)
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β3 =
nλ(nλ+ 1)

(1 + n(1− δ))(2 + n(1− δ))

β4 =
nλ(n2µ(2− λ− µ) + 2(nλ+ 1)2 − n(n+ 1))

(1 + n(1− δ))(2 + n(1− δ))(2 + n(1− 2δ))(2− nδ)

β5 =
n2λ(µ− 1)

(n− 2)(1 + n(1− δ))

β6 =
n2λ(µ− 1)(nδ − 2)

(n− 1)(n− 2)(1 + n(1− δ))(2 + n(1− 2δ))
·

3.2. Second Order (Conformal) Symmetries

We saw in Section 2 that the principal symbol of a (conformal) symmetry of ∆Y

has to be a (conformal) Killing tensor. On an arbitrary pseudo-Riemannian mani-
fold, a (conformal) Killing tensor has to satisfy some condition to be the principal
symbol of a (conformal) symmetry. This condition can be expressed by means of
a natural and conformally invariant operator which is denoted here by Obs and
which is defined below.

Definition 8. The operator Obs is defined as follows

Obs : S20 → S12/n : S 7→ 2(n− 2)

3(n+ 1)
F(S)

where (F(S))a = Cr
st
a∇rS

st − 3Ars
aSrs.

We are now in position to prove our main theorem, which provides a full descrip-
tion of the conformal symmetries of ∆Y given by second order differential opera-
tors. The proof of the following result is quite long and technical, it is the reason
for which it is omitted here. The reader who would to know more details about
it may consult the reference [24]. In the following statement, Qλ0,λ0 denotes the
natural and conformally invariant quantization introduced in Theorem 7 whereas
the isomorphism Γ(TM⊗F 2

n
) ∼= Γ(T ∗M) provided by the metric is denoted by ♭.

Theorem 9. The second order (conformal) symmetries of ∆Y are exactly the op-
erators

Qλ0,λ0(K +X) + f

where X is a (conformal) Killing vector field, K is a (conformal) Killing two-
tensor such that Obs(K)♭ is an exact one-form and f ∈ C∞(M) is defined up to
a constant by Obs(K)♭ = −2df .
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3.2.1. Remarks
• On a conformally flat manifold, Obs(K) vanishes identically. For all (con-

formal) Killing tensor K, the second-order differential operatorQλ0,λ0(K)
is then a (conformal) symmetry of ∆Y . We recover in this way the results
exposed in [13] and [23].
• If (M, g) is Einstein and if K is a Killing two-tensor, it turns out that
Obs(K)♭ is exact. Using our method, it is then easy to see that ∇aK

ab∇b

is a symmetry of ∆Y . We recover in this way the result exposed in [8].
• A classification of the symmetries of ∆+V , where ∆ denotes the Laplace-

Beltrami operator and where V ∈ C∞(M), was already obtained in [2].
This classification is formulated in the following way

Theorem 10 ([2]). Let K be a Killing two-tensor and let us put I(K)ab =
KacRicbc − RicacKb

c . Then, we have

[∇aK
ab∇b + f,∆+ V ] = 0⇐⇒ Kab(∇aV )− 1

3
(∇bI(K)ab) = ∇af

where ∆ = ∇ag
ab∇b and f, V ∈ C∞(M).

4. Examples in Dimension 3

In this section, we consider the space R3 endowed successively with two types of
metrics: the conformal Stäckel metrics and the Di Pirro metrics.
The conformal Stäckel metrics are those for which the Hamilton-Jacobi equation

gij(∂iW )(∂jW ) = E

admits additive separation in an orthogonal coordinate system for E = 0 (see [5]
and references therein). They are conformally related to the Stäckel metrics, for
which the additive separation of the Hamilton-Jacobi equation holds for allE ∈ R.
Moreover, the separating coordinates, called (conformal) Stäckel coordinates are
characterized by two commuting (conformal) Killing two-tensors.
Except for the Stäckel metrics, every diagonal metric on R3 admitting a diagonal
Killing tensor is a di Pirro metric g (see [26], page 113), whose corresponding
Hamiltonian is (see e.g. [12])

H = g−1 = 1
2(γ(x1,x2)+c(x3))

(
a(x1, x2)p

2
1 + b(x1, x2)p

2
2 + p23

)
(15)

where a, b, c and γ are arbitrary functions and (xi, pi) are canonical coordinates on
T ∗R3.
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4.1. An Example of Second Order Symmetry

The di Pirro metrics defined via equation (15) admit diagonal Killing tensors K
given by

K = 1
γ(x1,x2)+c(x3)

(
c(x3)a(x1, x2)p

2
1 + c(x3)b(x1, x2)p

2
2 − γ(x1, x2)p23

)
.

For generic functions a, b, c and γ, the vector space of Killing 2-tensors is gener-
ated by H and K. However, for some choices of functions, this metric can admit
other Killing tensors. For example, if (r, θ) denote the polar coordinates in the
plane with coordinates (x1, x2), if the functions a, b, γ depend only on r and if
a = b, then the metric is Stäckel and admits p2θ as additional Killing tensor.

Proposition 11. On the space R3, endowed with the metric g defined by (15), there
exists a symmetry D of ∆Y whose principal symbol is equal to the Killing tensor
K. In terms of the conformally related metric

ĝ := 1
2(γ(x1,x2)+c(x3))

g

this symmetry is given by D = Qλ0,λ0(K) + 1
16(3R̂icab − Ŝc ĝab)K

ab, i.e., by

D = ∇̂aK
ab∇̂b −

1

16
(∇̂a∇̂bK

ab)− 1

8
R̂icabK

ab

where ∇̂, R̂ic and Ŝc represent respectively the Levi-Civita connection, the Ricci
tensor and the scalar curvature associated with the metric ĝ.

Proof: We use Theorem 9. In order to compute the obstruction Obs(K)♭, we
used a Mathematica package called “Riemannian Geometry and Tensor Calculus”,
by Bonanos [4].
This obstruction turns out to be an exact one-form equal to

d(−1

8
(3R̂icab − Ŝc ĝab)K

ab).

The first expression of the symmetry D follows, the second one is deduced from
(14), giving Qλ0,λ0(K). �

4.2. An Example of Obstructions to Symmetries

If written in conformal Stäckel coordinates, the conformal Stäckel metrics g on R3

admit four possible normal forms, depending on the numbers of ignorable coordi-
nates (see [5]). A coordinate x is ignorable if ∂x is a conformal Killing vector field
of the metric.
Thus, if x1 is an ignorable coordinate, the conformal Stäckel metrics g read as

g = Q
(
(dx1)

2 + (u(x2) + v(x3))((dx2)
2 + (dx3)

2)
)

(16)
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where Q ∈ C∞(R3) is the conformal factor and where u and v are functions
depending respectively on the coordinates x2 and x3. Such metrics admit ∂x1 as
conformal Killing vector field and

K = (u(x2) + v(x3))
−1(v(x3)p

2
2 − u(x2)p23) (17)

as conformal Killing two-tensor.

Proposition 12. On R3, there exist metrics g as in (16) whose conformal Laplacian
∆Y admits no conformal symmetry with principal symbol K.

Proof: Indeed, the obstruction associated with K, Obs(K)♭, is generally not
closed. Thanks to the Mathematica package “Riemannian Geometry and Tensor
Calculus”, by Bonanos [4], we can actually compute that dObs(K)♭ is equal to

v′(6u′3 − 6u′(−v′2 + (u+ v)(u′′ + v′′)) + (u+ v)2u′′′) + (u+ v)2u′v′′′

4(u+ v)4
dx2 ∧ dx3

where the symbol ′ denotes the derivatives with respect to the coordinates x2
and x3. This expression does not vanish e.g. for the functions u(x2) = x2 and
v(x3) = x3.
We conclude then using Theorem 9. �

An example of a metric of the form (16) is provided by the Minkowski metric on
R4 reduced along the Killing vector field X = x3∂t + t∂x3 + a(x1∂x2 − x2∂x1),
a ∈ R (see [15]). In the time-like region of X and in appropriate coordinates
(r, ϕ, z), the reduced metric is equal to

g = dr2 +
r2z2

z2 − a2r2
dϕ2 + dz2

and admits ∂ϕ as Killing vector field. Moreover, after reduction, the Killing tensor
p2x1

+ p2x2
is equal to

K = p2r +
1

r2
p2ϕ.

Notice that the metric g is a Stäckel metric with one ignorable coordinate. Indeed,
the metric takes the form (16), with Q(r, z) = r2z2

z2−a2r2
, u(r) = 1/r2 and v(z) =

−a2/z2, whereas the conformal Killing tensor K − z2

z2−a2r2
H can be written as in

(17). Here, H = g−1 is the metric Hamiltonian.
In this situation, there is no conformal symmetry of ∆Y with principal symbol
K if a ̸= 0. Indeed, the one-form Obs(K)♭ is then non-exact, as shown by
Mathematica computations

dObs(K)♭ =
3

2
(a+ a3)

(
1

(z + ar)4
− 1

(z − ar)4

)
dr ∧ dz.
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5. Application to the R-Separation of the Schrödinger Equation

Following [17, 19], we provide an intrinsic characterization for R-separation of
the Schrödinger equation and of the Schrödinger equation at fixed energy in terms
of second order (conformal) symmetries of the operator ∆Y + V , where V ∈
C∞(M). Resorting to our previous results, this leads to a new criterion for having
R-separation of the equations ∆Y ψ = 0 and ∆Y ψ = Eψ, where E ∈ R.

5.1. Definition of R-Separation

The Schrödinger equation, with fixed potential V ∈ C∞(M), reads as

(∆Y + V )ψ = Eψ (18)

where ψ ∈ C∞(M) is the unknown and E ∈ R is called the energy. Solving the
Schrödinger equation means to determine the solutions for all E ∈ R.
We consider also the Schrödinger equation at fixed energy, i.e., up to changing V

(∆Y + V )ψ = 0. (19)

We restrict ourself to separation along orthogonal coordinates (xi), i.e., coordinates
such that gij = 0 if i ̸= j. The concept of R-separation of the equations (18) and
(19) can be defined in the following way

Definition 13 ([17, 19]). Equation (19) is R-separable in an orthogonal coordi-
nate system (xi) if there exist n + 1 functions R, hi ∈ C∞(M) and n differential
operators Li := ∂2i + li(x

i)∂i +mi(x
i) such that

R−1(∆Y + V )R =
n∑

i=1

hiLi.

The Schrödinger equation (18) is also R-separable in the coordinate system (xi)
if, for all E ∈ R, there exist n + 1 functions R, hi ∈ C∞(M) and n differential
operators Li := ∂2i + li(x

i)∂i +mi(x
i) such that

R−1(∆Y + V )R− E =

n∑
i=1

hiLi.

The existence of a R-separating coordinates system for the equation (18) or the
equation (19) allows one to reduce the resolution of these partial differential equa-
tions to the resolution of a system of ordinary differential equations. Indeed, one
can show that ψ, defined by

ψ(x) = R(x)

n∏
i=1

ϕi(x
i)
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is a solution of the Schrödinger equation or of the equation (19) if and only if
Liϕi = 0 for all i.

5.2. Intrinsic Characterizations for R-Separation

In order to characterize in an intrinsic way the R-separation of the equation (18)
(respectively (19)), we need the concept of (respectively conformal) Killing-Stäckel
algebra. These notions are defined e.g. in [1, 18] and [3, 16].
Recall first that, if (M, g) is a pseudo-Riemannian manifold and if (xi, pi) is a
canonical coordinate system on T ∗M , then the Hamiltonian H is equal to H =
gijpipj ∈ S2. We can notice that a quadratic symmetric tensor K ∈ S2 identifies
via the metric with a symmetric endomorphism of TM . In that way, H identifies
with the identity.

Definition 14. A (respectively conformal) Killing-Stäckel algebra is an n-dimen-
sional linear space I of (respectively conformal) Killing two-tensors which satisfy
the three following properties

i) they commute as linear operators
ii) they are diagonalizable as linear operators

iii) they are in (respectively conformal) involution: {K1,K2} = 0 (respectively
{K1,K2} ∈ (H)) for all K1,K2 ∈ I.

In [17, 19], Kalnins and Miller provide a characterization for R-separation of the
equations ∆ψ = 0 and ∆ψ = Eψ in terms of (conformal) symmetries of the
Laplace-Beltrami operator ∆. In the presence of potentials, their results extend
easily, leading to the two following theorems.

Theorem 15. The equation (18) (respectively (19)) R-separates in an orthogonal
coordinate system if and only if

a) there exists a (respectively conformal) Killing-Stäckel algebra I
b) for all K ∈ I, there exists D ∈ D2(M) with principal symbol σ2(D) = K

such that [∆Y +V,D] = 0 (respectively [∆Y +V,D] = A ◦ (∆Y +V ) for
some A ∈ D(M)).

The proofs of the latter theorems are simply straightforward adaptations of the
proofs of the corresponding theorems in [17, 19]. It is the reason for which we do
not give them here. Let us just say that, in order to prove Theorem 15, we prove
first as in [17,19] a characterization of the R-separation of (18) and (19) by means
of a condition on the metric g and of a condition on the functions V and R. This
characterization was already given in [9] for the equation (19). It reads as follows:

Theorem 16. The equation (19) R-separates in the orthogonal coordinate system
(xi) if and only if the two following conditions hold
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i) g is a conformal Stäckel metric with conformal Stäckel coordinates (xi)
ii) V + ∆Y R

R is a pseudo-Stäckel multiplier.

A pseudo-Stäckel multiplier for a conformal Stäckel metric g is a function Q such
that Qg is a Stäckel metric (i.e., a metric for which there exists a Killing-Stäckel
algebra).
The link between theR-separating coordinates system in Theorem 15 and the (con-
formal) Killing-Stäckel algebra I is given as follows: actually, if K ∈ I, then K,
viewed as an endomorphism, admits n principal directions which integrate in the
R-separating orthogonal coordinate system.
Finally, from our results on the second order (respectively conformal) symmetries
of the conformal Laplacian we can deduce the following characterization for the
R-separation of the equation ∆Y ψ = Eψ (respectively ∆Y ψ = 0)

Corollary 17. The equation ∆Y ψ = Eψ(respectively ∆Y ψ = 0) R-separates
in orthogonal coordinates if and only if there exists a (respectively conformal)
Killing-Stäckel algebra I such that Obs(K)♭ is exact for all K ∈ I.
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