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5B Pawińskiego Str., 02-106 Warsaw, Poland

Abstract. Studied is the problem of degeneracy of mechanical systems the
configuration space of which is the three-dimensional sphere, the elliptic
space, i.e., the quotient of that sphere modulo the antipodal identification,
and finally, the three-dimensional pseudo-sphere, namely, the Lobatchevski
space. In other words, discussed are systems on groups SU(2), SO(3,R), and
SL(2,R) or its quotient SO(1, 2). The main subject are completely degener-
ate Bertrand-like systems. We present the action-angle classical description,
the corresponding quasi-classical analysis and the rigorous quantum formu-
las. It is interesting that both the classical action-angle formulas and the rig-
orous quantum mechanical energy levels are superpositions of the flat-space
expression, with those describing free geodetic motion on groups.
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1. Introduction

It belongs to the classics of analytical mechanics that in the flat Euclidean space
there are two isotropic potential models with completely degenerate motion. By
the “complete degeneracy” we mean that all bounded orbits are closed. The two
completely degenerate potentials are the attractive Coulomb problem and isotropic
harmonic oscillator. If the distance from the center of forces is denoted by r, then
the corresponding potential energies are given by

VCoul = −α

r
, Vosc =

k

2
r2. (1)

The center-attractive character of those potentials means that the constants α, k are
positive. The motion in the central potential field is always flat and because of this
it reduces to R2. This holds only on the classical level, but the quantum case is also
canonical for those potentials, although there is no literal reduction to R2. Let us
mention some peculiarity of the three-dimensional space R3. Namely, the attractive
Coulomb potential turns out to be Green function for the Poisson equation

∆V = δij∂i∂jV = −f.

This is peculiarity of dimension n=3. Obviously, for the attractive Coulomb model
the set of closed orbits coincides with those of the negative total energy, whereas
for the attractive isotropic oscillator it is identical with the set of all orbits, i.e.,
with the general solution of equations of motion. Let us mention that in some
sense the free motion in R3 is also Bertrand-like. Namely, if we project R3 to
the projective space RP3, then every free motion, being described by straight line
as a trajectory is obviously closed at infinity. In this sense all free motions are
“periodic”, however with the infinite period T = ∞. Nevertheless, this observa-
tion becomes literally true when we go to the motion in the spherical manifold
SU(2), which may be naturally identified with the sphere S3(0, 1) ⊂ R4, or with
the sphere of the general radius R, S3(0, R) ⊂ R4. This brings about the ques-
tion about the possible modification of the flat-space Bertrand potential, like (1)
to some Bertrand-like potentials in other manifolds of constant sectional curva-
ture, namely, to the sphere with the radius R or to the pseudosphere (Lobatchevski
space) with the pseudoradius R. In principle the Bertrand-like potentials may be
determined by following the method presented by Arnold [2] in the case of the
usual Bertrand models in a flat Euclidean space. However, it is more convenient
to find them by performing appropriate projective transformation, between R3 and
the sphere and pseudosphere S3(0, R), H3,2+(0, R) (the symbols 2,+ in last ex-
pression refer to the fact that the pseudosphere is a two-shell hyperboloid and we
concentrate on the upper, positive leaf. One can easily show that the Bertrand po-
tentials on those Riemannian manifolds are projective transformations of the usual
Bertrand models in R3. Having in view quantum applications we concentrate on
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the dimension three, however , classically the same holds for n = 2 and for higher
dimensions n > 3. As mentioned above, we discuss classical, quasi-classical and
purely quantum aspects. One should mention that certain aspects of the problem
were also investigated by other people, e.g., Schrödinger [21], Infeld [12], Ko-
zlov [13], Shchepietilov [22] and certainly by some other persons. Let us also
mention [26]. Here we discuss jointly the purely classical action-angle problems,
quasiclassical Bohr-Sommerfeld aspect and rigorous quantum models. There is
a very interesting result concerning energetic properties of our constant curvature
Bertrand models. Namely, both the action-angle representation of Hamiltonians
and quantum energy levels are superpositions of expressions characteristic for the
flat-space formulas and for the geodetic, R−dependent expressions for the free
motion on curved manifolds. Incidentltally, the second expressions differ in sign.
It is perhaps a kind of insulent joke, but this may offer some possibility of the ex-
perimental checking what is the geometry and topology of the three-dimensional
World: is it closed as Einstein seemed to suggest, or just the infinitely extended
Lobatschevski space like Penrose wanted?

2. Constant-Curvature Hypersurfaces in R4 and Their Bertrand
Potentials

Let us consider three hypersurfaces of R4 with the constant sectional curvature:
the S3 (0, R) ⊂ R4, pseudosphere H3,2,+ (0, R) ⊂ R4 and the flat subspace R3.
The sphere is given by the obvious equation(

x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2

= R2. (2)

Analytically it is usually parametrized by the variables (r, ϑ, φ) in the following
way

x1 = R sin
( r

R

)
sin (ϑ) cos (φ)

x2 = R sin
( r

R

)
sin (ϑ) sin (φ)

(3)
x3 = R sin

( r

R

)
cos (ϑ)

x4 = R cos
( r

R

)
where the range of coordinates is given by

r ∈ [0, πR], ϑ ∈ [0, π], φ ∈ [0, 2π[.

The Euclidean metric in R4

dS2 =
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

+
(
dx4
)2
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after restriction to (2) becomes

ds2 = dr2 +R2 sin2
( r

R

) (
dϑ2 + sin2 (ϑ) dφ2

)
. (4)

Very often in calculations one uses the two-dimensional subspace R2, ϑ = π
2 , with

the induced metric
ds2 = dr2 +R2 sin2

( r

R

)
dφ2.

The hypersphere, i.e., the upper-shell component of the hyperbole (Lobatchevski
space) is given by the following equation(

x1
)2

+
(
x2
)2

+
(
x3
)2 − (x4)2 = −R2, x4 > 0 (5)

is parametrically given by the radial hyperbolic functions

x1 = R sinh
( r

R

)
sin (ϑ) cos (φ)

x2 = R sinh
( r

R

)
sin (ϑ) sin (φ)

(6)
x3 = R sinh

( r

R

)
cos (ϑ)

x4 = R cosh
( r

R

)
with the corresponding range of variables

r ∈ [0,∞], ϑ ∈ [0, π], φ ∈ [0, 2π[.

Restricting the Euclidean metric of R4 to H3,2,+we obtain

ds2 = dr2 +R2 sinh2
( r

R

) (
dϑ2 + sin2 (ϑ) dφ2

)
. (7)

Again the restriction to H2,2,+ (0, R), i.e., to constraints given by ϑ = π
2 gives us

the metric tensor corresponding to the arc element

ds2 = dr2 +R2 sinh2
( r

R

)
dφ2. (8)

Those are metrics corresponding to the constant positive and negative curvatures
on the mentioned hypersurfaces in R4. The corresponding curvature scalars are
given by

R =
2

R2
, R = − 2

R2
· (9)

Incidentally, let us mention that the a little embarrassing factor two follows from
the definition of the curvature tensor we are using here. In another, perhaps more
popular definition (difference by a constant factor) the curvature scalars would be
simply given by

R =
1

R2
, R = − 1

R2
· (10)
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Obviously, this is only the cosmetic difference and we are using rather the less
popular expression (9).
Finally, let us stress the most important classical case of the vanishing curvature,
R = ∞, R = 0, i.e., the R3−space. Substituting this formally to (4), (8) we obtain
the Euclidean metric of R3 ⊂ R4

ds2 = dr2 + r2
(
dϑ2 + sin2 (ϑ) dφ2

)
.

Similarly, in the limit R → ∞ equations (2), (3) and (5), (6) reduce respectively to
the following R−free from

x1 = r sin (ϑ) cos (φ) , x2 = r sin (ϑ) sin (φ) , x3 = r cos (ϑ) .

All this treatment was based on the restriction of the Euclidean R4-metric to the
spherical or pseudo-spherical submanifolds. Let us observe, however that it is pos-
sible to use the description in terms of the R3−space with appropriately defined
metric tensor. More precisely, one must say that the description is based on some
appropriately defined, subsets of R3 or their quotients with respect to some identi-
fications. Therefore, S3(0, R) is represented by the subset of R3 given by

r = r(sin (ϑ) cos (φ) , sin (ϑ) sin (φ) , cos (ϑ))

where r ∈ [0, πR], however with the proviso that all the points on the sphere
S2(0, πR) ⊂ R3 are identified. Then we can write the corresponding metric tensor
Γij

ds2 = Γijdr
idrj

where

Γij =
R2

r2
sin2

r

R
δij +

1

r2

(
1− R2

r2
sin2

r

R

)
rirj (11)

where now ri = ri are coordinates of the usual radius vector in R3. The indices
are here moved in the sense of the usual metric tensor δij in R3. Similarly, for the
pseudosphere H3,2,+(0, R) we have the following parametrization in terms of R3

variables

Γij =
R2

r2
sinh2

r

R
δij +

1

r2

(
1− R2

r2
sinh2

r

R

)
rirj (12)

where now ri become the components of the radius-vector in R3.

It is clear that in the limit transition R → ∞ both become identical with the usual
Euclidean form:

Γij = δij . (13)
This is identical with the usual radial expression of the metric in R3.
Obviously, the kinetic energy is given by the usual metric-based formula

T =
m

2
Γij

dri

dt

drj

dt
·
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Let us also mention that the analytical formula is valid as well for the elliptic space,
i.e., in the group language on the orthogonal group

SO(3,R) = SU(2)/Z2, Z2 = {I2,−I2}.
The difference is that this group is doubly-connected. The parameter range is r ∈
[0, πR/2] and the antipodal points on the sphere S2(0, πR/2) are identified. This
leads to certain differences in phase portraits and quantum spectra, even in the case
of Bertrand potentials.
For the usual “non-magnetic” Lagrangians of the form

L = T − V (r)

the corresponding Legendre transformation of TQ on the T ∗Q is given by

pi =
∂T

∂ṙi
= mΓij

drj

dt
·

In the case of the usual rigid body in R3, this formula becomes, after usual Kronec-
ker-delta identification of the linear space R3 and its dual the following expression
written down in the vector form

p = m
R2

r2
sin2

r

R

dr

dt
+

m

r2

(
1− R2

r2
sin2

r

R

)(
r
dr

dt

)
r (14)

when Q = S3(0, R). In Lobatchevski space H3,2+(0, R) this becomes the same
formula with trigonometric functions replaced by the corresponding hyperbolic
functions

p = m
R2

r2
sinh2

r

R

dr

dt
+

m

r2

(
1− R2

r2
sinh2

r

R

)(
r
dr

dt

)
r (15)

where for any R3 vectors a · b denotes the Cartesian scalar product

a · b = δkla
kbl.

It is clear that for R → ∞ the formulas (14), (15) reduce to the usual Euclidean
formula in R3

p = m
dr

dt
because the both metrics reduce then to the Euclidean one just (13). The isometry
groups of the metrics (11), (12), (13) are given by: SO(4,R), SO(1, 3), E(4,R) =
SO(3,R) ×

∼
R3. The last, non-semisimple group is the semi-direct product of the

rotation group and the translation group R3 acting in itself. In all cases the isotropy
subgroup of the pole r = 0 is given by SO(3,R) as the group of rotations of the
“rotation vector” r. The corresponding generators of the phase space of variables
(r, p) are given by the vector

L = r × p
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where obviously the following Poisson brackets are satisfied

{Li, Lj} = εikjLk

where obviously the moving of indices is meant in the sense of the Kronecker delta,
just to be in accord with summation convention.

Expressing L in terms of velocities in the spherical and pseudosphical case we
apparently loose the Euclidean structure

L = mr × p

because then we have respectively

L = m
R2

r2
sin2

r

R
r × dr

dt
, L = m

R2

r2
sinh2

r

R
r × dr

dt
·

Obviously, when R → ∞, the both expressions asymptotically approach the usual
Euclidean expression

mr × dr

dt
·

From now on we concentrate on the spherically-invariant dynamical models, i.e.,
on the motion under isotropic, SO(3,R)-invariant potentials. We mean of course
the SO(3,R)-action on the “radius vector” r. Therefore, the Lagrangian will be
given by

L = T − V (r)

where T is as in (7) and V depends only on the distance r of the center of forces.
The generators L are again constants of motion and so is their direction. And
although r × dr

dt is not any longer the constant of motion, its direction still is con-
served, because the vector L is collinear with it. And this implies that the motion is
planar in the space of r−s, i.e., it is always placed within some plane depending on
initial conditions. Therefore, for any central V the motion is at least once degen-
erate. Let us denote the canonical momenta to r, ϑ, φ, by pr, pϑ, pφ respectively.
Performing the Legendre transformation and expressing all dynamical quantities
by (r, ϑ, φ, pr, pϑ, pφ) we obtain the following formulas for involutive system of
constants of motion characteristic for the rotational invariance: In the spherical
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manifold S3(0, R) they are given by

L3 = pφ = mR2 sin2
r

R

dφ

dt

L
2
= L · L = pϑ

2 +
pφ

2

sin2 ϑ
= m2R4 sin4

r

R

((
dϑ

dt

)2

+ sin2 ϑ

(
dφ

dt

)2
)

H =
1

2m

(
pr

2 +
L2

R2 sin2 r
R

)
+ V (r)

=
m

2

((
dr

dt

)2

+
L2

m2R2 sin2 r
R

)
+ V (r) .

Similarly, in the pseudospherical case we replace the above trigonometric functions
by the corresponding hyperbolic ones

L3 = pφ = mR2 sinh2
r

R

dφ

dt

L
2
= L · L = pϑ

2 +
pφ

2

sin2 ϑ
= m2R4 sinh4

r

R

((
dϑ

dt

)2

+ sin2 ϑ

(
dφ

dt

)2
)

H =
1

2m

(
pr

2 +
L2

R2 sinh2 r
R

)
+ V (r)

=
m

2

((
dr

dt

)2

+
L2

m2R2 sinh2 r
R

)
+ V (r) .

And finally, in the Euclidean case, when R → ∞, those formulas asymptotically
become

L3 = pφ = mr2
dφ

dt

L
2
= L · L = pϑ

2 +
pφ

2

sin2 ϑ
= m2r4

((
dϑ

dt

)2

+ sin2 ϑ

(
dφ

dt

)2
)

H =
1

2m

(
pr

2 +
L2

r2

)
+ V (r) =

m

2

((
dr

dt

)2

+
L2

m2r2

)
+ V (r) .

Obviously, for any of those models we have the flowing integrability condition

{L3, L} = 0, {L3,H} = 0, {L,H} = 0.

Obviously, on the classical level any of the corresponding motions is flat in R3 and
may be discussed, e.g., on the plane ϑ = π/2, i.e., on the x, y−plane.
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However, before going any further, let us stress the conformal flatness of both
SO(3, R) and H3,2+(0, R). Namely, performing on them respectively the follow-
ing transformations

ξ = a tan
( r

2R

) r

r
, ξ = a tanh

( r

2R

) r

r
(16)

we obtain for the metric tensor the following formulas

S3(0, R) : ds2 =
4R2a2

(a2 + ξ2)2
(
dξ2 + ξ2

(
dϑ2 + sin2 (ϑ) dφ2

))
H3,2,+(0, R) : ds2 =

4R2a2

(a2 − ξ2)2
(
dξ2 + ξ2

(
dϑ2 + sin2 (ϑ) dφ2

))
.

Substituting here the standard value a = R, we obtain respectively

S3(0, R) : ds2 =
4(

1 + ξ
R2

2
)2 (dξ2 + ξ2

(
dϑ2 + sin2 (ϑ) dφ2

))
H3,2,+(0, R) : ds2 =

4(
1− ξ

R2

2
)2 (dξ2 + ξ2

(
dϑ2 + sin2 (ϑ) dφ2

))
.

This makes obvious the mutual relationship between the three constant curvature
spaces: S3(O,R), H3,2,+(O,R), and R3 in three dimensions. And the flatness
of motion corresponds to the one-fold degeneracy of all systems with the radial
potentials V (r).

In the classical case, after the two-dimensional reduction to ϑ = π/2 we obtain the
following dynamical systems on the sphere, pseudosphere and the Euclidean plane

dr

dt
= ±

√
2

m
(E − V (r))− M2

m2R2
sin−2

( r

R

)
,

dφ

dt
=

M

mR2
sin−2

( r

R

)
(17)

dr

dt
= ±

√
2

m
(E − V (r))− M2

m2R2
sinh−2

( r

R

)
,

dφ

dt
=

M

mR2
sinh−2

( r

R

)
(18)

dr

dt
= ±

(
2

m
(E − V )− M2

m2r2

) 1
2

,
dφ

dt
=

M

mr2
(19)

where, obviously, the parameters E, M denote the fixed values of the constants of
motion H, L3.



Bertrand Systems on Spaces of Constant Sectional Curvature 119

Let us introduce the concept of the effective potential, i.e., superposition of the
usual potential and centrifugal one

Veff = V +
M2

2mR2
sin−2

( r

R

)
(20)

Veff = V +
M2

2mR2
sinh−2

( r

R

)
(21)

Veff = V +
M2

2mr2
· (22)

Then just as in the usual central motion in R3 we obtain the following dynamical
systems

dt

dr
= ± 1√

2
m (E − Veff)

(23)

dφ

dt
=

M

mR2
sin−2

( r

R

)
,

dφ

dt
=

M

mR2
sinh−2

( r

R

)
,

dφ

dt
=

M

mr2
(24)

respectively in the spherical cases (20)–(22).
Equation (23) may be in principle solved in terms of quadratures by inverting the
obtained function and substituting it to (24) we can also in principle integrate it
and find the time dependence of φ.
The information about the orbit itself, is contained in the product of equations (23),
(24)

dφ

dr
= ± M

mR2
sin−2

( r

R

)( 2

m
(E − Veff)

)− 1
2

(25)

dφ

dr
= ± M

mR2
sinh−2

( r

R

)( 2

m
(E − Veff)

)− 1
2

(26)

dφ

dr
= ± M

mr2

(
2

m
(E − Veff)

)− 1
2

(27)

with appropriately substituted expressions (20)–(22). Let us stress that the ± signs
in (17), (18), (19), (23), (25), (26), (27) depends on the phase motion. Let us
observe that the main part of the dynamics is described by the radial equation

m
d2r

dt2
= − d

dr
Veff .

Therefore, for the exceptional, circular orbits we obtain the following relationship
between their radius ρ and the angular momentum M

M2 cos ρ
R

mR3 sin3 ρ
R

= V ′(ρ),
M2 cosh ρ

R

mR3 sinh3 ρ
R

= V ′(ρ),
M2

mρ3
= V ′(ρ)
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respectively in the spherical, pseudospherical and planar case.

It is seen from the formula (23) that in the case of finite (bounded) motion, the
radial period is given by

Trad(E,M) = 2

∫ rmax

rmin

dr√
2
m (E − Veff(r,M))

where rmin, rmax denote respectively the minimal and maximal value of r in a
given motion. Similarly, the formulas (24) imply that the angular period equals
respectively

Tang =
mR2

M

∫ 2π

0
sin2

r

R
dφ

Tang =
mR2

M

∫ 2π

0
sinh2

r

R
dφ

Tang =
m

M

∫ 2π

0
r2dφ

where the functions r(φ) is obtained by integration of (25), (26), (27) and inversion
of the resulting formula for φ(r) to the function r(φ). The motion, is periodic if
Tang, Trad are commensurable, i.e., if for some integrals k, l ∈ Z the following
holds

kTrad + lTang = 0.

This holds when Φ/2π ∈ Q, i.e., when it is a rational number.

It turns out that in spite of its obvious attractive features the conformal mapping
(16) does not help us with finding the S3(0, R) and H3,2,+(0, R) counterparts of
the Bertrand potentials (1) in R3. Nevertheless, there are another mappings which
are helpful here. Namely, let us introduce the following new variables

S3(0, R) : y =
1

R
cot

r

R

H3,2,+(0, R) : y =
1

R
coth

r

R
·

In the first case, when r runs between [0, πR], y runs over range [+∞,−∞]. In
the second, hyperbolic case when r ∈ [0,∞], then y runs over the semi-infinite
segment [+∞, 1

R ].
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Then in spherical and pseudo-spherical case we obtain respectively

S3(0, R) : φ(r) = φ[y] = ± L

m

∫
dy√

−M2

m2 y2 +
2
m (Es − V )

(28)

H3,2,+(0, R) : φ(r) = φ[y] = ± L

m

∫
dy√

−M2

m2 y2 +
2
m (Eh − V )

(29)

where the following abbreviation is used

Es = E − M2

2mR2
, Eh = E +

M2

2mR2
· (30)

Obviously, in the special case of the Euclidean space we have Γij = δij , R = ∞,
y = 1/r, and then

φ(r) = φ[y] = ± L

m

∫
dy√

−M2

m2 y2 +
2
m (E − V )

· (31)

The three formulas (28), (29), (31) are almost identical apart that the energy vari-
able E in the Euclidean case is replaced respectively by Es, Eh.
Formally and locally the formulas (28), (29), (31) are identical, although of course
there are serious differences from the global topological point of view. The energy
variable E in (31) is to be replaced by the expression (30) depending on the cur-
vature scalars and on the angular momentum variables. In the geodetic case, when
V = 0 the formulas (28)–(31) establish the projective mappings acting between
manifolds R3, S3(0, R), H3,2,+(0, R). Let us stress that the mentioned projec-
tive mappings act locally, without preserving the affine parameter. They simply
map the arcs of the geodetic curves onto the same arcs in other spaces, but, without
preserving the affine parameters.
This means that we have the following Bertrand type potentials in S3(0, R) (more
generally, in Sn(0, R), and classically, as a matter of fact, on S2(0, R)), and
in H3,2,+(0, R) (more generally, in Hn,2,+(0, R), and, as a matter of fact, in
H2,2,+(0, R))

Vosc =
kR2

2
tan2

r

R
=

k

2

1

y2
, VCoul = −α

R
cot

r

R
= −αy

Vosc =
kR2

2
tanh2

r

R
=

k

2

1

y2
, VCoul = −α

R
coth

r

R
= −αy.

In the Euclidean space we have respectively

Vosc =
kr2

2
=

k

2

1

y2
, VCoul = −α

r
= −αy.
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3. Some General Features of Motion

In the spherical case S3(0, R) we can avoid using the statement “all bounded or-
bits”. The point is that S3(0, R) is compact, and all orbits, moreover all curves
are bounded. However, in non-compact Lobatchevski space H3,2,+(0, R) there
exist upper bounds of the potential energy even in the isotropic degenerate os-
cillator case. In particular, there exists a kind of ionization threshold and con-
tinuum of non-bounded orbits above it. on the quantum level this leads to the
existence of continuous spectrum above the discrete system of wave functions de-
scribing finite quantum motion. There are also some problems with the Coulomb-
Kepler model in the elliptic space SU(2)/Z2. Namely, it turns out that there are
some doubtful points concerning sufficiently large orbits. In the case of Coulomb
problem in S3(0, R) there is no need to assume that α is positive. The potential
V (r) = − α

R cot r
R is as Green function of the Laplace equation corresponding to

the Laplace-Beltrami operator on S3(O,R) ≃ SU(2). When α > 0, the northern
pole r = 0 is an attractive singularity, whereas the southern pole r = πR is the
repulsive singularity. When α < 0, their roles are reversed: r = 0 is repulsive,
and α = πR is attractive. This has also some consequences in the existence of
circular orbits. When α is positive, there exist circular orbits with r < πR

2 , but
not with r > πR

2 . When α is negative, again we obtain opposite picture: there
are closed circular orbits with r > πR

2 , but there are no ones with r < πR
2 . The

opposite poles r = 0, r = πR, any other pair of opposite poles, form something
like the electrostatic dipole. Let us remind the proof of Landau and Lifshitz that
in a closed Universe the total electric charge must vanish.The dipole property of
Green function is a good example.

Figure 1. Coulomb
potential.

Figure 2. Isotropic
oscillator potential.
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It is clear from this picture (Fig. 1) that for α ̸= 0 the Columb potential is not
smoothly projectable to the elliptic space SU(2)/Z2.
The degenerate potential of the radial oscillator potential has an inpenetrable po-
tential barrier at r = πR

2 · It is invariant under Z2, i.e., under the antipodal iden-
tification. Therefore, the corresponding dynamical model projects smoothly to be
Riemannian elliptic space SU(2)/Z2. So, roughly speaking, for k ̸= 0 it separates
into two mutually isomorphic problems in [0, πR/2[ and ]πR/2, πR] (Fig. 2). The
points r = 0, r = πR are attractive centers if k > 0 and the sphere k = πR/2 in
analogy to the harmonic oscillator in R3 or R2 corresponds to infinity.
The Coulomb potential on the pseudosphere (Fig. 3) has the diagram with negative
vertical asymptote at r = 0 and the horizontal asymptote given by the value −α/R.

Figure 3. Coulomb
potential on the
pseudosphere.

Figure 4. Degenerate
oscillator on the pseu-
dosphere.

The degenerate oscillator on the pseudosphere (Fig. 4)(Lobatchevski space) has
the diagram parabolic at r = 0 and having the horizontal asymptote kR2/2. We
reject the apparently natural temptation of gauging the pseudospherical potentials
by additive corrections which would make them functions vanishing in the infinite
values of r, like

V (r) = −α

R
coth

r

R
+

α

R
, V (r) =

kR2

2
tanh2

r

R
− kR2

2
·

For certain reason it is better to preserve our earlier conventions.
One can show that for the Coulomb problem on S3(0, R) there is the following
condition for E, L; let us notice that having in view the special case n = 3 we
retain to the symbol L2 instead of M2

E ≥ −mα2

2L2
+

L2

2mR2
· (32)

The special case of equality corresponds to circular orbits. The resulting function
L → E(L) has in its diagram the negative vertical asymptote at L = 0, and
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becomes infinite when L → ∞. The diagram of function intersects the L-axis at
L0 =

√
mαR.

Figure 5. Spherical
Coulomb problem.

Figure 6. Pseudospherical
Coulomb problem.

In the pseudospherical case instead of (32) we obtain

E ≥ −mα2

2L2
− L2

2mR2
·

Let us now describe the relationship for the degenerate isotropic oscillator. When
the configuration space is spherical S3(0, R) then we obtain

E ≥ Lω0 +
L2

2mR2
, ω0 =

√
k

m
·

The limiting case of equality we obtain here as the condition for circular orbits

Figure 7. Spherical oscil-
lator.

Figure 8. Pseudospherical
oscillator.

In the pseudospherical configuration space H3,2,+(0, R) one obtains a more com-
plex picture. Namely, there is a phenomenon of “saturation”. Analytically, we
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obtain then inequality

E ≥ Lω0 −
L2

2mR2
, ω0 =

√
k

m
·

Therefore, it turns out that there appears a continuum of unbounded classical orbits
above the threshold (Fig. 8)

E =
kR2

2
·

One the quantum level of description, surprisingly enough, there appears a contin-
uous spectrum above the “usual” discrete oscillator spectrum.
It is interesting to notice that the oscillatory and Coulomb potentials VCoul, Vosc

are related to each other just as their Euclidean counterparts, and namely

Vosc VCoul
2 =

κα2

2
·

Nevertheless, it must be stressed that the corresponding projective mapping fails to
be an isomorphism of the corresponding dynamical systems, because the Killing
metrics on non-semi-simple groups have a non-vanishing curvature.

4. Hamilton-Jacobi Equations, Action-Angle Variables and the
Bohr-Sommerfeld Quantization Rule

It is clear that the Hamilton-Jacobi equations for the isotropic systems in spherical,
pseudospherical and flat three-dimensional universes have respectively the follow-
ing forms(

∂S

∂r

)2

+
1

R2
sin−2 r

R

(
∂S

∂ϑ

)2

+
1

R2
sin−2 r

R
sin−2 ϑ

(
∂S

∂φ

)2

= 2m (E − V ) (33)

(
∂S

∂r

)2

+
1

R2
sinh−2 r

R

(
∂S

∂ϑ

)2

+
1

R2
sinh−2 r

R
sin−2 ϑ

(
∂S

∂φ

)2

= 2m (E − V ) (34)(
∂S

∂r

)2

+
1

r2

(
∂S

∂ϑ

)2

+
1

r2
sin−2 ϑ

(
∂S

∂φ

)2

= 2m (E − V ) . (35)

Using the Stäckel theorem one can postulate a general class of potentials for which
those equations may be solved by the separation of variables procedure. However,
in this paper we are interested only in the spherical potential, when V depends on
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the vector r only through its magnitude, V (r). And now we are looking for the
solutions given by

S(r, ϑ, φ) = Sr(r) + Sϑ(ϑ) + Sφ(φ).

The separated equations have the form(
dSϑ

dϑ

)2

+ sin−2 (ϑ)

(
∂Sφ

∂φ

)2

= αϑ
2 = L2,

dSφ

dφ
= αφ = M

and the following radial equations for three cases mentioned above, i.e., (33), (34),
(35) (

dSr

dr

)2

− 2m (E − V ) = − αϑ
2

R2 sin2
(
r
R

) (36)(
dSr

dr

)2

− 2m (E − V ) = − αϑ
2

R2 sinh2
(
r
R

) (37)(
dSr

dr

)2

− 2m (E − V ) = −αϑ
2

r2
· (38)

Obviously, those are ordinary equations written in the quadrature forms. The sym-
bols M, L are just the previously introduced length of the angular momentum
and the projection of angular momentum on the z-axis. They are related to the
integration constants αφ, αϑ and to the action variables Jφ, Jϑ as follows

Jφ =

∮
pφdφ =

∮
Mdφ = 2πM = 2παφ

Jϑ =

∮
pϑdϑ =

∮
±

√
αϑ

2 − αφ
2

sin2 (ϑ)
dϑ = 2π (αϑ − αφ) = 2π (L−M) .

Therefore
Jϑ + Jφ = 2πL = 2παϑ.

Substituting this to (36), (37), (38) we obtain respectively

Jr =

∮
prdr =

∮
±

√
2m (E − V (r))− (Jϑ + Jφ)

2

4π2R2 sin2
(
r
R

)dr
Jr =

∮
prdr =

∮
±

√
2m (E − V (r))− (Jϑ + Jφ)

2

4π2R2 sinh2
(
r
R

)dr (39)

Jr =

∮
prdr =

∮
±

√
2m (E − V (r))− (Jϑ + Jφ)

2

4π2r2
dr.

As usual in the radial action-angle variables, the use of the ± signs depends on
the segment of integration line. Let us observe that the action variables Jφ, Jϑ
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enter here only trough their sum Jφ + Jϑ = 2πL. This corresponds exactly to
the one-fold degeneracy of all spherically-invariant (SO(3,R)-invariant) dynami-
cal models. In any case we can write for all such systems the following formulas

Jr =

∮
prdr =

∮
±

√
2m (E − V (r))− L2

R2 sin2
(
r
R

)dr
Jr =

∮
prdr =

∮
±

√
2m (E − V (r))− L2

R2 sinh2
(
r
R

)dr
Jr =

∮
prdr =

∮
±
√

2m (E − V (r))− L2

r2
dr.

This one-fold degeneracy corresponds exactly to the flatness of motion resulting
from the conservation of angular momentum. Let us now discuss the doubled de-
generacy of our Bertrand potentials. We begin from the classical Bertrand models
in the flat space. Then, as known for ages, substituting in (39) the well-known
Bertrand potentials in R3, we obtain respectively after calculating the Jr−integral
and solving the result with respect to E the following results

ECoul = − 2mπ2α2

(Jr + Jϑ + Jφ)
2 (40)

Eosc = ν (2Jr + Jϑ + Jφ)
2 , ν =

ω

2π
=

1

2π

√
k

m
· (41)

Obviously, the second formula is always valid, whereas the first one only below the
dissociation threshold, when r undergoes a finite motion. It is seen that as usual in
the case of total degeneracy, there is only one essential action variable, proportional
to the combination of primary action variables with integer coefficients. But again
there is an essential differences between two cases. Indeed, in the Coulomb and
isotropic oscillator problems two different combination occur, namely

J = Jr + Jϑ + Jφ, J = 2Jr + Jϑ + Jφ.

It is not accidental, namely it follows from some deeply geometric differences. In
the Coulomb case one radial period corresponds to one angular period. The reason
is that the non-moving centers of orbits are placed at their foci. In oscillatory case,
orbits have the non-moving centers just in their geometric centers of symmetry.
In spite that the orbits in both models are ellipses (only in special cases they are
circles), this is an evident distinction.
Let us now present the results of the similar procedure in the spherical Coulomb
problem and spherical oscillator; obviously, by “spherical” we mean the model on
S3(0, R). Performing a similar, although much more complicated, calculation as
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the above - mentioned for R3, we obtain the following statement

E = − 2π2mα2

(Jr + Jϑ + Jφ)
2 +

(Jr + Jϑ + Jφ)
2

8π2mR2
· (42)

Let us remind, the Kepler-Coulomb problem is based on the potential

V = −α

R
cot
( r

R

)
·

Obviously, for the geodetic problem on S3(0, R), when α = 0 we obtain

E =
(Jr + Jϑ + Jφ)

2

8π2mR2
· (43)

Just as in the flat-space Coulomb problem, there is exactly one radial turning point
for one angular φ−period. Because of this one can introduce the following effec-
tive action variable

J = Jr + Jϑ + Jφ

and

E = −2π2mα2

J2
+

J2

8π2mR2
·

For the isotropic degenerate oscillator

V =
kR2

2
tan2

( r

R

)
we obtain

E =
1

2π
ω0 (2Jr + Jϑ + Jφ) +

(2Jr + Jϑ + Jφ)
2

8π2mR2
(44)

where

ω0 =

√
k

m
= 2πν0.

Here, just as in the Euclidean case, there is one turning point of each kind per
one angular circulation. This is the reason that the coefficient at Jr equals the
doubled coefficients at Jϑ, Jφ. According to the standard theory of multiply pe-
riodic systems, one can introduce new globally valid action-angle variables such
that E depends only on the one action; just the typical property of the completely
degenerate systems. The essential action variable is given by

E = ν0J +
J2

8π2mR2
, J1 = J = 2Jr + Jϑ + Jφ (45)

This oscillator is roughly speaking , as harmonic as possible, nevertheless, the very
topology of degrees of freedom forces it to be anharmonic. There is no isochronic
property

ν =
dE

dJ
= ν0 +

J

4π2mR2
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i.e., expressing this through E

ν (E) =

√
ν02 +

E

2π2mR2
, ω (E) =

√
ω0

2 +
2E

mR2
·

It is seen that anharmonicity becomes relevant for the large values of E, i.e., as
expected, for highly excited vibrations.
Let us now discuss the pseudospherical Bertrand models. We begin with the
Coulomb problem, when

V = −α

R
coth

( r

R

)
.

After relatively complicated calculations and after the substitution

J = Jr + Jϑ + Jφ

just like in Coulomb problems, we obtain the following expression of energy
through the action variables

E = −2π2mα2

J2
− J2

8π2mR2
· (46)

Obviously, this is valid below the dissociation threshold

supV = −α

R
·

Let us now see what result when we consider the isotropic degenerate oscillator
problem,

V =
kR2

2
tanh2

( r

R

)
.

It is relatively surprising that this potentials is bounded, namely

supV =
kR2

2
(47)

and because this there exists dissociation threshold.
One can show that

E = ν0J − J2

8π2mR2
, J = 2Jr + Jϑ + Jφ (48)

where

ν0 =
1

2π
ω0 =

1

2π

√
k

m
·

Just as in R3and S3(0, R) the mutual weights of Jr, Jϑ, Jφ in J are 2 : 1 : 1.
There is no isochronism property and one can show that the frequency ν depends
on the energy E as follows

ν (E) =

√
ν02 −

E

2π2mR2
, ω (E) =

√
ω0

2 − 2E

mR2
·
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Obviously, all those statements are valid only for energy values below the dissoci-
ation supV = kR2/2. Let us now compare qualitatively the formulas (40), (41)
with (42), (43), (44) and with (43), (46), (48).
Something really strange, mysterious and surprising appears. This may be perhaps
a special case of some more general regularity. Those are some details of the
dependence of energy on the action variables. Namely, it turns that for the constant
curvature spaces S3(0, R), H3,2+(0, R) the functions E(J) are just the sums of
the corresponding purely geodetic (potential-free) terms in manifolds, linear in
their curvature scalars (10). Indeed, (42), (44), (46), (48) may be written down
respectively as follows

E[S3(0, R), Coul] = E[R3, Coul] + E[S3(0, R), Coul, geod]

E[S3(0, R), osc] = E[R3, osc] + E[S3(0, R), osc, geod]

E[H3,2,+(0, R), Coul] = E[R3, Coul] + E[H3,2,+, Coul, geod]

E[H3,2,+, osc] = E[R3, osc] + E[H3,2,+, osc, geod].

Obviously, all the E-symbols are analytically functions on R3, at least locally, are
roughly speaking, functions of (Lr, Lϑ, Lφ)

E[R3, Coul](Jr, Jϑ, Jφ) = − 2π2mα2

(Jr + Jϑ + Jφ)2

E[R3, osc](Jr, Jϑ, Jφ) =
1

2π

√
k

m
(2Jr + Jϑ + Jφ)

E[S3(0, R), Coul, geod] =
(Jr + Jϑ + Jφ)

2

8π2mR2

E[S3(0, R), osc, geod] =
(2Jr + Jϑ + Jφ)

2

8π2mR2
(49)

E[H3,2,+(0, R), Coul, geod] = −(Jr + Jϑ + Jφ)
2

8π2mR2
(50)

E[H3,2,+(0, R), osc, geod] = −(2Jr + Jϑ + Jφ)
2

8π2mR2
· (51)

It may be easily see that the difference in sign between (47) and (50), and simi-
larly between (49) and (51), apparently vanishes when we introduce the curvature
scalars. Namely, in the convention (9) those formulas become respectively

1

16π2m
R [S3(0, R) (Jr + Jϑ + Jφ)

2

1

16π2m
R [H3,2,+(0, R) (2Jr + Jϑ + Jφ)

2 .

It is interesting that there is no continuous transition between the S3(0, R)-har-
monic oscillator and its projection to the quotient space S3(0, R)/Z2. The geodetic
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problem is then smoothly projected, but the range of angular variables is reduced
from [0, 2π] to [0, π]. Because of this the action variables are doubled and we
obtain finally

E =
(Jr + Jϑ + Jφ)

2

2π2mR2
=

J2

2π2mR2
·

Before going any further with the quantum formulas, let us first discuss what the
Bohr-Sommerfeld quantum conditions

J = nh = 2πn~

seem to tell to us. Let us stress that there is only one action variable J to be
quantized in the case of Bertrand systems, i.e., completely degenerate ones. When
in the system with n degrees of freedom an (n − k)-fold degeneracy occurs, i.e.,
when it is k-periodic, then one can introduce new action-angle variables θ1, . . . , θn

and J1, . . . , Jn such that the Hamiltonian depends exactly on k of them

H = E(J1, . . . , Jk)

and it is impossible to find any new system of action-angle variables for which E
would be dependent on a smaller number of J-s. The basic frequencies

νa =
∂E

∂Ja

do not satisfy any system of identities
k∑

a=1

maν
a = 0

with integer coefficients ma ∈ Z.
The action variables J1, . . . , Jk are adiabatic invariants, i.e., their increments are
small of higher-order with comparison to the time rates of structural parameters
defining the system. Unlike this, the remaining action variables Jr, r = k +
1, . . . , n do not have this property. The Bohr-Sommerfeld quantization rules are
imposed on Jk and not on Jr. The energy levels are then given by

En1,...nk
= E(n1h, . . . nkh)

where n1, . . . nk are integers.
This was a small digression, but here we concentrate only on periodic, i.e., twice
degenerate Hamiltonian systems.
If we use the former definition of J-variables in our problem, then we have the
following result. On S3 (0, R) the Bohr-Sommerfeld spectrum for the isotropic
oscillator is given by

En = nν0h+
n2h2

8π2mR2
= nω0~+

n2~2

2mR2
, n ∈ {0} ∪ N. (52)
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The Coulomb problem on S3(0, R) has the following Bohr-Sommerfeld spectrum

En = −2π2mα2

n2h2
+

n2h2

8π2mR2
= − mα2

2n2~2
+

n2~2

2mR2
, n ∈ N.

The free geodetic motion has obviously the following Bohr-Sommerfeld energy
level:

En =
n2h2

8π2mR2
=

n2~2

2mR2
, n ∈ {0} ∪ N.

It is instructive to write down this formula with the use of half-integer quantum
numbers

En =
2n2~2

mR2
, n ∈ {0} ∪ N/2, i.e., n = 0,

1

2
, 1,

3

2
, . . . . (53)

It is interesting to note that the free, i.e., geodetic, spectrum is not a limiting case
of Coulombian model with α → 0. Indeed, the ground state of the geodetic case
has the vanishing energy value, white for the Coulombian ground state one obtains
then for finite values of α the quantity

~2

2mR2
− mα2

2~2

which for finite values of ~, R does approach zero when α → 0. This fact is
astonishing enough when comparing it with the corresponding classical situation,
because for the Bohr-Sommerfeld oscillatory case we have good limiting prop-
erty. So, the classically-mechanical phase portraits seem to suggested something
incompatible even with the quasi-classical Bohr-Sommerfeld case.
Let as also mentioned, it is interesting to note that for the geodetic spectrum on the
quotient manifold S3(0, R)/Z2 the Bohr-Sommerfeld formula (53) seems to work,
however with the proviso that only the integer values of n are admitted as quantum
numbers.
Let us now discuss briefly the Bertrand models on the Lobatchevski space, i.e.,
H3,2,+(0, R). In this pseudosphere we have the natural counterparts of the spheri-
cal degenerate oscillator and Coulomb problems

En = nν0h− n2h2

8π2mR2
= nω0~− n2~2

2mR2
, n ∈ {0} ∪ N. (54)

The attractive Coulomb problem has the following Bohr-Sommerfeld spectrum

En = −2π2mα2

n2h2
− n2h2

8π2mR2
= − mα2

2n2~2
− n2~2

2mR2
, n ∈ N.

Let us observe that those levels automatically are compatible with condition

En < −α

R
= supV.
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Unlike this, in the oscillatory case we must in addition to (54) assume also that n
is restricted by

n ≤ 2
R2

~
√
km.

This is to be compatible with the positive sign of energy. It is interesting that the
number of admitted discrete energy levels is finite.
As it was mentioned above, the very fact that the formulas for the S3(0, R)-
and H3,2,+(0, R)-Bertrand potentials and for the corresponding Bohr-Sommerfeld
spectra are so deeply interrelated with the well-known for ages Euclidean expres-
sions and with the geodetic (potential-free) formulas for S3(0, R), H3,2,+(0, R)
as Riemannian spaces, is surprising and marvelous in itself. In particular, it is so
due to the additive combination of the Euclidean and geodetic constant-curvature
terms. But there is also an additional, philosophical reason for which this is in-
teresting. Namely, the mentioned geodetic terms differ in sign, because they are
proportional to the sectional curvatures, R = ±2/R2. Therefore, in principle the
hydrogen energy levels, when ideally measured, may contain some information
about the global structure of Universe: is it spherical or pseudospherical? (the
second possibility would be pleasing for R. Penrose). Of course, this statement,
when literally understood may look a bit comic. The value of R, even if finite, is
very large, and the resulting effect very small in comparison with any other physi-
cal perturbation. Nevertheless, even the very “ideological” link between local and
global problems is very exciting.

5. Rigorous Quantization in the Schrödinger Language

First of all, let us remind that in any Riemann manifold (M, g) we are given the
canonical measure µ which in coordinates is given by the following local expres-
sion:

dµ(q) =
√
|det[gij ]|dq1 . . . dqn.

Therefore, on the sphere S3(0, R) and pseudosphere H3,2,+(0, R) the volume ele-
ments are given by

dµ(r, ϑ, φ) = R2 sin2
r

R
sinϑdrdϑdφ

dµ(r, ϑ, φ) = R2 sinh2
r

R
sinϑdrdϑdφ.

When the pure states are describing by wave functions on the configuration spaces,
then the scalar products are given by

⟨Ψ|φ⟩ =
∫

Ψφdµ.
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The Hamilton operator is given by

Ĥ = − ~2

2m
∆+ V (r)

where, as usual, ∆ denotes the Laplace-Beltrami operator corresponding to the
metric tensor g. Denoting by ∇i the Levi-Civita covariant differentiation induced
by gij , we have obviously

∆ = gij∇i∇j .

As usual in the spherically invariant systems in R3, we have the following system

of commuting observables: Ĥ, L̂
2
, L̂3 (by convention, any other component

L̂1, L̂2, might be chosen). Here L̂a are generators of rotations

L̂a =
~
i
εabcr

b ∂

∂rc

L̂
2
, the square of magnitude, i.e., the square of “length” of the vector L̂ is given by

L̂
2
=

3∑
a=1

(
L̂a

)2
.

Obviously, the components L̂a satisfy the obvious commutation rules
1

~i

[
L̂a, L̂b

]
= εab

cL̂c

and therefore [
L̂
2
, L̂a

]
= 0

i.e., L̂
2

is their Casimir operator. Therefore, their spectra are obvious, i.e., ~2l(l+1)

for L̂
2
, a = 0, 1, 2, . . ., i.e., a ∈ {0} ∪ N and m = −l,−l + 1, . . . , 0, . . . l − 1, l.

And we can use the usual separation of variables for radial systems

Ψnlm (r, ϑ, φ) = fnl(r)Ylm(ϑ, φ).

Therefore, substituting this to the Schrödinger equations and making use of the
standard properties of spherical functions we obtain the following ordinary radial
equations

d2fnl
dr2

+
2

R
cot

r

R

dfnl
dr

− l(l + 1)

R2 sin2 r
R

fnl −
2mV

~2
fnl +

2mE

~2
fnl = 0 (55)

d2fnl
dr2

+
2

R
coth

r

R

dfnl
dr

− l(l + 1)

R2 sinh2 r
R

fnl −
2mV

~2
fnl +

2mE

~2
fnl = 0. (56)

Obviously, (55) is an equation for the sphere and (56) for the pseudosphere. It is
clear that for any radial system there is a degeneracy with respect to m and for
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the Bertrand models an additional degeneracy with respect to l. This additional,
not a priori obvious degeneracy, corresponds exactly to the total, i.e., two-fold
degeneracy on the classical level. Such a correspondence is typical for systems
with high symmetry group.
Without reporting here the details of derivation, based on the Sommerfeld poly-
nomial method, let us restrict ourselves to presenting the final formulas for the
quantum-mechanical energy spectrum.
For the Coulomb problem on S3(0, R) the energy levels are given by

En = − mα2

2n2~2
+

(n− 1) (n+ 1) ~2

2mR2
(57)

where n ∈ N, i.e., n = 1, 2, 3, . . . . For any fixed value of n, l takes on the values
l = 0, 1, 2, . . . , n− 1.
Similarly, for the degenerate oscillator in S3(0, R) we obtain

En =

(
n+

3

2

)
~Ω+

(n+ 1) (n+ 3) ~2

2mR2

where the modified frequency is given by

Ω =
~

2mR2

(√
1 + 4m2R4ω2

0~−2 − 1

)
(58)

and n = 0, 1, 2, . . . (n ∈ {0} ∪ N).
For the free geodetic motion we obtain

En =
n (n+ 2) ~2

2mR2
, n = 0, 1, 2, . . . , i.e., n ∈ {0} ∪ N. (59)

It is however, more convenient to re-gauge the quantum number n by −1 so that
(59) becomes

En =
(n− 1) (n+ 1) ~2

2mR2
, n ∈ N, i.e., n = 1, 2, 3, . . . .

This expression is more suitable from the point of view of the comparison with the
Coulomb problem, or rather with its second term in (57).
It is clear that quite as expected, those formulas are not identical with the classical
Bohr-Sommerfeld and action-angle expressions. Nevertheless, they have in prin-
ciple the same general structure of superposing in an additive way the free-motion
spectrum with the Coulomb and oscillator spectra in the R3-models.
The only, relatively astonishing property is one concerning the oscillator spectra.
Namely, in the Euclidean sector we would rather expect instead of Ω the usual
quantity ω0. It turns out that, incidentally, it is the case. Namely, for the large
values of the curvature radius R, it turns out that Ω → ω0. And therefore, the
formula (58) becomes compatible with (52).
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