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Abstract. We present the results of studying free massive bosonic fields un-
der the formalism of topological quantization. We identify certain harmonic
maps as a geometric configuration equivalent to the classical system. We take
as a concrete example the case of free massive bosonic fields in two dimen-
sions, and construct the fiber bundle representing them and find its topologi-
cal spectra. We found that the appearance of singularities in Euler’s two form
caused its integral to be dependent on the order in which the variables are
integrated. We discuss the implications of this orientation dependency and
formulate a well-defined expression for the Euler invariant emerging from it.

1. Introduction

The formalism of topological quantization in the way we will understand it here
was formulated in [7, 12]. In general, this formalism, has been constructed to
find the discrete behaviour of physical quantities through topological properties
associated to the physical system.
In order to apply this formalism we need a geometrical configuration which must
be equivalent to the physical system we want to analyze, this means that the geo-
metrical configuration must encode all physical information of the physical system.
According to Patiño and Quevedo, we can apply this formalism in two ways: a)
intrinsic topological quantization and b) induced topological quantization.
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Both ways analyze the properties of an associated principal fiber bundle (PFB).
The topological quantization is called intrinsic when the structure group of the
PFB to be studied is determined by the intrinsic symmetries of the base space.
In this case, the resulting PFB is equivalent to that of the tangent bundle. In the
intrinsic topological quantization, we need a base space manifold M covered by
open sets Ui and a metric g. The connection ω̃ on the tangent bundle TM , coming
from the lifting of the metric connection ω on M is the one satisfying the relation
σ∗
i ω̃ = ωi for any section σi defined over Ui, and the asterisk denotes the pullback

of a mapping. To analyze the topology of TM we can use ω̃ to compute the
characteristic class of the corresponding PFB C(P ) = C(TM). The details of
how to perform this calculation will depend on the signature and dimensionality
of M , but the relevant part here is to notice that the integral of C(TM) over M is
bound to give an integer, i.e.,∫

C(TM) = χ, χ ∈ Z. (1)

The induced topological quantization takes its name from the fact that the fiber
bundle to be analyzed and its topological characteristics are dictated by a physical
gauge field living on the base space, so its standard fiber is not directly related to the
the tangent space at each point. A prominent example of this type of quantization
is that of Dirac’s monopole. In this case, the gauge field is commonly a one-form
A1 with components taking values in the Lie algebra g of the structure group G.
The discrete conditions arise when we impose the regularity condition on the gauge
field to be well-defined over the entire PFB.
Let us remember that all the information of the physical system is contained in the
geometric construction, so, at least a fraction of it will be captured in M and its
metric g, information that we could capture in some parameters that we can call
aα. This part of the information will be carried to C(TM), so this will depend on
the parameters aα and the point p of the manifold where it is evaluated. Being χ
the integral of C(TM) over the manifold, it will only depend on the parameter aα
so it can be written as a function of the parameters, namely f(aα). Using (1) we
can write

f(aα) = χ, χ ∈ Z. (2)

This equation is what we called the topological spectrum and what gives us the
chance to analyze the physical meaning it could carry.

1This can be easily generalized to higher dimensions when the gauge field A is a n-form as is shown
in [10, 17].
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In this work, we will illustrate how to apply this formalism of topological quan-
tization in a particular case of free massive bosonic fields. Once we choose the
physical system, we can split the entire formalism in three steps:

1) Construct a geometrical configuration equivalent to that physical system
which is also called classical configuration in [7, 8] (Section 3)

2) Construct the PFB and compute the topological spectrum (Section 4 and
Section 5)

3) Analyze the physical meaning of the topological spectrum (Section 6).

2. Free Massive Bosonic Fields

The first step to apply this formalism is to find a geometric configuration that repre-
sents the physical system under consideration from which we will construct a PFB
over it. This formulation of topological quantization was presented and applied for
the first time to gravitational configurations in [11,12], after that it was carried out
in [7–9] to classical systems of n-degrees of freedom and recently was applied to
bosonic strings in different backgrounds in [1]. In this work, we are interested in
the free massive bosonic fields Xi, i = 1, . . . , d, where i is the number of fields
considered, which has the associated action S given by [14]

S =
1

2

∫ d∑
i

(
∂µXi∂µX

i −m2Xi
)
dxn (3)

where µ = 1, . . . , n and n is the dimension of the spacetime and m is the mass
term associated to each field.
The variation of this action leads us to the equation of motion(

∂µ∂µ +m2
)
Xi = 0.

In equation (3) we have encoded all the dynamical information of the physical
system.

3. Harmonic Maps

Consider two differential manifolds M and N with metrics g(x) and G(X), re-
spectively, where x and X are the corresponding local coordinates. A harmonic
map is a smooth mapping X : M 7→ N such that it satisfies the equations of
motion that follow from the variation of the Dirichlet energy functional

Sh =

∫
√
g gab(x)∂aX

i∂bX
jGij(X)dmx. (4)
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This set of equations is
1
√
g
∂a(g

ab∂bX
i) + Γi

jk(X)∂aX
j∂aX

kgab = 0

where Γi
jk are the Christoffel symbols for Gij . We can understand the mapping X

as a minimal embedding of M into N . Now, if we take M to be a two-dimensional
differential manifold with metric gab given by

gab = ηab (5)

where ηab is the Minkowskian two-dimensional metric (η = diag(−1, 1)) and
we denote the coordinates as τ and σ. The target space N is a ten-dimensional
differential manifold with a metric G which components in terms of the light-
cone coordinates X+ = 1√

2
(X0 +X1), X− = 1√

2
(X0 −X1) and XI=1,...,8 are

respectively [4, 15, 16]

G+− = G−+ = −1, G−− = 0, G++ = −µ2
8∑

I=1

XIXI

(6)
GIJ = δIJ , I, J = 1, . . . , 8.

In the light cone coordinates, the explicit form of the action (4) is

S = − 1

4πα′

∫ √
−ggab

[
−2∂aX

+∂bX
− +

8∑
I=1

∂aX
I∂bX

I

(7)

− µ2

(
8∑

I=1

XIX
I

)
∂aX

+∂bX
+

]
dσdτ.

We will use the light-cone gauge given by

X+ = α′p+τ, p+ ≥ 0. (8)

Using (5) and (8) we fix all gauge symmetries of the action and vary the action
with respect to the metric gab, i.e.,

δS

δgτσ
= 0,

δS

δgττ
= − δS

δgσσ
= 0.

In this way we obtain

∂σX
− =

1

αp+

8∑
I=1

∂σX
I∂τX

I

∂τX
− =

1

2αp+

8∑
I=1

[∂τX
I∂τX

I + ∂σX
I∂σX

I − (µα′p+)2XIXI ].

(9)
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From the above equations, we can see that X− is not a dynamical variable, and
considering (8), we can write the action (7) as

S = − 1

4πα′

∫ ∫ 2πα′p+

0

8∑
I=1

[−∂τX
I∂τX

I+∂σX
I∂σX

I+µ2XIX
I ]dσ dτ (10)

where we rescaled τ and σ by α′p+ and periodic conditions on σ have been im-
posed. Observe that we can describe eight non-interacting massive Klein-Gordon
fields in two dimensions as the harmonic map given by (10).
We notice that there are two manifolds involved in the equivalent geometric system,
so both are in principle subject to the procedure of topological quantization.

4. Topological Spectrum From the Target Space

The metric (6) together with the five-form

F+1234 = F+5678 = 2µ (11)

and a constant dilation field
ϕ = const.

constitute a solution of Supergravity IIB [15] representing a pp-wave [13].
For this space-time, a quick calculation shows that Euler’s form computed from the
metric connection associated to (6) turns out to be zero, and therefore the intrinsic
topological quantization does not impose any restrictions.
Interestingly, the five-form (11) is known to be subject to Dirac quantization [3, 6,
10, 17] this leads to the condition

µ = ϕ
√

(π/2)n, n ∈ Z

which will be used later in this work.

5. Topological Quantization From the Embedded Space

The other possibility to construct a PFB is to take the embedded manifold as a base
space with induced metric given by

hab = ∂aX
i∂bX

jGij . (12)

Using (8) and (9), the induced metric is conformally flat

hab = fηab = f

(
−1 0
0 1

)
(13)

where f =
∑8

I=1 ∂σX
I∂σX

I .
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We can now carry the intrinsic topological quantization of the embedded mani-
fold with metric (12). We will use for the tangent space at each point a semi-
orthonormal basis eµ = eµadσa, σa = {τ, σ}, satisfying

eµae
ν
bηµν = hab

and accordingly, the spin connection ω in the standard way

(ωµ
ν)a = eµb ∂ae

b
ν + eµbΓ

b
ace

c
ν .

Given the signature and dimensionality of M , the components (ωµν) of the one-
form ω take values in the Lie algebra of SO(1, 1), therefore the characteristic class
we need to compute is the Euler class e(TM) given by

e(TM) =
−1

4π
ϵνµR

µ
ν (14)

where ϵνµ is the Levi-Civita tensor and Rµ
ν is the curvature two-form Rµ

νabdσ
a∧dσb

with components

Rµ
νab = ∂aω

µ
νb − ∂bω

µ
νa + ωµ

γaω
γ
νb − ωµ

γbω
γ
νa.

From the metric (13), the expression (14) simplifies to

e(TM) =
1

4π

[
∂σ

(
∂σf

f

)
− ∂τ

(
∂τf

f

)]
dτ ∧ dσ. (15)

Thus, to compute f , we make use of the explicit expression for the fields XI . The
equation of motion for each XI is

(∂2
τ − ∂2

σ + µ2)XI = 0

with general solution, satisfying the right periodic conditions, given by

XI = xI0 cosµτ +
pI0
µp+

sinµτ
(16)

+

√
α′

2

∞∑
n=1

1
√
ωn

[
αI
ne

−iω̃+
n + α̃I

ne
−iω̃−

n + α†I
n eiω̃

+
n + α̃†I

n eiω̃
−
n

]
where

ω̃+
n =

ωn + nσ

α′p+
, ω̃−

n =
ωn − nσ

α′p+
, ωn =

√
n2 + (µα′p+)2, n ∈ N

and αI
n, α̃I

n are the coefficients of the right and left modes, respectively.
From the above solutions, we observe that the values we assign to the αI

n and α̃I
n

will determine e(TM) and so, its integral over M∫
M

e(TM) = ξTM . (17)
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Then the characteristic invariant will be a function ξTM (αn, α̃n) of these coeffi-
cients.

From the Gauss-Bonnet theorem applied to (17), we know that ξTM (αn, α̃n) ∈ Z,
and this condition is the one determining the topological spectrum for the physical
parameters αn, α̃n and ωn.

What is left for us to do now is to compute the explicit form of ξTM (αn, α̃n) ∈ Z,
extract the topological spectrum and analyze its physical content.

It would seem natural to try to integrate (15) over M in its more general form to
get the topological spectrum. Nonetheless, by doing so we would get one single
condition ξTM (αn, α̃n) ∈ Z for an infinite set of α’s and α̃’s coefficients.

Alternatively, we can start by considering the solutions (16) with the fewest number
of coefficients different from zero that still give a non-trivial result for ξTM (αn, α̃n)
and extract a condition from each of these cases. The topological spectrum will be
the set of values that satisfy all the constrains obtained by iterating this process.

The simplest solution leading to a non-trivial Euler invariant is given by (16) with
only α1

n and α̃2
−n different from zero, hence all the fields X i̸={1,2} vanish identi-

cally, while for X1 and X2 we have

X1 = x10 cos(µτ) +
p10
µp+

sin(µτ) +

√
α′

2

2rn√
ωn

cos[ω̃+
n + γ]

(18)

X2 = x20 cos(µτ) +
p20
µp+

sin(µτ) +

√
α′

2

2r̃n√
ωn

cos[ω̃−
n + γ̃]

where we wrote α1
n and α̃2

−n in their polar representation rne
−iγ and respectively

r̃ne
−iγ̃ .

The Euler form of this field configuration is

e(TM) =
{
r2nr̃

2
n

[
(ω2

n − n2)
(
cos
[
2
(
ω̃+
n + γ

)])
+cos

[
2
(
ω̃−
n + γ̃

)]
−2ω2

n cos

(
2(γ−γ̃)+

4nσ

α′p+

)
+ 2n2 cos

(
2(γ+γ̃)+

4ωnτ

α′p+

)]
(19)

−2(ω2
n−n2)

[
r4n sin

2
(
ω̃+
n + γ

)
+ r̃4n sin

2
(
ω̃−
n + γ̃

)]}
/{

2π(α′p+)2
[
r2n sin

2
(
ω̃+
n + γ

)
+ r̃2n sin

2
(
ω̃−
n + γ̃

)]2}
dτ∧dσ.

In order to integrate this expression over M , we make the change of variables

x = sin
(
ω̃+
n + γ

)
, y = sin

(
ω̃−
n + γ̃

)
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in terms of which the Euler form acquires the form

e(TM) =
{
(n2 − ω2

n)(r
4
nx

2 + r̃4ny
2)− n2r2n

[
y2 + 4xy

√
1− x2

√
1− y2

−x2(4y2 − 1)
]
+ ω2

nr̃
2
n

[
y2−4xy

√
1−x2

√
1−y2−x2(4y2−1)

]}
/{

π(α′p+)2
(
r2nx

2+r̃2ny
2
)2}

dx ∧ dy.

Using the residue theorem and integrating first with respect to x and then with
respect to y, we get ∫ 1

−1

∫ 1

−1
e(TM)dxdy =

(ω2
n − n2)

nωn

r̃n
rn

while in the inverse integration order the result is∫ 1

−1

∫ 1

−1
e(TM)dy dx =

(ω2
n − n2)

nωn

rn
r̃n

·

As we see, the outcome of the integral depends on the order of integration because
there are points in the domain of integration where the Euler form has singulari-
ties. Analyzing the region of integration and its boundary, we find that the right
expression for the Euler invariant should be

ξTM =

∫
M

e(TM)dV =
1

2

(ω2
n − n2)

nωn

(
r̃n
rn

+
rn
r̃n

)
· (20)

As a confirmation that (20) is correct, we integrated (19) numerically over the
domain of integration for n = 1, excluding bands of width ϵ where the singularities

Figure 1. Plot of the region of integration in (σ, τ) space. The dots
correspond to the singularities of Euler form (19) and the shadowed
region is the area not considered in the numerical integration.
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are located (Fig. 1). In Fig. 2, we plot ξTM as a function of r1 and r̃1 computed
by (a) using (20) and (b) the numerical method for ϵ = 0.01. We can see that the
behavior is very similar in these two plots except for a large additive constant. We
confirmed by exploration, that as ϵ → 0, the profiles of the two plots look more
alike while the additive constant becomes larger. From this, we conclude that (20)
is the right expression, once the divergence of the integral has been removed using
the appropriate singularity theorems.

Figure 2. Plot of the Euler characteristic ξTM (r, r̃) computed using
a) expression (20) and b) the numerical method described in the text
(taking ω1= 2, p+= 1 and α′= 1).

Now we are in a position to apply the Gauss-Bonnet theorem to (20) to obtain the
topological spectrum which is expressed as

r

r̃
+

r̃

r
=

2n
√

n2 + (µα′p+)2

(µα′p+)2
k . (21)

We see that for a given mass of the bosonic field, the ratio of the amplitudes r/r̃ is
not arbitrary but it must fulfill a discrete relation which depends on the integer k.

6. Physical Consequences and Discussion

The topological spectrum for the particular configuration under consideration for
the massive scalar field describes a discrete relationship between the parameters
that determines the field. In this work we have only considered the particular case
when the frequencies ωn are the same for both fields XI=1,2, but it is not difficult to
see that these relationships depend in general on the number of modes considered
for the scalar field as is shown in [2]. Therefore, it is interesting to find out what
characteristics of the field result are affected by this discreteness. To this end, let
us compute the Hamiltonian of the system H =

∫
Hdσ =

∫ 2πα′p+

0 (
∑

A ẊAΠA−
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L)dσ. Choosing τ as the time parameter, from equation (10) we obtain

H = (1/4πα′)

8∑
I=1

(∂τX
I∂τX

I + ∂σX
I∂σX

I + µXIXI)

and thus, for the case of the particular configuration of the fields (18), we obtain

H =
ωn

α′p+
(r2n + r̃2n).

A comparison with the topological spectrum (21) yields

H = k
n[n2 + (µα′p+)2]

(µα′p+)2
rnr̃n ≡ kCnnrnr̃n

where Cnn is a constant. This result shows that the Hamiltonian describing the
free massive bosonic field has a discrete behavior proportional to k ∈ Z. Also,
we notice that it is proportional to the term rnr̃n involving the amplitudes. This
implies that the discrete behaviour of the Hamiltonian must be independent of the
choice of the fields that are taken. This is satisfied if this product is also a constant.
Surprisingly, we found that the right and left modes are not independent from each
other and this implication does not have an analogue in other formalisms. As was
mentioned above, this result is valid only when ωn is the same for both fields, for a
more general case we must refer to [2] where it is shown that the behaviour of the
Hamiltonian dictated by the topological spectrum is different.
Another important feature of this physical system in the context of topological
quantization is the fact that the Euler form has singularities inside the region of
integration and this is responsible for the fact that the Euler invariant does not
commute under the interchange of the integration variables. We can see now the
integrals ∫

( )dx ≡ Fx,

∫
( )dy ≡ Gy

as operators that obey the relation

FxGy −GyFx ̸= 0.

This is a peculiar feature, because Fx and Gy are functions of α and α̃ so, in a cer-
tain way, we obtain from the topological analysis of the system the non commuting
behavior that in standard quantum field theory is only given through the imposition
of this relation to the fields and its conjugate moment.
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