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Abstract. We present a summary of: 1) the non-uniqueness problem of the
Hamiltonian and energy operators associated, in any given coordinate sys-
tem, with the generally-covariant Dirac equation, 2) two different ways to
restrict the gauge freedom so as to solve that problem, 3) the application
of these two ways to the case of a uniformly rotating reference frame in
Minkowski spacetime. We find that a spin-rotation coupling term is there
only with one of these two ways.

1. Introduction

1.1. Experimental Context

The following quantum effects in the classical gravitational field are observed on
Earth for neutrons (which are spin 1

2 particles) and for atoms

• The COW effect - the gravity-induced phase shift was measured by neutron
[14] and atom [25] interferometry

• The Sagnac effect - the Earth-rotation-induced phase shift was measured by
neutron [29] and atom [17] interferometry

• The Granit effect - the quantization of the energy levels was proved by ob-
serving a threshold in the neutron transmission through a thin horizontal slit
[21].

To this author’s knowledge, these are the only observed effects of the gravity-
quantum coupling. This motivates work on the curved-spacetime Dirac equation
(thus first-quantized theory).
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1.2. State of the Art

The (generally-)covariant rewriting of the Dirac equation is [11, 13, 23]

γµDµΨ = −iMΨ, M ≡ mc/~. (1)

Here γµ (µ = 0, ..., 3) are the Dirac 4 × 4 matrices, which verify the anticommu-
tation relation

γµγν + γνγµ = 2gµν 14, µ, ν ∈ {0, ..., 3}, 14 ≡ diag(1, 1, 1, 1) (2)

where (gµν) ≡ (gµν)
−1, with gµν the components of the Lorentzian metric g on

the spacetime manifold V in a local chart χ : V ⊃ U → R4. Thus the γµ ’s are
defined locally and depend on X ∈ U. In equation (1), Ψ : U → C4 is the local
expression of the wave function ψ in a local frame field (ea)a=0,...,3 on E over U,
ψ itself being a section of the “spinor bundle” E – i.e., a vector bundle with base
V, such that, essentially, one can define a global “γ field” verifying an “intrinsic”
form of the relation (2) [7]. And Dµ ≡ ∂µ + Γµ are covariant derivatives, where
Γµ are the 4× 4 connection matrices.
For the standard version of the covariant Dirac equation, which is due to Fock and
Weyl (hereafter the Dirac Fock-Weyl (DFW) equation), the field of the Dirac ma-
trices γµ is determined by an (orthonormal) tetrad field (uα), i.e., uα is a global
vector field, for α = 0, ..., 3. The tetrad field (uα) may be changed by a (smooth)
“local Lorentz transformation” L : V → SO(1, 3), ũβ = Lα

βuα. The latter can be
always lifted to a smooth “spin transformation” S : V → Spin(1, 3), provided that
V is topologically simple. Then the DFW equation is covariant under changes of
the tetrad field, thus the DFW equation is unique [11,13,23]. That covariance is got
with the “spin connection” D on the spinor bundle E. We note that the correspond-
ing connection matrices Γµ [11, 13, 23] depend explicitly on the tetrad field (thus
on the field of the Dirac matrices γµ), hence so does the “spin connection”D itself.
The DFW equation has been investigated in relevant physical situations, notably
in rotating coordinates in a Minkowski spacetime (e.g. [13, 16]), in accelerating
coordinates in a Minkowski spacetime (e.g. [16, 22, 28]), in a static, or station-
ary, weak gravitational field (e.g., [1, 10, 22, 27, 28]). The differences with the
non-relativistic Schrödinger equation with Newtonian potential are not currently
measurable. The first expected new effect with respect to that non-relativistic de-
scription is the “spin-rotation coupling” in a rotating frame [16, 20]. This effect
would affect the energy levels of a Dirac particle.

1.3. Covariant Dirac Equation: Alternative Versions

It was proved [7] that, for any physically relevant spacetime V, there are two ex-
plicit realizations of a spinor bundle E
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• E = V × C4 (the wave function is a complex four-scalar)
• E = TCV (the wave function is a complex four-vector).

This motivates proposing alternative versions of the covariant Dirac equation (1)
[2,7], based on assuming any connection on either of these two spinor bundles–for
example, the Levi-Civita connection, that is defined primarily on the real tangent
bundle TV, but is straightforwardly extended to TCV [2]. Thus, the connection is
fixed (in contrast with DFW). The price to pay is that the covariance of the Dirac
equation under changes of the γµ field, instead of being automatical as with DFW,
is expressed by a system of quasilinear PDE’s that depends on the starting γµ field
[4, 5]. These alternative equations are actually more general than the DFW equa-
tion: given an arbitrary connection on either V × C4 or TCV, the DFW equation
is equivalent to a particular case, obtained by choosing a particular γµ field, of the
corresponding covariant Dirac equation [7].

1.4. Surprising Recent Results

Ryder [26] considered uniform rotation with respect to an inertial frame in a Mink-
owski spacetime. He found that, in this particular case, Mashhoon’s term in the
DFW Hamiltonian operator H is there for one tetrad field (uα), but is not there for
another one, say (ũα). Independently, in the most general case, the relevant scalar
product for the covariant Dirac equation was identified, and it was found that the
hermiticity of H with respect to that scalar product depends on the choice of the
admissible field γµ [4]. This fact (the instability of the hermiticity of H under
the admissible changes of the γµ field) meant there is a non-uniqueness problem
in the covariant Dirac theory and asked for a general study of this problem. As
for this fact, that study was done for DFW, and for alternative versions of the
covariant Dirac equation. It was found [5] that, for the standard version as well as
the alternative ones, in any given reference frame: i) The Hamiltonian operator H
is non-unique. Concrete examples of this non-uniqueness have been shown in [15].
ii) So is also the energy operator E (which coincides with the Hermitian part of H
[5,19]). iii) The Dirac energy spectrum (i.e., the spectrum of E) is non-unique. Let
us briefly review this problem.

2. Summary of the Non-Uniqueness Problem

2.1. Local Similarity (or Gauge) Transformations

If one changes from one field of Dirac matrices (γµ) to another one (γ̃µ), also sat-
isfying the anticommutation relation (2), the new field obtains by a local similarity
transformation (or local gauge transformation): for any X ∈ V there is an invert-
ible complex 4 × 4 matrix S(X), such that (for any chart X 7→ (xµ), and for any
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X in the domain of that chart)

γ̃µ(X) = S(X)−1γµ(X)S(X), µ = 0, ..., 3. (3)

For the standard covariant Dirac equation (DFW), the admissible local gauge
transformations are the (smooth) mappings V → Spin(1, 3), because they are
got by lifting a (smooth) local Lorentz transformation L(X) applied to a tetrad
field. Only for the alternative versions briefly presented above, the local gauge
transformations are more general: S(X) ∈ GL(4,C) – but then also, as men-
tioned there, only a subgroup of the group of the smooth gauge transformations
V → GL(4,C) leaves the Dirac equation covariant. The existence of the non-
uniqueness problem reviewed below has been proved in greater detail for DFW
and, while doing this, it was explicitly accounted for its admissible local gauge
transformations S(X) ∈ Spin(1, 3) [5].

2.2. The General Dirac Hamiltonian

Rewriting the covariant Dirac equation in the “Schrödinger” form

i
∂Ψ

∂t
= HΨ, t ≡ x0 (4)

gives the general explicit expression of the Hamiltonian operator H [1, 5]. An
important point is that H depends on the coordinate system, or more exactly on the
reference frame [4] – defined formally [6] as an equivalence class of charts defined
on a given open set U ⊂ V and exchanging by

x′0 = x0, x′j = f j((xk)), j, k = 1, 2, 3. (5)

(Note that a chart χ defines thus a reference frame: the equivalence class of χ.)
The dependence of the Hamiltonian operator H on the reference frame is valid
for any wave equation and has nothing to do with the non-uniqueness problem re-
viewed here, which problem applies to the covariant Dirac equation with its gauge
freedom.

2.3. Invariance Condition of the Hamiltonian under a Local Gauge
Transformation

Consider some wave equation and apply a local gauge transformation S to the field
of its coefficients (here the field of Dirac matrices γµ). We assume that S allows
one to define an isometry between the two Hilbert spaces before and after the
transformation, as is the case for the covariant Dirac equation [5]. The necessary
and sufficient condition in order that the Hamiltonians before and after the gauge
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transformation S, H and H̃, be physically equivalent [i.e., the condition in order
that all scalar products of the form (Φ |HΨ) be invariant], is [5]

H̃ = S−1HS. (6)

Let us ask when this condition is fulfilled. E.g. if the wave equation is covariant
under S, it is easy to see [8] that we have (6) iff S(X) is time-independent

∂0S = 0 (7)

independently of the explicit form of H, thus independently of the wave equation.
Now, as mentioned above, the DFW equation is indeed covariant when S is an
admissible gauge transformation for DFW, i.e., when it takes values in Spin(1, 3).
So, for DFW, equation (7) is really the condition in order that an admissible gauge
transformation lead to an equivalent Hamiltonian. For the alternative equations,
the condition to have (6) is a bit less simple [5].

However, in the general case: gµν,0 ̸= 0, any possible field γµ depends on t , and
so does generally S, thus the condition (7) is not verified. Thus the Dirac Hamil-
tonian is not unique (even in a given coordinate system) and one also proves that
the energy operator and its spectrum are not unique [5]. The physical relevance
of the energy operator is justified by two facts: i) it is the Hermitian part of the
Hamiltonian operator, and ii) its mean value is the field energy. See Appendix B
of [9].

2.4. Basic Reason for the Non-Uniqueness

The Hamiltonian operator associated, in any given Cartesian coordinate system,
with the original Dirac equation of special relativity is Hermitian and does not de-
pend on the choice of the constant set of Dirac matrices γ♯α [3]. Thus we have
only constant gauge transformations for the original Dirac theory and as a result
the non-uniqueness problem is absent from that theory. The DFW theory, on the
other hand, has been built so that the DFW equation be covariant under the smooth
Spin(1, 3) transformations. Yet it turns out that the associated energy operator is
not invariant under these gauge transformations. Now the principle that “physical
observables are gauge invariant” cannot disqualify the energy operator, because
this is the most important quantum-mechanical observable. Thus, what this princi-
ple tells us in that instance is that we have to restrict the gauge freedom.



NonUniqueness of Covariant Dirac Theory: Conservative vs Radical Solutions 53

3. A “Conservative” Solution of the Non-Uniqueness Problem

3.1. Tetrad Fields Adapted to a Reference Frame

The data of a physically admissible reference frame F fixes a unique four-velocity
field vF: the unit tangent vector to the world lines

X ∈ U, x0(X) variable, xj(X) = constant for j = 1, 2, 3. (8)

(The “physical admissibility” means precisely that these world lines are time-like,
which is true iff g00 > 0 [6].) These world lines, which are invariant under an
internal change (5), are the trajectories of the particles constituting the reference
frame [6, 12]. Thus, a physically admissible chart has physical content after all. It
is natural to impose on the tetrad field (uα) the condition that the time-like vector
of the tetrad be the four-velocity of the reference frame

u0 = vF. (9)

Then the spatial triad (up), (p = 1, 2, 3) can only be rotating with respect to the
reference frame [8]. (An outline follows.)

3.2. Space Manifold and Spatial Tensor Fields

Let F be a reference frame, with its domain U ⊂ V. The set M of the world
lines (8) is endowed with a natural structure of differential manifold: for any chart
χ ∈ F, its spatial part allows us to define a mapping χ̃ : M ∋ x 7→ (xj)j=1,2,3,
which is a chart on M. Thus, the space manifold M is frame-dependent and is
not a 3-D submanifold of the spacetime manifold V [6]. One then defines [8]
spatial tensor fields depending on the spacetime position, e.g. a spatial vector
field: U ∋ X 7→ u(X) ∈ TMx(X), where, for X ∈ U, x(X) is the unique world
line x ∈ M, such that X ∈ x (see equation (8)).

3.3. Rotation Rate Tensor Field of the Spatial Triad

Again a reference frame F is given. For any X ∈ U, there is a canonical isomor-
phism iX between, on one hand, the hyperplane HX of the four-vectors which are
orthogonal to vF [the unit tangent vector to the world lines (8)] and, on the other
hand, the vector space TMx(X) of the spatial vectors at x(X)

HX ≡ {uX ∈ TVX ; g(uX , vF(X)) = 0} 
 TMx(X). (10)

To the spacetime vector u ∈ HX , with components uµ (µ = 0, ..., 3) in some chart
χ ∈ F, the isomorphism iX associates the spatial vector u ∈ TMx(X), whose com-
ponents are simply uj , (j = 1, 2, 3) in the associated chart χ̃. This is independent
of the chart χ ∈ F [8].
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Then, there is one natural time-derivative for spatial vectors: the Fermi-Walker
derivative applied to a spatial vector u(ξ), δu/dξ, which is relative to a given
four-velocity field, here vF [8]. This allows us to define the rotation rate tensor
Ξ(ξ), along a curve C : ξ 7→ X(ξ) in the spacetime, of the spatial triad field
(up), (p = 1, 2, 3) associated with a tetrad field (uα), (α = 0, ..., 3) and Ξ is such
that

Ξpq = h

(
up,

(
δuq

dξ

))
= −Ξqp, p, q = 1, 2, 3 (11)

where h is the spatial metric in the reference frame F. At any X ∈ U, we take the
world line x(X), parameterized by the coordinate time t, as the curve C. We get
thus the rotation rate tensor field Ξ(X) of the spatial triad, along the world lines
(8). We have explicitly [8]

Ξpq = −cdτ
dt
γpq0 (12)

where γαβϵ ≡ ηαζγ
ζ
βϵ and the γζβϵ ’s are the coefficients of the Levi-Civita con-

nection, when an orthonormal tetrad field (uα) is taken as the frame field [8, 26].
(τ is the proper time along x(X) and η is the Minkowski metric.) We prove then
that two tetrad fields (uα) and (ũα) such that u0 = ũ0 = vF, and which have the
same rotation rate field Ξ = Ξ̃, exchange by a time-independent Lorentz trans-
formation. Hence they give rise in F to equivalent Hamiltonian operators and to
equivalent energy operators [8].
Two natural ways to fix the tensor field Ξ are: i) Ξ = Ω, where Ω is the unique
rotation rate field of the given reference frame F [8, 12], and ii) Ξ = 0. Either
choice, i) or ii), thus provides a solution to the non-uniqueness problem. These
two solutions are not equivalent, so that experiments would be required to decide
between the two. Moreover, each solution is valid only in a given reference frame.

4. Getting Unique Hamiltonian and Energy Operators in any
Reference Frame at Once?

The invariance condition of the Hamiltonian H after a local gauge transformation
for DFW: ∂0S = 0, is coordinate-dependent. This condition implies also the in-
variance of the energy operator E for DFW [5]. Therefore, the stronger condition
∂µS = 0 (µ = 0, ..., 3) implies the invariance of both H and E simultaneously in
any chart (hence in any reference frame), for DFW.
On the other hand, for the alternative versions of the covariant Dirac equation,
the invariance conditions of H and E are somewhat less simple: they contain the
covariant derivatives DµS [5]. But, for the “QRD–0” version, we define the con-
nection matrices to be [7]

Γµ = 0 in the canonical frame field (Ea) of V × C4 (13)
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so we have by construction ∂µS = DµS for QRD–0.
Thus, if we succeed in restricting the choice of the γµ field so that any two choices
exchange by a constant gauge transformation (∂µS = 0), then we solve the non-
uniqueness problem simultaneously in any reference frame – for both DFW and
QRD–0, and only for them.

4.1. Fixing one Tetrad Field in each Chart

In a chart, a tetrad (uα) is defined by a 4 × 4 real matrix a ≡ (aµα), such that
uα = aµα∂µ. The orthonormality condition for a tetrad in the metric with matrix
G ≡ (gµν) = G(X), X ∈ V reads

bTηb = G, b ≡ a−1, η ≡ diag(1,−1,−1,−1). (14)

The classical Cholesky decomposition, which applies to a positive-definite sym-
metric matrix, can be extended to the matrix of a Lorentzian metric [9, 24]. There
is a unique lower triangular solution b = C of (14) with Cµ

µ > 0, µ = 0, ..., 3.
This decomposition thus provides a unique tetrad in a given chart. Call this the
“Cholesky prescription”. We know of one other prescription with this property
[18]. Both coincide for a “diagonal metric”: for both, if G = diag(dµ), we get

uα ≡ δµα ∂µ/
√
|dµ|. (15)

This is the “diagonal tetrad” prescription.

4.2. Fixing one Tetrad Field in each Chart is not Enough

What is physically given is the reference frame: a three-dimensional congruence of
time-like world lines. Given a reference frame F, there remains a whole functional
space of different choices for a chart χ ∈ F, equation (5). Consider a prescription
(e.g. “Cholesky”): χ 7→ a 7→ (uα). For two different charts χ, χ′ ∈ F, we get two
tetrad fields (uα), (u′α) with matrices a, a′. We have u′β = Lα

βuα, with

L = b P a′, b ≡ a−1, Pµ
ν ≡ ∂xµ

∂x′ν
· (16)

Since the matrices G and G′ depend on t ≡ x0 = x′0, so do b and a′, equation
(14). Since χ, χ′ ∈ F, the matrix P does not depend on t, equation (5). In general,
the dependences on t of b and a′ do not cancel each other in equation (16). Thus
in general the Lorentz transformation L depends on t. Therefore, L is lifted to a
gauge transformation S depending on t. According to equation (7), it follows that
H and H′ are not equivalent: The non-uniqueness is still there [9].
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4.3. The Case with a Diagonal Metric

Consider the Cholesky prescription applied to a “diagonal metric”: G = diag(dµ),
with d0 > 0, dj < 0, j = 1, 2, 3. Some algebra gives us [9]

∂

∂t
(Lp

3) ∝ P p
3(P

j
3)

2 ∂

∂t

(
dj
dp

)
, no sum over p = 1, 2, 3 (17)

with a non-zero proportionality factor. Thus in general ∂
∂t (L

p
3) ̸= 0, so again the

non-uniqueness of H and E is still there.
An exception is when dj(X) = d0j h(X) with d0j constant (d0j < 0 with h > 0).

Then, after changing x′j = xj
√

−d0j , we get d′j = −h (j = 1, 2, 3), or

G ≡ (gµν) = diag(f,−h,−h,−h), f > 0, h > 0. (18)

That case provides us with a solution of the non-uniqueness problem that applies
simultaneously in any reference frame

Theorem 1 ([9]). Let the metric have the space-isotropic diagonal form (18) in
some chart χ. Let χ′ belong to the same reference frame R.

i) The metric has the form (18) also in χ′, iff (xj) 7→ (x′j) is a constant rota-
tion, combined with a constant homothecy.

ii) If one applies the “diagonal tetrad” prescription (15) in each of the two
charts, the two tetrads obtained thus are related together by a constant
Lorentz transformation L, hence give rise, in any reference frame F, to
equivalent Hamiltonian operators as well to equivalent energy operators–
for the DFW and QRD–0 versions of the Dirac equation.

5. Application: Uniformly Rotating Frame in Flat Spacetime

Let χ′ : X 7→ (ct′, x′, y′, z′) be a Cartesian chart in a Minkowski spacetime, thus
g′µν = ηµν . This defines an inertial reference frame F′. Then go from the chart χ′ to
χ : X 7→ (ct, x, y, z) defining a uniformly rotating reference frame F, (ω = constant)

t = t′, x = x′ cosωt+ y′ sinωt, y = −x′ sinωt+ y′ cosωt, z = z′. (19)

With ρ ≡
√
x2 + y2, the Minkowski metric writes in the chart χ

g00 = 1−
(ωρ
c

)2
, g01 = −g02 =

ω

c
, g03 = 0, gjk = −δjk. (20)

The four-velocity of F is v = ∂0/
√
g00 [8]. Therefore, g(v, ∂j) ̸= 0 (j = 1, 2),

where (∂µ) is the natural basis of the “rotating chart” χ. One may note [8] that
each of Ryder’s [26] two tetrads has u0 = v′ (that is, the four-velocity of the inertial
frame F′), hence u0 ̸= v. In this sense, each of Ryder’s two tetrads is adapted to
the inertial frame, not to the rotating frame.
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5.1. A Tetrad Adapted to the Rotating Frame

From now on, we are announcing results that will be presented in more detail
elsewhere. Adopt the “rotating cylindrical” chart χ◦, also belonging to the rotating
frame F. It is related to the “rotating Cartesian” chart (19) by

χ◦ : X 7→ (ct, ρ, φ, z), with x = ρ cosφ, y = ρ sinφ. (21)

Define the following tetrad

u0 ≡ v, up ≡ Π∂p/ ∥ Π∂p ∥ (22)

where Π = ΠX is the orthogonal projection onto the hyperplane HX that is orthog-
onal to v(X). This is an orthonormal tetrad adapted to F, because for the chart χ◦

we have g(up, uq) = 0 for 1 ≤ p ̸= q ≤ 3. The rotation rate tensor of (up) is
given by equation (12). Here we find Ξpq = 0, except for

Ξ21 = −Ξ12 =
ω√

1− (ωρ)2/c2
· (23)

This differs from the rotation rate tensor Ω in the rotating frame F [8] only by
O(V 2/c2) terms (for V ≡ ωρ≪ c).

5.2. Hamiltonian Operator in the Rotating Frame with two Different Tetrads

The Hamiltonian operator for the generally-covariant Dirac equation (1) is as in
[4]

H = mc2α0 − i~cαjDj − i~cΓ0 (24)
where

α0 ≡ γ0/g00, αj ≡ γ0γj/g00. (25)
The spin connection matrices with an orthonormal tetrad field (uα) are given by

Γ♯
ϵ =

1

8
γαβϵ

[
γ♯α, γ♯β

]
, γ♯α = “flat” Dirac matrices (26)

(see e.g., [26]). Therefore, with the natural basis (∂µ = bαµuα), they become

Γµ = bαµΓ
♯
α. (27)

Using the foregoing expressions, it is straightforward to compute H in the rotating
frame F with the adapted rotating tetrad (22). We find that the spin connection ma-
trices Γµ do involve spin operators made with the Pauli matrices σj . In particular,
we have for V ≡ ωρ≪ c

Γ0 = − i

2

ω

c
Σ3

[
1 +O

(
V

c

)]
, Σj ≡

(
σj 0
0 σj

)
(28)

for which −i~cΓ0 is the usual “spin-rotation coupling” term [16, 26] in H. We
find that also the Γj matrices (j = 1, 2, 3) contain spin operators. This is likely to
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come from the fact that the adapted rotating tetrad involves projecting the natural
tetrad of the rotating coordinates.
On the other hand, the Minkowski metric has obviously the form (18). Thus, let us
now evaluate again the Hamiltonian H in the rotating frame, but this time from the
“diagonal tetrad” prescription (15) in the Cartesian chart χ′, which corresponds
with choosing the Minkowski tetrad, i.e., the natural basis (∂′µ) of the chart χ′.
Defining the γµ matrices in the rotating chart χ from using that tetrad, gives after
a simple calculation

H = H′ − i~ω(y∂x − x∂y) = H′ − ω.L (29)

with H′ the special-relativistic Dirac Hamiltonian in the inertial frame F′, and
L ≡ r ∧ (−i~∇) the angular momentum operator. (We note that the same H
applies, whether DFW or QRD–0 is chosen. The spin connection matrices are
zero.) Thus, there is no spin-rotation coupling with the “constant gauge transfor-
mations” solution of the non-uniqueness problem.

6. Conclusion

The (generally-)covariant Dirac theory leads to non-unique Hamiltonian and en-
ergy operators in any given coordinate system. This is due to the gauge freedom
that exists in the choice of the γµ matrices, or equivalently in the choice of the
tetrad field (uα). This non-uniqueness is there despite the fact that, by construc-
tion, the standard covariant Dirac equation is independent of the choice of the
tetrad field (in a topologically-simple spacetime).
A rather “conservative” way of restricting the gauge freedom so as to get unique
Hamiltonian and energy operators, is to fix the time-like vector u0 of the tetrad, and
then to fix the rotation rate tensor field Ξ of the spatial triad (up). This applies only
to a given reference frame. Also, it is uneasy to implement. In the archetypical case
of the uniformly rotating frame in a Minkowski spacetime, this way leads to the
presence of a spin-rotation coupling term in the Hamiltonian, provided the rotation
rate field Ξ is fixed to be the rotation rate tensor field Ω of the reference frame
itself.
A more “radical” solution of the non-uniqueness problem is to arrange that the
same gauge freedom applies as in special relativity–constant gauge transforma-
tions. This needs that the metric can be put in the diagonal space-isotropic form
(18). (See [9] for a justification of the physical relevance of this metric.) This
solution then applies independently of the reference frame. Moreover, it is easy to
implement. However, in a uniformly rotating frame in a Minkowski spacetime, this
solution leads to the absence of any spin-rotation coupling term in the Hamiltonian.
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