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Abstract. We discuss some classical and quantization problems of infinites-
imal affinely-rigid bodies moving in two-dimensional manifolds. Considered
are highly symmetric models for which the variables can be separated. We
follow the standard procedure of quantization in Riemannian manifolds, i.e.,
we use the L2-Hilbert space of wave functions in the sense of the usual Rie-
mannian measure (volume element).
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1. Introduction

Discussed is an affine generalization of the test rigid body model [8]. The gen-
eral formulae (concerning the kinetic energy, etc.) are presented and later on we
concentrate on potential models, which are in some sense isotropic and admit ana-
lytical calculations based on the separation of variables method. In particular, we
consider a special case, when the translational part of the potential energy has the
Bertrand structure [8]. Our results may be physically applicable in mechanics of
media with microstructure. We mean micromorphic media which are continua of
infinitesimal affinely-rigid bodies. Namely, surfaces of such bodies will behave as
two-dimensional continua with the effective microstructure induced by the usual
three-dimensional microstructure. There are also other possibilities like continua
with the layered molecular structure or surface defects.
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208 Agnieszka Martens

2. Classical Description

In Riemannian manifold (M, g) there are no finite affine transformations (with an
exception of the trivial one), and therefore, there is no concept of extended affinely-
rigid body [11,14]. But we can consider some models of infinitesimal affinely-rigid
body.
The treatment consists in replacing extended bodies by structured material points,
i.e., by material points with attached linear frames. These bases describe internal
degrees of freedom. This means that degrees of freedom are analytically described
by the spatial coordinates xi (i = 1, . . . , n) and the components eiA of the attached
co-moving bases eA (A = 1, . . . , n). The metric tensor gij is always taken at the
point x ∈ M , where the body is instantaneously placed, and the basis (. . . , eA, . . .)
is attached, so eA ∈ TxM . The quantities eiA are not generalized coordinates.
So, they are not very suitable for analytical calculations. To obtain an effective
analytical description, one fixes some, usually non-holonomic field of frames EA

(A = 1, . . . , n) usually somehow distinguished by the geometry of (M, g). In a
general case of affine motion the expression for the total kinetic energy has the
form

T = Ttr + Tint =
m

2
gij

dxi

dt

dxj

dt
+

1

2
gij

DeiA
Dt

DejB
Dt

JAB.

In this formula the descriptors “tr” and “int” refer obviously to the translational
and internal parts, m denotes the mass, and

JAB = JBA

are co-moving components of the tensor of internal inertia. If we take the following
expansion

eA(t) = EB(x(t))ϕ
B
A(t)

where ϕ(t) ∈ GL(n,R) is a general nonsingular matrix then we obtain for the
internal part of kinetic energy the expression below

Tint =
1

2
δMNϕM

KϕN
LΩ̂

K
AΩ̂

L
BJ

AB.

The affine velocity Ω̂ in the co-moving representation is defined by

DeB
Dt

:= eAΩ̂
A
B

then

Ω̂A
B = (ϕ−1)AFΓ

F
DCϕ

D
Bϕ

C
Gv

G + (ϕ−1)AC
dϕC

B

dt
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where ΓF
DC are the anholonomic components of the Levi-Civita affine connection

with respect to EA and the symbols

vG = eGi
dxi

dt

are the co-moving components of the translational velocity.

3. Some Two-Dimensional Problems

Considered is a two-dimensional infinitesimal affinely-rigid body moving in con-
stant-curvature spaces like the spherical space S2(0, R) and pseudospherical Loba-
chevsky space H2,2,+(0, R) [1]. If no gyroscopic constraints are imposed and the
internal motion is affine, then of course there are four internal degrees of freedom;
together with translational motion one obtains six degrees of freedom. We use the
same, just as in [8], parametrization of these worlds, i.e., (r, φ) coordinates. One
of analytical advantages following from the prescribed reference frame E is the
possibility of using the polar and two-polar decompositions [5, 12]. We consider
highly symmetric systems, when the internal inertia is isotropic, so we will use the
two-polar decomposition

ϕ = LDR−1 ∈ GL(2,R)

where L, R are orthogonal and D is diagonal. It leads to the natural parametriza-
tion of the problem

L(α) =

[
cosα − sinα
sinα cosα

]
, R(β) =

[
cosβ − sinβ
sinβ cosβ

]

D(λ, µ) =

[
λ 0
0 µ

]
.

The two-polar decomposition becomes analytically useful in doubly-isotropic dy-
namical problems, i.e., ones isotropic both in the physical space M and the mi-
cromaterial space. This double isotropy imposes certain restrictions both on the
kinetic and potential energies. What concerns the very kinetic energy, the inertial
tensor must be isotropic

J = I · Idn
where Idn denotes the identity matrix, I is a scalar constant. Then we obtain

Tint = −I

2
Tr
(
D2χ̂2

)
− I

2
Tr
(
D2ϑ̂2

)
+ ITr

(
Dχ̂Dϑ̂

)
+

I

2
Tr

((
dD

dt

)2
)
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where corresponding “co-moving” angular velocities are given by the expressions

ϑ̂ = R−1dR

dt

χ̂ = χ̂dr + χ̂rl = χ̂dr + L−1dL

dt

χ̂dr
A
B = (L−1)AFΓ

F
DCL

D
BL

C
Ev

E .

The labels “dr” and “rl” refer respectively to “drift” (or “drive”) and “relative”.
Let us assume that all angular velocities become one-dimensional objects, denoted
by scalar factors χ, ϑ, more precisely, they are equal to χϵ and ϑϵ, where

ϵ :=

[
0 −1
1 0

]
i.e.,

χ̂ = L−1dL

dt
= χ

[
0 −1
1 0

]
, ϑ̂ = R−1dR

dt
= ϑ

[
0 −1
1 0

]
and χ is given by

i) sphere

χ = χrl + χdr =
dα

dt
+ cos

r

R

dφ

dt
ii) pseudosphere

χ = χrl + χdr =
dα

dt
+ cosh

r

R

dφ

dt

but ϑ has no “drive” term, i.e.,

ϑ =
dβ

dt
.

Now we can write the internal kinetic energy in the following form

Tint =
I

2

((
dλ

dt

)2

+

(
dµ

dt

)2
)

+
I
(
λ2 + µ2

)
2

χ2 +
I
(
λ2 + µ2

)
2

ϑ2 − 2Iλµχϑ

and the translational part of the kinetic energy Ttr is as follows [8]

i) sphere

Ttr =
m

2

((
dr

dt

)2

+R2 sin2
r

R

(
dφ

dt

)2
)

ii) pseudosphere

Ttr =
m

2

((
dr

dt

)2

+R2 sinh2
r

R

(
dφ

dt

)2
)
.
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It is convenient to introduce new coordinates for our calculations

x :=
1√
2
(λ− µ), y :=

1√
2
(λ+ µ), γ := α+ β, δ := α− β.

The inverse rules read that

λ =
1√
2
(x+ y), µ =

1√
2
(y − x), α =

1

2
(γ + δ), β =

1

2
(γ − δ).

The canonical momenta satisfy the contragradient rules

px =
1√
2
(pλ − pµ) , py =

1√
2
(pλ + pµ)

pγ =
1

2
(pα + pβ) , pδ =

1

2
(pα − pβ)

and conversely

pλ =
1√
2
(px + py) , pµ =

1√
2
(py − px)

pα = pγ + pδ, pα = pγ − pδ.

3.1. Sperical Case

Let us order our generalized coordinates qi, i = 1, ..., 6, as follows

r, φ, γ, δ, x, y.

Then the kinetic energy will be written as follows

T =
m

2
Gij(q)

dqi

dt

dqj

dt

where for the above ordering of variables the matrix [Gij ] of the metric tensor G
consists of three blocks subsequently placed along the diagonal (looking from the
top to bottom):

− the 1× 1 block M1, i.e.,

M1 = [1]

− the 3× 3 block M2 given as follows

M2 =


R2 sin2 r

R + I
m

(
x2 + y2

)
cos2 r

R
I
mx2 cos r

R
I
my2 cos r

R

I
mx2 cos r

R
I
mx2 0

I
my2 cos r

R 0 I
my2


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− the 2× 2 isotropic block M3, i.e.,

M3 =
I

m
I2 =

[
I
m 0

0 I
m

]
where I2 denotes the 2× 2 identity matrix.
One can easily show that

det [Gij ] = R2

(
I

m

)4

x2y2 sin2
r

R
·

Explicitly, the block matrix [Gij ] is given as follows

[Gij ] =

M1 0
M2

0 M3

 .

The inverse contravariant tensor matrix
[
Gij
]

is obviously given by

[
Gij
]
=

M−1
1 0

M−1
2

0 M−1
3


where the inverse blocks have the forms

− M−1
1 = [1]

− M−1
2 =



1
R2 sin2 r

R

− cos r
R

R2 sin2 r
R

− cos r
R

R2 sin2 r
R

− cos r
R

R2 sin2 r
R

m
I

1
x2 + 1

R2 ctg
2 r
R

1
R2 ctg

2 r
R

− cos r
R

R2 sin2 r
R

1
R2 ctg

2 r
R

m
I

1
y2

+ 1
R2 ctg

2 r
R


− M−1

3 = m
I I2 =

[
m
I 0
0 m

I

]
.

For potential systems with Lagrangians of the form

L = T − V (q)

the corresponding kinetic (geodetic) Hamiltonian equals

T =
1

2m
Gij(q)pipj

and the full Hamiltonian is as follows

H = T + V (q).
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According to our convention of ordering coordinates qi, i = 1, ..., 6, i.e.,

r, φ, γ, δ, x, y

the corresponding conjugate momenta pi, i = 1, ..., 6, are denoted and ordered as
follows

pr, pφ, pγ , pδ, px, py.

In certain expressions it is convenient to use the original momenta pα, pβ , pλ,
pµ. First of all this concerns pα, pβ because of their geometrical interpretation
respectively as spin and vorticity [12].
Just as in the gyroscopic case [8], we are dealing here with non-orthogonal coor-
dinates (the 3× 3 block M2) and it is not clear for us whether in some hypothetic
orthonormal coordinates (they exist, of course) the system is separable. It is per-
haps a little surprising that our kinetic Hamiltonian T has the separable structure.
Of course, for the system with deformative degrees of freedom as above, the geo-
detic model is not physical because it admits unlimited expansion and contraction.
Therefore, some potential must be assumed and this is just the problem, i.e., we
could not determine a wide class of potentials compatible with the separability in
our non-orthogonal, but nevertheless natural, coordinates. Just as in the gyroscopic
case we restrict ourselves to some special class of potentials, assuming in particu-
lar that all angles φ, α, β (equivalently φ, γ, δ) are cyclic variables. Let us assume
that the potential energy separates explicitly with respect to a cyclic variables, i.e.,

V (r, x, y) = Vr(r) + Vx(x) + Vy(y).

We consider a special case, when the translational part of the potential energy V (r)
has the Bertrand structure [8]

a) oscillatory potentials

Vr(r) =
ξ

2
R2tan2

r

R
b) Kepler-Coulomb potentials

Vr(r) = −α

R
cot

r

R
and the internal part of the potential energy is as follows

V (x, y) =
κ
y2

+
κ
2
(x2 + y2) (1)

where κ is a constant. The first term in (1) prevents any kind of collapse of the
two-dimensional body: to the point or to the straight line. The second term of the
“harmonic oscillator” type prevents the unlimited expansion.
The above mentioned Bertrand models lead to completely integrable and maxi-
mally degenerate (hyperintegrable) problems. But even for the simplest, i.e., geo-
detic, models with the internal degrees of freedom the situation drastically changes.



214 Agnieszka Martens

There exist interesting and practically applicable integrable models, but as a rule
interaction with internal degrees of freedom reduces or completely removes degen-
eracy [3, 13].

3.2. Pseudospherical Case

Here all symbols concerning internal degrees of freedom are just those used in
spherical geometry. The metric tensor G underlying the kinetic energy expres-
sion has the form analogous to the spherical case with the trigonometric functions
simply replaced by the hyperbolic ones without any change of sign. Thus we have

− M1 = [1]

− M2 =


R2 sinh2 r

R + I
m

(
x2 + y2

)
cosh2 r

R
I
mx2 cosh r

R
I
my2 cosh r

R

I
mx2 cosh r

R
I
mx2 0

I
my2 cosh r

R 0 I
my2



− M3 =
I
mI2 =

[
I
m 0

0 I
m

]
.

For the inverse contravariant metric
[
Gij
]

underlying the geodetic Hamiltonian,
i.e.,

T =
1

2m
Gij(q)pipj

we have the block structure also quite analogous to the spherical formulas

− M−1
1 = [1]

− M−1
2 =



1
R2 sinh2 r

R

− cosh r
R

R2 sinh2 r
R

− cosh r
R

R2 sinh2 r
R

− cosh r
R

R2 sinh2 r
R

m
I

1
x2 + 1

R2 coth
2 r
R

1
R2 coth

2 r
R

− cosh r
R

R2 sinh2 r
R

1
R2 coth

2 r
R

m
I

1
y2

+ 1
R2 coth

2 r
R


− M−1

3 = m
I I2 =

[
m
I 0
0 m

I

]
.

One can easily show that

G = det [Gij ] = R2

(
I

m

)4

x2y2sinh2
r

R
·
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Again the potential energy does not depend on the angles (φ, α, β), i.e., they are
cyclic variables for the total Hamiltonian. Then the potentials have the explicitly
separated form

V (r, x, y) = Vr(r) + Vx(x) + Vy(y)

where V (r) is a Bertrand-type potential [8], i.e.,

a) the “harmonic oscillator”-type potential

Vr(r) =
ξ

2
R2tanh2

r

R
, ξ > 0

b) the “attractive Kepler-Coulomb”-type one

Vr(r) = −α

R
coth

r

R
, α > 0

and V (x, y) is given by (1).

4. The Quantized Problems

Let us formulate the rigorous quantum-mechanical version of the model investi-
gated above. We use the Hilbert space L2(Q,µ) with the usual scalar product

⟨Ψ1|Ψ2⟩ =
∫

Ψ1(q)Ψ2(q)dµ(q)

where
dµ(q) =

√
|det[Gij ]|dq1 · · · dqf

and Ψ1, Ψ2 are wave functions, µ is the usual Riemannian measure [2,4,6,7,9,10]
and f denotes the number of degrees of freedom, i.e.,

f = dimQ.

The Hamiltonian operator Ĥ is given by the expression

Ĥ = T̂ + V (q) = −~2

2
∆ + V (q)

where T̂ is the kinetic energy operator and ∆ denotes the Laplace-Beltrami opera-
tor corresponding to G

∆ =
1√
|G|

∑
i,j

∂i
√

|G|Gij∂j = Gij∇i∇j

where ∇ is the Levi-Civita covariant differentiation in the G-sense [15–18].
A basis of solutions of the stationary Schrödinger equation

ĤΨ = EΨ

has the form

Ψ(r, φ, γ, δ, x, y) = fr(r)fφ(φ)fγ(γ)fδ(δ)fx(x)fy(y).
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For certain reasons it is convenient to use the new variable

θ =
r

R

then we put

Ψ(θ, φ, γ, δ, x, y) = fθ(θ)fx(x)fy(y)e
isφeijγeiuδ

where s, j, u are integers.
Hence, the stationary Schrödinger equation with an arbitrary potential V leads
after the standard separation procedure to the following system of one-dimensional
eigenequations. Depending on the considered manifold we have

i) sphere

d2fx(x)

dx2
+

1

x

dfx(x)

dx
−
(
(k + l)2

4x2
− 2I

~2
(Ex(x)− Vx(x))

)
fx(x) = 0

d2fy(y)

dy2
+

1

y

dfy(y)

dy
−
(
(k − l)2

4y2
− 2I

~2
(Ey(y)− Vy(y))

)
fy(y) = 0

d2fθ(θ)

dθ2
+

cot θ

R

dfθ(θ)

dθ

−
(
(s− k cos θ)2

R2 sin2 θ
− 2m

~2
(E − Ex(x)− Ey(y)− Vθ(θ))

)
fθ(θ) = 0

where E, Ex(x), Ey(y) are fixed values of energies. The relationship be-
tween (γ, δ) and (α, β) implies that k = j + u and l = j − u.

ii) pseudosphere

d2fx(x)

dx2
+

1

x

dfx(x)

dx
−
(
(k + l)2

4x2
− 2I

~2
(Ex(x)− Vx(x))

)
fx(x) = 0

d2fy(y)

dy2
+

1

y

dfy(y)

dy
−
(
(k − l)2

4y2
− 2I

~2
(Ey(y)− Vy(y))

)
fy(y) = 0

d2fθ(θ)

dθ2
+

coth θ

R

dfθ(θ)

dθ

−
(
(s− k cosh θ)2

R2 sinh2 θ
− 2m

~2
(E − Ex(x)− Ey(y)− Vθ(θ))

)
fθ(θ) = 0.

In the second case the one-dimensional eigenequations take on the form exactly
as in the theory of deformable gyroscope in the spherical space. The only for-
mal difference is that the trigonometric functions of r/R (θ) are replaced by the
hyperbolic ones without the change of sign.
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