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DIFFUSION UNDER GEOMETRICAL CONSTRAINT

NAOHISA OGAWA

Hokkaido Institute of Technology, 006-8585 Sapporo Japan

Abstract. Here we discus the diffusion of particles in a curved tube. This
kind of transport phenomenon is observed in biological cells and porous me-
dia. To solve such a problem, we discuss the three dimensional diffusion
equation with a confining wall forming a thinner tube. We find that the
curvature appears in a effective diffusion coefficient for such a quasi-one-
dimensional system. As an application to higher dimensional case, we dis-
cuss the diffusion in a curved surface with thickness. In this case the diffusion
coefficient changes to the tensor form depending on the mean and Gaussian
curvatures. Then the diffusion flow can be interpreted as usual flow plus
anomalous flow. The anomalous flow shows not only the diffusion but also
the concentration depending on mean and Gaussian curvatures, and also it
includes the flow proportional to the gradient of Gaussian curvature.

1. Introduction

The particle motion on a given curved manifold (surface) is old but interesting
problem. It shows not only the check of general relativity, but also the physical
phenomena in a scale around us. But in latter case, precisely saying, it is the curved
line with girth (M1×R2) and the curved surface with thickness (M2×R) embedded
in the three-dimensional Euclidean space R3. Usually we neglect the effect of the
girth and the thickness, and we identify the system as the motion on a curved line
and curved surface. This is true when the length parameters {l1, l2, · · · lN} in M
and thickness ϵ of the system satisfies the conditions

li >> ϵ, i = 1, 2, . . . N (1)

where li are the parameters with dimension of the length in M. One such example
is 1/κ, where κ is the local curvature of M . But when the thickness (or grith) ϵ is
comparable to the inverse of curvature, it is no longer true even though all of other
length parameters are satisfying the condition (1). In such a case, we can construct
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the effective equation in one or two dimensional manifolds by taking into account
the effect of the girth and thickness.

In this paper we consider first the diffusion equation in a curved tube: M1 × R2

with circular cross section which radius equals to ϵ, and construct the effective
one-dimensional diffusion equation. Then we show that the effect of the girth
is appearing in diffusion coefficient as a function of ϵκ [17]. Next we discuss the
higher dimensional case, i.e., curved surface with thickness: M2×R. The thickness
effect is important when the curvature radius is similar in size to the thickness as
before. We introduce a diffusion equation in the three-dimensional space, then
confine the particles on the two-dimensional curved surface plus thickness, and
finally consider how the diffusion equation is modified. The obtained diffusion
equation has diffusion coefficient that depends on a tensor formed by both of mean
and Gauss curvature. And surprisingly we have a new diffusion flow that is driven
by a gradient of the Gaussian curvature [16]. The mathematical tool used here is
similar to the one for the quantum mechanics on curved spaces [4, 7, 15].

This kind of analysis is important to control the transportation of micro- and nano-
particles artificially. And such phenomena are encountered in biological cells [1]
zeolite [13], and in catalytic reactions in porous media [5]. For those purposes, the
diffusion properties in confined geometries are discussed by several authors. The
diffusion in a membrane with a certain thickness is discussed by Gov [9], Gambin
et al [8] and Ogawa [16]. The diffusion in general curved manifold is discussed
by Castro-Villarreal [3]. The diffusion in a tube with a varying cross section along
the axis (channel model) is discussed by Jacobs [11], Yanagida [19], Zwanzig [20],
Reguera and Rubi [18], Kalinary and Percus [12], and reviewed, by Burada et al
and Hänggi [2, 10].

In Section 2, we introduce the curvilinear coordinates and related metrics in a
winding tube. This is carried out by using Frenet-Serret (FS) equations. In Sec-
tion 3, we define the quasi one-dimensional diffusion field and the diffusion equa-
tion is obtained by using a local equilibrium condition. In Section 4, we calculate
the mean square displacement (MSD) from the quasi one-dimensional diffusion
equation and find the first two terms in the short time expansion by using curvature
and its derivatives. In Section 5, the extension to the curved surface with thickness
is given. In Section 6, properties of the anomalous diffusion flow is explained.
Section 7 presents the conclusion.

2. Geometry of a Curved Tube

We set the curved tube with a radius ϵ in the three-dimensional Euclidean space
R3. The curvilinear coordinate which we utilize are as follows.
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The vector X⃗ presents the Cartesian coordinates in R3, s (= q1) is the arclength
parameter along the center line of the tube and e⃗1 is its tangential vector. The vector
x⃗(s) specifies the Cartesian coordinates of the points on the center line and qi are
the coordinates in the transversal directions e⃗i. The small Latin indices i, j, k, · · ·
run from 2 to 3 and the Greek indices µ, ν, · · · run from 1 to 3. Sometimes we use
the notation s = q1, v = q2 = r cos θ, and w = q3 = r sin θ to obtain simpler
expressions, and we define the area element of the cross section as dA = dvdw =
rdrdθ. The vectors e⃗1, e⃗2, and e⃗3 are the unit basis vectors introduced by the FS
equations with two geometrical quantities κ - curvature and the torsion τ

de⃗1
ds

= κe⃗2 (2)

de⃗2
ds

= −κ e⃗1 + τ e⃗3 (3)

de⃗3
ds

= −τ e⃗2. (4)

Then, we identify any point in the tube using the parameterization described above
via the formula

X⃗(s, q2, q3) = x⃗(s) + qie⃗i(s), qi ∈ R, i = 2, 3 (5)

where 0 ≤| q⃗ |≤ ϵ with | q⃗ |=
√

(q2)2 + (q3)2.
Then we obtain the curvilinear coordinate system in the tube (⊂ R3) using the
coordinates qµ = (q1, q2, q3) and the metric Gµν

Gµν =
∂X⃗

∂qµ
· ∂X⃗
∂qν

· (6)

The metric tensor Gµν is calculated by using the Frenet - Serret equations which
produce

Gµν =

 1− 2κv + (κ2 + τ2)v2 + τ2w2 −τw τv
−τw 1 0
τv 0 1

 . (7)

The determinant of the metric tensor is given by the formula

G ≡ det(Gµν) = (1− κv)2 (8)

and the inverse metric is

Gµν =
1

(1− κv)2

 1 τw −τv
τw (1− κv)2 + (τw)2 −τ2vw
−τv −τ2vw (1− κv)2 + (τv)2

 . (9)
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3. Quasi One-Dimensional Diffusion Equation

Let us define a three-dimensional diffusion field by ϕ(3) and a three-dimensional
Laplace-Beltrami operator associated with the metric tensor (7) by ∆̂. Then we
have the diffusion equation

∂ϕ(3)

∂t
= D∆̂ϕ(3) (10)

where D is the diffusion constant. Our aim is to construct the effective one-
dimensional diffusion equation from the 3D equation above in a small radius limit

∂ϕ(1)

∂t
= D∆̂(eff)ϕ(1) (11)

where ϕ(1) is the one-dimensional diffusion field and ∆̂(eff) is the unknown effec-
tive 1D diffusion operator. The particles number in s ∼ s+ds should be the same,
i.e.,

ds

∫
ϕ(3)(s, q2, q3)

√
G dA = ϕ(1)(s)ds. (12)

From the above condition, we obtain

ϕ(1)(s) =

∫
ϕ(3)

√
G dA. (13)

We multiply equation (10) by
√
G and integrate it with respect to A in order to

obtain
∂ϕ(1)

∂t
= D

∫
(
√
G∆̂)ϕ(3)dA. (14)

From the expression of the Laplace-Beltrami operator

∆ = G−1/2 ∂

∂qµ
G1/2Gµν ∂

∂qν

our diffusion equation takes the form

∂ϕ(1)

∂t
= D

∫
∂

∂qµ
G1/2Gµν ∂

∂qν
ϕ(3)dA = D

∂

∂s

∫
1√
G
(
∂

∂s
− τ

∂

∂θ
)ϕ(3)dA (15)

where the Neumann boundary condition is used for the second equality.
The fluctuation mode in the cross section decreases with time like exp(−Dt/ϵ2),
and only the zero mode (uniform in the same cross section) survives at t >> ϵ2/D,
i.e., the equilibrium is realized in the transverse direction in a short time. Then we
suppose the validity of the “local equilibrium conditions” as

∂ϕ(3)

∂qi
= 0, i = 2, 3. (16)
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Whether these conditions can be used or not when the curvature is large is not yet
clear, however, we can prove the result without using local equilibrium conditions
by the help of Markov approximation, though it is much complicated [17]. In the
following we restrict our considerations in the time scale t satisfying t >> ϵ2/D
and we assume the local equilibrium conditions (16). From equations (13) and
(16), we also obtain

ϕ(3) =
ϕ(1)

σ
, σ ≡

∫ √
GdA = πϵ2. (17)

From (15) and (17), we obtain

∂ϕ(1)

∂t
=

∂

∂s
Deff

∂ϕ(1)

∂s
(18)

where

Deff ≡ D

πϵ2

∫
dA√
G

= D

(
1 +

1

4
(κϵ)2 +

1

8
(κϵ)4 +

5

64
(κϵ)6 + · · ·

)
(19)

= 2D
1−

√
1− (κϵ)2

(κϵ)2
, |κϵ| < 1.

Actually we have the representation

Deff = D⟨ 1

1− κq2
⟩, ⟨. . .⟩ = 1

πϵ2

∫
dA . . . . (20)

Figure 1. Bent point P of tube: q2 shows distance to the direction of
center of curvature. The center line has the curvature radius 1/κ and
the line with q2 ̸= 0 has the curvature radius 1/κ− q2.

Then, we find a simple interpretation of the effective diffusion coefficient. Let us
consider the point P on the tube where the curvature is κ. We select two sections
around P and discuss the length connecting these two sections (see Fig. 1). At the
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coordinate q2, the length between the two sections is given by s, which is different
from the length of the center line, s̄, with the ratio

s̄

s
=

1

1− κq2
· (21)

Next, we should note that the relation between diffusion flow and density differ-
ence is similar to Ohm’s law

Jσ =
Dσ

s
∆N ∼ I =

1

R
V

where J is the flow density, σ is the cross section, D is the diffusion constant, s
is the distance, and ∆N is the density difference. In the comparison with Ohm’s
law, electric current corresponds to Jσ, voltage corresponds to ∆N , and electric
conductivity 1/R corresponds to Dσ/s. By using the above correspondence, we
consider our tube as a bundle of thin tubes (see Fig. 2). Thus, it can be seen as a
parallel connection of many resistances. The total conductivity is calculated as

1

R
=

N∑
i=1

1

Ri
= D

N∑
i=1

∆Ai

si
≡ Deff

σ

s̄
(22)

where σ =
∑

i∆Ai. The last equality is just the definition of the effective diffu-
sion coefficient. Thus, we obtain

Deff =
D

σ

N∑
j=1

s̄

sj
∆Aj =

D

πϵ2

∫
dA

1− κq2
= D⟨ 1

1− κq2
⟩ (23)

where (21) is utilized at the second equality.

Figure 2. Bundle of tubes: our tube is considered as a bundle of in-
finitesimally thin tubes with each length sj and cross-sectional area
∆Aj .

The physical reason why the diffusion coefficient increases at the curved point is
similar to the discussion of total resistance for the following electric circuit. Let us
consider the parallel connection of three electric resistances. When the resistances
have the same R value, the total resistance is R/3. However, when the resistances
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have a dispersion r with a mean R value (r << R), such as R1 = R+r, R2 = R,
and R3 = R− r, the total resistance takes the value

Rtot =
R

3

[
1− 2

3
(
r

R
)2
]
.

The dispersion reduces the total resistance, i.e., increases the diffusion coefficient,
as is shown in (19).

4. Mean Square Displacement

Our quasi one-dimensional diffusion equation (18) determines the time develop-
ment of MSD as follows. From the definition of the expectational value, we have

⟨f(s)⟩ ≡
∫
f(s) ϕ(s, t) ds∫

ϕ(s, t) ds
· (24)

Then, we obtain
∂

∂t
⟨(∆s)2⟩ = 2⟨Deff(s)⟩+ 2⟨(∆s)D′

eff(s)⟩ (25)

and
∂2

∂t2
⟨(∆s)2⟩ = 6⟨D′′

eff(s)Deff(s)⟩+ 2⟨D′
eff(s)

2⟩
(26)

+2⟨D′′′
eff(s)Deff(s)(∆s)⟩+ 2⟨D′′

eff(s)D
′
eff(s)(∆s)⟩

where ∆s ≡ s− ⟨s⟩.
Let us choose the initial condition as follows

ϕ(t = 0, s) = δ(s). (27)

Then, we calculate MSD by short time expansion near t ∼ 0

⟨(∆s)2⟩ = a1t+ a2t
2 + . . . (28)

so that

a1 =
∂⟨(∆s)2⟩

∂t t=0
= 2D

(
1 +

1

4
(κϵ)2 +

1

8
(κϵ)4 +

5

64
(κϵ)6 + . . .

)
s=0

(29)

a2 =
1

2

∂2⟨(∆s)2⟩
∂t2 t=0

= D2ϵ2(κ′′κ)(
3

2
+

15

8
(κϵ)2 +

63

32
(κϵ)4 + · · · )s=0 (30)

+D2ϵ2κ′2(
3

2
+

41

8
(κϵ)2 +

283

32
(κϵ)4 + · · · )s=0

and where we have made use of equation (19).
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Figure 3. Embedding and coordinates.

Note that these short time expansion coefficients are given by the curvature and its
space derivatives. This procedure is similar to that given in a theory of diffusion
in higher dimensional Riemannian manifold [3], although the coefficients are de-
termined by the Riemannian curvature that vanishes in our case. In this way, we
obtain the curvature dependent MSD for the quasi-one-dimensional curved system.

5. Extension to the Curved Surface with Thickness

Next we consider a curved surface Σ embedded in three dimensional Euclidean
space R3, and we put two similar copies of both sides of Σ, called Σ̃ and Σ′ at a
small distance ϵ/2. Our particles can only move between these two surfaces, and
later we take the limit ϵ → 0. We look for the form of the diffusion equation in this
limit. The coordinates we use hereafter are the following (see Fig. 3).
As before X⃗ is the Cartesian coordinate in R3 and x⃗ is the Cartesian coordinate
which specifies only the points on Σ and qi is the curved coordinate on Σ and q0 is
the coordinate in R3 normal to Σ. Further by using the normal unit vector n⃗(q1, q2)
on Σ at point (q1, q2), we can identify any point between two surfaces Σ′ and Σ̃ by
the following thin-layer approximation [7]

X⃗(q0, q1, q2) = x⃗(q1, q2) + q0n⃗(q1, q2) (31)

where −ϵ/2 ≤ q0 ≤ ϵ/2.
From this relation we can obtain the curvilinear coordinate system between two
surfaces (⊂ R3) with coordinates qµ = (q0, q1, q2), and metric Gµν

Gµν =
∂X⃗

∂qµ
· ∂X⃗
∂qν

, µ, υ = 0, 1, 2. (32)

The different blocks Gµν are as follows

Gij = gij + q0(
∂x⃗

∂qi
· ∂n⃗

∂qj
+

∂x⃗

∂qj
· ∂n⃗
∂qi

) + (q0)2
∂n⃗

∂qi
· ∂n⃗

∂qj
(33)
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where

gij =
∂x⃗

∂qi
· ∂x⃗

∂qj
(34)

is the metric on Σ. Hereafter the indices i, j, k · · · are lowered or rised by gij and
its inverse gij . We also obtain

G0i = Gi0 = 0, G00 = 1. (35)

Now we can proceed with the calculations by using the new variables. We first
define the tangential vector to Σ as

B⃗k =
∂x⃗

∂qk
· (36)

Note that n⃗ · B⃗k = 0. Then we obtain two kinds of relations.
The Gauss equations

∂B⃗i

∂qj
= −κijn⃗+ Γk

ijB⃗k (37)

where the Christoffel symbols are defined by the equalities

Γk
ij ≡

1

2
gkm(∂igmj + ∂jgim − ∂mgij)

and the Weingarten equations

∂n⃗

∂qj
= κmj B⃗m (38)

in which κij are the components of the so called Euler-Schouten tensor, or second
fundamental tensor defined by the formula

κij =
∂n⃗

∂qi
· B⃗j . (39)

The second fundamental tensor κij is the projection of the vector ∂n⃗ onto the
surface. Furthermore, the mean curvature is given by

κ = gijκij (40)

and the Ricci scalar curvature R is defined as

R/2 = det(κij) =
1

2
(κ2 − κijκ

ij). (41)

In this way we have the formula for metric of curvilinear coordinate in a neighbor-
hood of Σ, i.e.,

Gij = gij + 2q0κij + (q0)2κimκmj . (42)
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Now we have also the total metric tensor

Gµν =

(
1 0
0 Gij

)
. (43)

Let us denote the three-dimensional diffusion field as ϕ(3), and the three-dimensional
Laplacian as ∆(3). Then we have the equation

∂ϕ(3)

∂t
= D∆(3)ϕ(3) (44)

where D is the diffusion constant, G = det(Gµν) = det(Gij). Our aim is to
construct the effective two dimensional diffusion equation from the 3D equation
above, namely

∂ϕ(2)

∂t
= D∆(eff)ϕ(2) (45)

where ϕ(2) is the two dimensional diffusion field, g = det(gij), and ∆(eff) is
the unknown effective 2D diffusion operator which might not be equal to the 2D
Laplace-Beltrami operator. The particle number in d2q = dq1dq2 should be the
same

ϕ(2)(q1, q2)
√
g d2q = d2q

∫
ϕ(3)(q0, q1, q2)

√
G dq0. (46)

From the above condition, we obtain

ϕ(2)(q1, q2) =

∫ ϵ/2

−ϵ/2
ϕ̃(3)dq0 (47)

where
ϕ̃(3) ≡ ϕ(3)

√
G/g. (48)

By multiplying the equation (44) with
√
G/g and integration with respect to q0,

we obtain
∂ϕ(2)

∂t
= D

∫ ϵ/2

−ϵ/2
∆̃(3)ϕ̃(3)dq0 (49)

where
∆̃(3) ≡

√
G/g ∆(3)

√
g/G. (50)

Thus our two-dimensional effective diffusion equation up to O(ϵ2) terms is

∂ϕ(2)

∂t
= D∆(2)ϕ(2) +DÂ

∫ ϵ/2

−ϵ/2
q0ϕ̃(3)dq0

(51)

+DB̂

∫ ϵ/2

−ϵ/2
(q0)2ϕ̃(3)dq0 +O(ϵ3)
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where

Â = −g−1/2 ∂

∂qi
g1/2(2κij

∂

∂qj
+ gij

∂κ

∂qj
) (52)

B̂ = g−1/2 ∂

∂qi
g1/2(3κimκjm

∂

∂qj
+

1

2
gij

∂(κ2 −R)

∂qj
+ 2κij

∂κ

∂qj
). (53)

To proceed with the q0 integration, we suppose that there is no diffusion flow in
the normal direction to the layer, that is

0 =
∂ϕ(3)

∂q0
= g1/2

∂G−1/2ϕ̃(3)

∂q0
· (54)

In this case the solution is

ϕ̃(3) =
1

K
(G/g)1/2ϕ(2)(q1, q2), K ≡

∫ ϵ/2

−ϵ/2
(G/g)1/2dq0. (55)

The integrations in (51) can be performed explicitly, and we obtain the final form
of the equation up to O(ϵ2) terms as

∂ϕ(2)

∂t
= D∆(2)ϕ(2) + D̃g−1/2 ∂

∂qi
g1/2

(56)
×
(
(3κimκjm − 2κκij)

∂

∂qj
− 1

2
gij

∂R

∂qj

)
ϕ(2)

where D̃ =
ϵ2

12
D.

The normal diffusion flow can be written in general as

J i
N = −Dgij

∂ϕ(2)

∂qj
(57)

and the anomalous diffusion flow is

J i
A = −D̃

(
(3κimκjm − 2κκij)

∂ϕ(2)

∂qj
− 1

2
gij

∂R

∂qj
ϕ(2)

)
. (58)

Finally, the diffusion equation can be written as

−∂ϕ(2)

∂t
= ∇i(J

i
N + J i

A) (59)

in which ∇i are the covariant derivatives.
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Figure 4. Wave packet on curved surface.

6. Anomalous Diffusion Flow: Diffusion and Concentration

The anomalous flow is equal to zero for the flat surface. The last term in equation
(58) shows that curvature gradient generate the flow without gradient of particle
number density. From the signature of this term, this flow goes from the smaller
Ricci scalar point to the larger Ricci scalar point. (Ricci scalar R is related to Gauss
curvature by the equality R/2 = det[κij ].) To consider the first term let us work
with the coordinates which satisfy

gij = δij , κij = diag[1/r1, 1/r2]

at the point P , where ri are the curvature radius along the qi coordinate and it takes
positive or negative value for convex or concave. The metric can be diagonalized
by choosing the two coordinates to be orthogonal, and it can be normalized by
using the re-parametrization. The second fundamental tensor is diagonalized by
rotation of the coordinate system.
Then we have positive or negative value for

f ij ≡ 3κimκjm − 2κκij

depending on the value of the curvature. In our coordinates, we can immediately
write it in the simple form

f ij = δij
(

1

r2i
− 2

r1r2

)
. (60)

When the surface is hyperbolic (R < 0; r1r2 < 0), f11 > 0, f22 > 0 and the
usual diffusion occurs (see Fig. 4 a).
When the surface is convex or concave (R > 0; r1r2 > 0), we have three possi-
bilities.
One possibility is that f11 < 0, f22 < 0, when

1/2 <| r2
r1

|< 2.

Then we have no diffusion but concentration occurs (see Fig. 4 b).
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The second possibility is that f11f22 < 0, if

| r2
r1

|< 1/2 or | r2
r1

|> 2.

Then we have diffusion in one direction, but concentration in another direction (see
Fig. 4 c).
We have also a critical point between above two regions: when f11f22 = 0, so that

| r2
r1

|= 1/2 or | r2
r1

|= 2.

But such a point arises as a discrete point or as continuous line, and do not extend
on surface.
When the Ricci scalar is zero (R = 0), for example r2 = ∞, f22 = 0 and f11 > 0,
the diffusion occurs only in q1 direction but not in another direction (see Fig. 4 d).
In this way, this anomalous diffusion flow has much varieties depending on the
curvature.

7. Conclusion

We have presented two examples of diffusion under geometrical constraint. The
geometrical constraint reduces the three dimensional diffusion equation to the lower
dimensional effective equation depending on the curvature of constraint condition.
In the case of a tube, the curvature dependent diffusion coefficient appears, and in
the case of a curved surface with thickness, the anomalous diffusion flow appears
and not only the diffusion but also the concentration flow appears related to the
form of the second fundamental tensor. Further additional flow proportional to the
gradient of Gaussian curvature is also obtained.
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