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Abstract. Here we consider the Helfrich’s membrane shape model from a
group-theoretical viewpoint. By making use of the conformal metric on the
associated surface the model is represented by a system of four second order
nonlinear partial differential equations. In order to construct the determining
system for the symmetries of the metric we rely on the previously developed
package LieSymm-PDE within Mathematicar. In this way we have ob-
tained the determining system consisting of 206 equations. Using the above
mentioned programs we have solved the equations in a semi-automatic way.
As a result we end up with an infinite dimensional symmetry Lie algebra of
the Helfrich‘s model in conformal metric representation which we present
here in explicit form.

1. Helfrich’s Membrane Shape Model

The Helfrich’s model of fluid membranes (biomembranes) is based on the equilib-
rium shape equation [1, 3]

∆H + 2(H2 + IhH −K)(H − Ih)− 2λH

k
+

p

k
= 0 (1)

often referred to as the general membrane shape equation or the Helfrich’s equa-
tion. The Helfrich’s equation (1) serves to describe the equilibrium forms of the
simplest closed biological membrane structures – lipid vesicles. A lipid vesicle is
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a small bubble of about 15 µm to 0.5 cm in size and 4-5 nm thickness of its coat.
The vesicles are formed in aqueous solution mostly by phospholipid molecules.
The phospholipids are substances (chemical compounds) made up of amphiphilic
molecules possessing both hydrophilic and hydrophobic properties. In phospho-
lipids, this is due to the well-defined at each end of the molecule hydrophilic head
and hydrophobic tails. Placed in aqueous solution the phospholipid molecules ar-
range themselves into bilayers locating their hydrophilic heads to point outward
to the surrounding solution and the tails facing the interior of the layer in order
to prevent from direct contact with the water molecules. Having reached a certain
critical size, the phospholipid bilayer, initially flat, starts spontaneously bending
until a closed cavity filled with fluid is formed – a vesicle has been created.
In the Helfrich’s equation (1) the lipid bilayer of the vesicle is regarded as a smooth
surface S with the mean curvature H and the Gaussian curvature K. The physical
parameters characterizing the surface are the bending rigidity k, the tensile stress
λ, the osmotic pressure p, and the so called spontaneous mean curvature Ih and ∆
is the Laplace-Beltrami operator on S.
In Mongé representation the Helfrich’s equation is a fourth order nonlinear partial
differential equation in one dependent and two independent variables. After pass-
ing to a conformal metric on S and making an appropriate change of the variables,
the order of the derivatives in the Helfich’s equation is reduced. At the same time
other three differential equations, being the Gauss-Codazzi-Mainardi compatibil-
ity conditions, are added. As a result the Helfrich’s model (1) in conformal metric
representation takes the form of a system of four second order partial differential
equations for four functions in two variables [4, 6] (Section 2).
In this paper the conformal metric representation of the Helfrich’s membrane shape
model is considered in the framework of the Lie group analysis of differential
equations [2, 5, 7] (Section 3). By the help of the Mathematicar computer
program LieSymm-PDE [9] the determining system consisting of 206 partial dif-
ferential equations has been created. For solving of the determining system the
program LieSymm-PDE has been applied interactively. Based on the general so-
lution of the determining system, an infinite dimensional symmetry Lie algebra of
the Helfrich’s membrane shape model in conformal metric representation has been
obtained (Section 4).

2. Conformal Metric Representation of the Helfrich’s Model

Let on S be given, without loss of generality, the curvilinear coordinates (x, y), the
conformal metric

ds2 = 4q2φ2(dx2 + dy2) (2)
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and the matrix of the second fundamental form

b =

(
θ ω
ω 8q2φ(1 + Ihφ)− θ

)
(3)

where q, φ, θ and ω are functions of x and y. Then, the mean H and the Gaussian
K curvatures take the form [4, 6]

H =
1

φ
+ Ih

K =
1

4q4φ4
[φ2(q2x + q2y) + q2(φ2

x + φ2
y)− qφ2(qxx + qyy)− q2φ(φxx + φyy)]

where φx = ∂φ/∂x, etc. Note that the Gaussian curvature is obtained by the use
of the Brioschi formula

K = −∆log(2qφ)

where

∆ =
1

4q2φ2

(
∂2

∂x2
+

∂2

∂y2

)
is the Laplace-Beltrami operator. It is straightforward that in regard to the above
conformal metric coordinates the Helfrich’s equation (1) is recast into a second
order differential equation with respect to the functions q(x, y) and φ(x, y).
The existence of an embedded surface S in the Euclidean space R3, with the
first and the second fundamental forms given by (2) and (3), is ensured by the
so called Gauss-Codazzi-Mainardi equations [8]. After adding these equations
to the Helfich’s equation, a system of four second order partial differential equa-
tions for the four unknown functions q = q(x, y), φ = φ(x, y), θ = θ(x, y) and
ω = ω(x, y) are obtained. This system is the conformal metric representation
of the Helfrich’s membrane shape model. By introducing the phenomenological
constants α2 = 24Ih, α3 = 8(2Ih2− λ

k ), α4 =
4p
k − 8λIh

k , the system takes the form

q2(φxx + φyy) + 2qφ(qxx + qyy)

− 2φ(q2x + q2y) + q4(8φ+ α2φ
2 + α3φ

3 + α4φ
4) = 0

θy − ωx − (8 +
α2

3
φ)q(φqy + qφy) = 0

(4)
ωy + θx −

α2

3
qφ(φqx + qφx)− 8qφqx = 0

4q2φ(φxx + φyy) + 4qφ2(qxx + qyy)

− 4φ2(q2x + q2y)− 4q2(φ2
x + φ2

y)− ω2 − θ2 + (8 +
α2

3
φ)q2φθ = 0.
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3. Lie Group Analysis of Differential Equations

The Lie group analysis of differential equations is based on the natural symme-
tries of the differential equations. A symmetry of a given system of differential
equations is a transformation of the independent and dependent variables with the
property to transform each solution of the system to solution as well. For the sys-
tem under consideration (4) a one-parameter group of symmetry transformations
is determined by

x′i =Φi(x⃗, u⃗, a), Φi|a=0 =xi, i =1, 2

u′α =Ψα(x⃗, u⃗, a), Ψα|a=0 =uα, α =1, 2, 3, 4
(5)

where a (a ∈ I ⊂ R, 0 ∈ I) is the group parameter. The two vectors x⃗ = (x1, x2)
and u⃗ = (u1, u2, u3, u4) denote the respective independent and dependent vari-
ables: x1 = x, x2 = y, u1 = q, u2 = φ, u3 = θ and u4 = ω.
The group of transformations (5) is a Lie group of point symmetry transformations
(also called an admissible group) for the system (4), provided that, the group
generator [2, 5, 7]

X =

2∑
i=1

ξi(x⃗, u⃗)
∂

∂xi
+

4∑
α=1

ηα(x⃗, u⃗)
∂

∂uα

satisfies the infinitesimal criterion

pr(2)X[Fν ] = 0, for Fν = 0, ν = 1, . . . , 4 (6)

where

pr(2)X = X +

4∑
α=1

ηxα
∂

∂uαx
+

4∑
α=1

ηyα
∂

∂uαy

+
4∑

α=1

ηxxα
∂

∂uαxx
+

4∑
α=1

ηxyα
∂

∂uαxy
+

4∑
α=1

ηyyα
∂

∂uαyy

is the second prolongation of the operator X with respect to the first and the
second order derivatives uαx , . . . , u

α
yy and Fν are the left-hand sides of the equations

of the system (4). The coefficients ηxα, . . . , η
yy
α are expressed by the first and the

second order derivatives of the functions uα(x⃗), ξi(x⃗, u⃗) and ηα(x⃗, u⃗).
The one-parameter groups, admissible for the given system of differential equa-
tions (4), can be found by solving the Lie equations

dΦi

da
= ξi(Φ⃗, Ψ⃗), 7 Φi|a=0 =xi, i =1, 2

dΨα

da
= ηα(Φ⃗, Ψ⃗), Ψα|a=0 =uα, α =1, 2, 3, 4



156 Vladimir Pulov, Edy Chacarov, Mariana Hadzhilazova and Ivaïlo Mladenov

where the functions ξi(x⃗, u⃗) and ηα(x⃗, u⃗) satisfy the infinitesimal criterion (6) and
Φ⃗ and Ψ⃗ are vectors with coordinates Φi and Ψα.

4. Determining System and Symmetries

The infinitesimal criterion (6) results in a linear homogeneous system of partial
differential equations – the so called determining system of equations for the
coefficient functions ξi(x⃗, u⃗), ηα(x⃗, u⃗) of the symmetry group generator. For most
of the important physical applications the determining system consists of hundreds
of equations. Creating and solving of such a large system of differential equations,
though overdetermined, cause serious technical difficulties. These difficulties can
be, at least partially, overcome by the use of the contemporary computer algebra
systems, such as Mathematicar, Mapler, etc.
Concretely we take advantage of the specially developed Mathematicar pack-
age LieSymm-PDE [9]. By applying the package we obtained the determining
system of equations for the Helfrich’s membrane shape model in conformal met-
ric representation (4), consisting of 206 first and second order partial differential
equations. Each one of the equations is a sum of expressions of the form

µ(u1)j(u2)l(u3)m(u4)nf(x⃗, u⃗), j, l,m, n = 0, 1, . . . , 7

where µ is some real constant and f(x⃗, u⃗) is either one of the functions ξi(x⃗, u⃗),
ηα(x⃗, u⃗) or any of their first or second order derivatives. Thirty five equations
consist of more than ten addends (expressions of the above form), six of them are
with more than twenty addends, the largest of which are two equations with 43 and
44 addends. Many of these equations are equivalent to each other or functionally
dependent, which means that the determining system is overdetermined. Neverthe-
less, manipulating of so many equations without making errors is quite boring and
time consuming. With the aid of the LieSymm-PDE facilities for solving determin-
ing systems we managed to perform all the symbolic calculations automatically,
eluding the tedious substitutions, transformations and other technicalities, which
otherwise we should had made by hand.
In order to start up the solving process we invoked a LieSymm-PDE iterative func-
tion for solving some predetermined types of equations with known solutions [9].
If LieSymm-PDE identifies such an equation, its solution is substituted for the re-
spective variable in the remainder part of the equations. In this way the determining
system of the Helfrich’s model has been reduced to 29 partial differential equations
for six unknown functions of the form

ξ1 =h(x, y), η1 = v(x, y, q, φ), η3 = g(x, y, q, φ, θ, ω)

ξ2 = r(x, y), η2 =w(x, y, q, φ), η4 = ρ(x, y, q, φ, θ, ω)
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where h(x, y) and r(x, y) satisfy the Cauchy-Riemann conditions
∂h

∂y
= −∂r

∂x
,

∂h

∂x
=

∂r

∂y
· (7)

The equations that remained unsolved are not handled by the LieSymm-PDE solv-
ing modules. In order to solve them we proceeded with applying the package in
an interactive mode. Once we had found a solution for at least one of the equa-
tions, we fed back this solution as initial data to the program. By rerunning the
program successively in seven interactive cycles two of the coefficient functions
has changed their form to

η1 = qσ(x, y), η2 = −Cφ

(C ∈ R) and the determining system has been reduced to 10 equations

qφ(24 + α2φ)ρθ + 3ρq = 0

24q2rx + α2q
2φρθ + 3ρφ = 0

q2φ(24 + α2φ)σx − 3gx − 3ρy = 0

q2φ(24 + α2φ)σy − 3gy + 3ρx = 0

24q2rx − q2(24 + α2φ)ρθ − 3ρφ = 0

3gφ + α2q
2φρω − 2α2q

2φσ + 2α2Cq2φ = 0

3gφ + q2(24 + α2φ)ρω − 2q2(24 + α2φ)σ + 2Cq2(12 + α2φ) = 0

3gq + qφ(24 + α2φ)ρω − 2qφ(24 + α2φ)σ + 2Cqφ(12 + α2φ) = 0

2σxx + 2σyy + 2q2(8 + α2φ+ α3φ
2 + α4φ

3)ry

+ 2q2(8 + α2φ+ α3φ
2 + α4φ

3)σ − Cq2φ(α2 + 2α3φ+ 3α4φ
2) = 0

2(α2q
2φ2θ − 6α2q

4φ3 − 6α3q
4φ4 − 6α4q

4φ5 − 48q4φ2

+ 24q2φθ − 3θ2 − 3ω2)ry + (α2q
2φ2 + 24q2φ− 6θ)g − 6ωρ

− 6(2α2q
4φ3 + 2α3q

4φ4 + 2α4q
4φ5 + 16q4φ2 − θ2 − ω2)σ

+ 6Cq4φ3(α2 + 2α3φ+ 3α4φ
2) + 6C(4q2φθ − θ2 − ω2) = 0.

Continuing in the same manner of solving, we have obtained the solution of the
above system. Finally, we arrived at the symmetry group generator for the Hel-
frich’s model in conformal metric representation, in the most general form, for two
cases of interest (compare with the results in [4, 10, 11])
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Case 1. |α2|+ |α3|+ |α4| ̸= 0

X I(ξ1, ξ2) = ξ1
∂

∂x
+ ξ2

∂

∂y
− qξ1x

∂

∂q
− 2(θξ1x + ωξ2x)

∂

∂θ

− 2
[
ωξ1x −

(
θ − 4q2φ− α2

6
q2φ2

)
ξ2x

] ∂

∂ω

Case 2. α2 = α3 = α4 = 0

X II(ξ1, ξ2) = X1(ξ
1, ξ2) + cX2, c ∈ R

with

X1(ξ
1, ξ2) = ξ1

∂

∂x
+ ξ2

∂

∂y
− qξ1x

∂

∂q

− 2(θξ1x + ωξ2x)
∂

∂θ
− 2

[
ωξ1x −

(
θ − 4q2φ

)
ξ2x
] ∂

∂ω

X2 = φ
∂

∂φ
+ θ

∂

∂θ
+ ω

∂

∂ω

and ξ1 = h(x, y), ξ2 = r(x, y) – arbitrary real-valued harmonic functions satisfy-
ing the Cauchy-Riemann conditions (7).
The full sets of group generators X I(ξ1, ξ2) and X II(ξ1, ξ2) constitute two symme-
try Lie algebras LI and LII for each one of the considered cases. The Lie algebras
LI and LII are infinite dimensional with the commutator operator defined by

[X(ξ1, ξ2), X(ξ̂1, ξ̂2)] = X(Ξ1,Ξ2)

where

Ξ1 = ξ1ξ̂1x − ξ2ξ̂2x − ξ̂1ξ1x + ξ̂2ξ2x, Ξ2 = ξ2ξ̂1x + ξ1ξ̂2x − ξ̂2ξ1x − ξ̂1ξ2x

(X equals X I or X II respectively).

5. Conclusion

The results presented here are obtained by an application of the Lie group analy-
sis to a system of differential equations – the Helfrich’s shape model of biological
membranes. The Helfrich’s model has been considered in conformal metric repre-
sentation. The Lie group analysis has been carried out by the help of the program
LieSymm-PDE within the computer system Mathematicar. The determining
system of equations for the admissible group of point symmetry transformations
has been created. The determining system consists of 206 second order partial dif-
ferential equations. With the help of the program LieSymm-PDE the determining
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system has been solved in full explicit form. Its solution constitutes an infinite
dimensional symmetry Lie algebra of the Helfrich’s model.
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