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Abstract. The modern geometrical approach to nonlinear PDEs is the out-
come of a nontrivial synthesis of differential calculus over commutative al-
gebras and cohomological algebra in the context of infinite jet spaces. In this
paper we propose a very natural generalization of the notion of a jet space,
which allows to treat the space of initial data of a nonlinear PDE on the same
footing as the space of its solutions.

1. Introduction

In spite of its age, Henneaux & Teitelboim’s book “Quantization of Gauge System”
still stands as a sort of Bible for modern theoretical physicists. In the middle of
it, the reader meets three simple prescriptions (ten lines overall) which allow to
recast in a field-theoretical context the results of BRST formalism obtained so far.
But soon comes a warning: “Although useful, this approach to the field theoretical
case remains, however, rather formal as long as one does not specify precisely
the functional space to which the relevant functionals should belong. This turns
out, in general, to be a complicated task” ([2], Chapter 12). The fact that deep
field-theoretical results keep coming, regardless of the lack of solid mathematical
foundations, might be taken as an evidence that any effort to find such foundations
is, in fact, superfluous.
What theoretical physicists seem to ignore is that a robust geometrical language
for nonlinear field theories does exists, but its comprehension is – to use the same
words as the authors above – “a complicated task”. We will call such a language
Secondary Calculus, following Vinogradov (see [10, 11] and references therein),
but it should be stressed that, in spite of its remarkable achievements in the co-
variant description of nonlinear Lagrangian theories and PDEs, it is still a young
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theory which needs to be duly revisited and expanded. In this perspective, we use
term Secondary Calculus in a purely tentative way.
In the first section of this paper we try to explain why “the functional space to
which the relevant functionals should belong” the authors above speak about, can-
not be thought of as a functional space in the sense of functional analysis, both
rather as a (duly generalized) leaf space in the sense of involutive distributions.
This point of view allows to see the “relevant functionals” as a cohomological
feature of an infinite-dimensional manifold equipped with a finite-dimensional in-
volutive distribution (the C-spectral sequence associated with a so-called diffiety).
In the second section we show that a small modification in the construction of
jet spaces allows to frame simultaneously leaves of different dimensions in the
same geometric context. The dimension of the leaves is an important constant in
nonlinear Lagrangian formalism and in the geometrical theory of nonlinear PDEs,
since it coincides precisely with the number of independent variables. However,
there are remarkable circumstances in which this number is no longer a constant,
e.g., when one passes from the Lagrangian to the Hamiltonian description of a
field theory (the so-called “time-slicing”, see [1]), or when one needs to define
functionals on the space of initial datas (see, for instance, [9]).
Throughout this paper, E is a fixed smooth manifold. Any number n such that
0 < n ≤ dimE will be referred to as the number of independent variables. We
also set m = dimE − n.

2. Review of Jet Spaces and Their Natural Structures

2.1. Introduction

In a (classical) field theory, E arises as a product M × T , where

• M is the space-time, i.e., the space where the fields are defined
• T is the target space, i.e., the space where the fields take their values.

Depending on the approach, the value of n can be three or four, according to the
role of time. This example should motivate why the formalism we are going to
introduce is conceived in such a way that the value of n does not have to be fixed.
A (nonlinear) Lagrangian (classical) field theory consists in certain conditions im-
posed on the set Γ(π), where π : E → M is the natural projection. More precisely,
Γ(π) is the space of histories of the theory, or the set of field configurations, and
one looks for the histories which are critical with respect to an action integral.
The subset P ⊆ Γ(π) of such “critical histories” is the so-called covariant phase
space of the theory (see [12] and references therein). Functional analysis fails here,
since neither Γ(π), nor P possess, in general, a linear structure.
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It might be said that jet space has been introduced to overcome this failure, and give
Γ(π) a nice geometrical description, which in its turn allows to recast the notion of
an action integral in a differential-geometric and cohomological framework. This
perspective is briefly reviewed below (see the recent review [5] and references
therein for more extensive information).

2.2. First Order Jet Spaces

Morally, the first order jet space of E, usually denoted by J1(E,n), should be un-
derstood as “the smallest and smoothest container” of all first order approximations
of all n-dimensional submanifolds L ⊆ E. Rigorously, there are (at least) three
equivalent ways to define J1(E, n). It is convenient to recall them all, since they
will help understanding the generalization of jet spaces which will be introduced
in the next section. In practice, one can

• identify a “first order approximation” with an n-dimensional linear sub-
space of TE, and put J1(E, n) = Gr (TE, n)

• introduce an equivalence ∼1
y between n-dimensional submanifolds tangent

to each other at y ∈ E, and put

J1(E, n) =
⨿
y∈E

{all submanifolds of dimension n}
∼1

y

• just add to the coordinates (x1, . . . , xn, u1, . . . , um) of E new coordinates
uji , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and get once again J1(E, n).

Example 1. If xµ is a point of the space-time, and ϕj are the values of the field,
the action of a first order Lagrangian on ϕ is usually written as

S[ϕ] =

∫
M

dnxL(xµ, ϕj , ϕj
(µ))

where (xµ, ϕj , ϕj
(µ)) are precisely the coordinates of J1(E, n).

2.3. Jet Projection

Let us recall that any vector bundle η over E with fiber V can be defined by means
of a covering {Uα} of E and transition functions gαβ : Uα ∩ Uβ → GL (V ). By
using the standard representation of GL (V ) on the Grassmann manifold Gr (V, k),
one can use the same gαβ’s to define a smooth bundle Gr (η, k) → E, with abstract
fiber Gr (V, k). When η : TE → E is the tangent bundle, Gr (TE, n) is precisely
J1(E, n).
So, the canonical projection π1,0 : J

1(E,n) → E can be seen equivalently as

• the bundle projection of Gr (TE, n) over E
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• the point of tangency of two submanifolds
• the first n+m coordinates of J1(E, n).

According to the commonly adopted notation, L∼1
yL

′ is the tangency relation, and
[L]1y is the equivalence class of L.

2.4. The Relative Distribution on E

Notice that any point θ = [L]1y ∈ J1(E,n) defines the linear subspace Rθ = TyL ≤
TyE.

Definition 1. Assignment R : θ 7→ Rθ is the canonical relative distribution on E.

Notice that R is not a true distribution, but a relative one (with respect to π1,0). So,
the concept of an integral manifold of R is ill-defined (passing to infinite jet spaces
will make it well-defined). The closest thing we have to an integral manifold is
the so-called ray manifold (ray manifolds play a key role in the proof of the Lie-
Bäcklund theorem, see [4]).
Given a vector subspace W ⊆ TyE, the ray of W is the submanifold ℓ(W ) ⊆
π−1
1,0(y) made of points θ such that Rθ ⊇ W . The ray manifold ℓ(N) of a subman-

ifold N ⊆ E is the union of the rays of all the tangent subspaces to N . N might
be called integral of R iff its ray manifold ℓ(N) projects diffeomorphically on N .
In this sense, any n-dimensional submanifold L ⊆ E is integral. Ray manifolds
ℓ(L) deserve a special attention.
The embedding L ⊆ E is canonically lifted to an embedding j1(L) : L → J1(E, n),

where j1(L)(y)
def
= [L]1y. Its image is denoted by L(1), and is precisely ℓ(L).

Definition 2. Embedding j1(L) (or its image L(1)) is called the first jet-prolongation
of L.

2.5. Differential Equations

Let {Fα} be a set of functions on J1(E,n), and suppose that their zero locus
E : Fα = 0 is a smooth submanifold E ⊆ J1(E,n). Then E is interpreted as a
(system of) first order nonlinear PDE(s).

Definition 3. L is a solution of E iff

L(1) ⊆ E

or, equivalently, if j1(L)∗(Fα) = 0, for all α’s.
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2.6. Iterated Jets and Higher-Order Jets

As noticed in Subsection 2.2, the passage from J1(E, n) to J1(J1(E, n), n) might
be seen as the addition of new coordinates (uj)i and (uji )k to those of J1(E, n).
In this perspective, it is easy to recognize in J1(J1(E,n), n) a special subset
J2(E, n), which may be thought of as

• the equation (uj)i = uji , (u
j
i )k = (ujk)i

• the set of jets of submanifolds of J1(E, n) which are of the form L(1)

• the sub-bundle of the Grassmann bundle Gr (J1(E,n), n) made of R-hori-
zontal elements Θθ ∈ TθJ

1(E, n), i.e., such that dπ1,0(Θθ) = Rθ.

Definition 4. J2(E, n) is called the second-order jet space of E.

Obviously, J2(E, n) identifies with the quotient space of all submanifolds modulo
second-order tangency, and the canonical projection π2,1 is just the passage from a
finer quotient space to a coarser one.

2.7. Cartan Distribution

The relative to π2,1 distribution R can be defined much as in Subsection 2.4. How-
ever, in view of the subsequent generalization, we rather define π2,1 as restriction,
π2,1 = π1,0|J2(E,n), and R as the restriction of the relative distribution on J1(E, n).

Definition 5. An R-plane is a subspace belonging to the relative distribution on
J1(E, n).

All the R-planes passing trough θ generate the Cartan plane (or contact plane)
Cθ. It is easy to see that Cθ = Rθ ⊕ T (π−1

1,0(π1,0(θ))). This is the standard way
to pass from a relative distribution to a true one. The drawback is an increased
dimension, due to the vertical part, which makes it impossible to use the Cartan
distribution on J1(E, n) to distinguish submanifolds of the form L(1) (called olo-
nomic by some authors).
The theorem below, whose proof can be found in [4], shows that olonomic sub-
manifolds are “contaminated” by higher-dimensional submanifolds.

Theorem 1. Jet-prolongations L(1) are precisely the maximal π(1,0)-horizontal
integral submanifolds of C. Other integral submanifolds are ray manifolds.

2.8. Infinite Jet Spaces

The trick to pass from relative distributions along jet projections to a true distri-
bution without increasing its dimension, is to introduce infinite jet spaces. Very
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roughly speaking, J∞(E,n) is the limit of the tower of projections

πk,k−1 : J
k(E, n) −→ Jk−1(E, n)

and the Cartan distribution C on J∞(E, n) is involutive and n-dimensional, due to
the “lack of vertical directions”. The analog of Theorem 1 for J∞(E, n) reads

Theorem 2. Jet-prolongations L(∞) are precisely the maximal integral submani-
folds of C.

In coordinates, the distribution C can be thought of

• as an infinite Pfaff system ωj
σ = 0 (in field theory the ωj

σ’s look like ωj
µ =

dV ϕ
j
(µ))

• as generated by the total derivatives

Di =
∂

∂xi
+

∑
σ,j

ujσ+1i

∂

∂ujσ
1i = (0, . . . , 1, . . . , 0)

i-th place
.

As promised in Section 1, the space of histories Γ(π) is now identified with the
set of leaves of C. It should be stressed that, due to infinite dimensionality of
J∞(E,n), the Cartan distribution C does not fulfill the Frobenius theorem. In this
sense, we cannot speak about the leaf of C through some point of J∞(E,n), but
we retain the term “leaf”, since it is more suggestive.
In this perspective, solutions to a PDE should be some sort of “special leaves” of
C.

2.9. Infinitely Prolonged Equations

Notice that the restricted distribution C|E is not an involutive n-dimensional one,
since, in general, C is not tangent to E . The biggest submanifold of E to which C is
tangent is called the infinite prolongation of E and denoted by E(∞). Algebraically
the latter is obtained from the former by adding to the Fα’s all their differential
consequences (i.e., the total derivatives).

Example 2. In field theory the differential consequences of F = 0 are denoted by
∂(µ)F = 0. For example,

∂(µ)
δL

δϕi
= 0

represent the infinitely prolonged Euler-Lagrange equations associated with the
Lagrangian Ldnx, i.e., the covariant phase space P associated with L (see Section
1). So, P can now be though of the set of leaves of C|E(∞) .

These considerations pushed towards the introduction of the so-called diffieties.
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2.10. Diffieties

A diffiety (from diff erential variety) is a couple (O, C) were O is the geometrical
object corresponding to a filtered smooth algebra, and C is a finite-dimensional
involutive distribution on it. Leaves of C are called the secondary points of the
diffiety, and their totality can be denoted by M .

Example 3. There follow simple examples of diffieties.

• If O is a fiber bundle, and C is the vertical distribution on it, then M is just
the base of the bundle (i.e., the manifold of all the fibers).

• (E(∞), C|E(∞)) is a diffiety, and M is precisely the set of solutions of E .

To better fit the circumstances, modifier secondary can be replaced by variational
or functional. The main advantage of the above point of view, is that the most
important notions of differential calculus can be straightforwardly generalized to
diffieties, thus obtaining the formalism mentioned in the introduction – the so-
called secondary calculus.

2.11. Elements of Secondary Calculus

One of the most fundamental notion of differential calculus is that of a vector
field. Without going into details (see [3, 11] for more information), we claim that
secondary vector fields on E(∞) are nontrivial infinitesimal symmetries of E . More
precisely, we have to take the vector fields which “respect” C|E(∞) , also known as
contact fields

DC(E) = {X vector field on E(∞) ; [X,Di] =
∑

ϕjDj}

where Di is the restriction of Di to E(∞), and X,Y ∈ DE should be thought
of as equivalent if they generate the same flow in the space of solutions of E .
Obviously, trivial contact fields are CD(E) = {X =

∑
fiDi}, and if we identify

X ∼ Y ⇔ X − Y ∈ CD(E) we obtain the higher symmetries of E

sym E =
DC(E)
CD(E)

.

The same result can be obtained cohomologically (see, for instance, [12])

sym E = H0(Horizontal Jet Spencer Complex on E(∞))

Example 4. In the simple case E(∞) = J∞(π), it is easy to see that

κ = sym J∞ = {�φ ; φ = (φ1, . . . , φm), φi ∈ C∞(J∞)}
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where
�φ

def
=

∑
σ,i

Dσ(φi)
∂

∂uiσ
, Dσ = Dσ1

1 ◦ · · ·Dσn
n

and φ is referred to as the generating function of χ = �φ mod CD(J∞).

Dually to vector fields, we can introduce the secondary version of functions (hori-
zontal cohomology), differential forms (C-spectral sequence) and de Rham differ-
ential (d1 differential of the C-spectral sequence). We suggest that the interested
reader consult the book [11] for an exhaustive explanation.
Basically, we define first the horizontal complex of E(∞)

0 → Λ
0
(E(∞)) = C∞(E(∞))

d−→ Λ
1
(E(∞))

d−→ · · · d−→ Λ
n
(E(∞)) → 0

where

Λ
i
(E(∞))

def
=

Λi(E(∞))

CΛi(E(∞))
, d : Λ

i → Λ
i+1

and CΛ(E(∞)) is the ideal of the differential forms vanishing on the Cartan distri-
bution.
Then, we take its cohomologies H i

(E(∞)), called horizontal.

Example 5. Among horizontal cohomologies we find

• the action functionals: Hn
(J∞(E, n))

• the conservation laws: Hn−1
(E(∞)).

Take now the powers of CΛ∗(E(∞)), and the corresponding filtered complex

Λ∗(E(∞)) ⊃ CΛ∗(E(∞)) ⊃ C2Λ∗(E(∞)) ⊃ · · · .
Then the associated spectral sequence {Ep,q

r , dp,qr } is called C-spectral

Example 6. Among terms and differentials of the C-spectral sequence we find

• the Euler operator: d0,n1

• the LHS of E-L equations: E1,n
1

• the Helmholtz conditions: E2,n
1 .

3. Jet Spaces of Pairs of Manifolds

3.1. Introduction

Now we are going to relax the hypothesis that n is fixed, and rather consider two
integers n2 ≥ n1. Thinking about our previous discussion, n was linked to a very
intrinsic property of submanifolds L, their dimension. So, in the context of jet
spaces, what might it mean to allow n to vary? Apparently, it should mean to
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allow L to be of various dimensions, but if one tries to implement such an idea, for
instance in the definition of first order jets spaces (see Subsection 2.2), immediately
realizes that the result is not smooth. In a deeper perspective, one is actually forced
to consider more general objects than submanifolds, namely pair of submanifolds.
As the analogy with linear algebra

Grassmann manifold Gr (V, n) −→ flag manifold Gr (V, n2, n1)

brightly confirms, the second point of view is the good one, since there is no way
to find any geometrical structure whatsoever on the set of all integral submanifolds
of an involutive distribution, if we allow their dimension to take, for instance, two
different values.
To begin with, let k ≥ l. The main definition of this section is the following

Definition 6. Jk,l(E, n2, n1) is the subset of Jk(E, n2) ×E J l(E, n1) made by
those elements ([L2]

k
y , [L1]

l
y) such that L2 ∼l

y L1.

The reader should have noticed that the tangency relation ∼l
y above is different

than the one used in Subsection 2.2, since it involves submanifolds of different
dimensions. Condition L2 ∼l

y L1 means that L2 contains an n1-dimensional sub-
manifold L′

2 such that L′
2 ∼l

y L1 in the standard sense.

So, in the pair θ = ([L2]
k
y , [L1]

l
y) one can always assume that L1 is contained

into L2, at least locally around y. In other words, θ carries a local information
on the pair (L2, L1). Understanding jets as Taylor series, θ contains a k-th order
approximation of the function in n2 variable which locally defines L2 in E, plus
an l-th order approximation of the function in 12 variable which locally defines L1

in L2. These remarks motivate the name jet of pairs given to θ.

3.2. Flag Bundles and Flag Projections

Definition 6 becomes more clear when k = l = 1. In this case we meet a well-
known construction of linear algebra, namely the flag manifold.

Lemma 1. J1,1(E, n2, n1) = Gr (TE, n2, n1).

Proof: Much as in Subsection 2.3, notice that to any vector bundle η we can
associate a smooth bundle Gr (η, n2, n1), by replacing the linear space η−1(y)
with the flag manifold Gr (η−1(y), n2, n1), for all y ∈ E. Then, it is immedi-
ate to see that in the case when η is the tangent bundle over E, we get precisely
J1,1(E, n2, n1). �

Lemma 1 above explains the appearance of flag manifolds in the theory of jets
of submanifolds of various dimensions. Indeed, the flag manifold Gr (V, n2, n1)
is a “smooth envelope” of both Grassmann manifolds Gr (V, n2) and Gr (V, n1),
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i.e., the minimal (in a category-theoretic sense) object which is smooth and also
keeps the information about both Grassmann manifolds. In particular, we have the
canonical flag projections

Gr (V, n2, n1)

pwwooo
ooo

ooo
oo q

''OO
OOO

OOO
OOO

Gr (V, n2) Gr (V, n1)

whose fibers are in their turn Grassmann manifolds

• p−1(L2) = Gr (L2, n1)

• q−1(L1) = Gr
((

V
L1

)∗
, n2 − n1

)
.

So, the next result is straightforward.

Lemma 2. Fibers of canonical projections

J1(E, n2, n1)

pwwooo
ooo

ooo
oo q

''OO
OOO

OOO
OOO

J1(E, n2) J1(E,n1)

are

• p−1(Θ) = Gr (RΘ, n1)

• q−1(θ) = Gr
((

Tθ0
E

rθ

)∗
, n2 − n1

)
where R : Θ 7→ RΘ (respectively, r : θ 7→ rθ) is the relative distribution on E
(See Subsection 2.4) with respect to jet projection J1(E, n2) → E (respectively,
J1(E, n1) → E).

3.3. The Normal Bundle

When n1 = n and n2 = n − 1 we are considering the so-called codimension one
case. It is remarkable in that it naturally encodes the notion of normal jets. Indeed,
let N1 = J1(E, n, n− 1), and ν1 = q. Then N1 ν1−→ J1(E, n1) is the first order
normal bundle

ν−1
1 (θ) = N1

θ
def
=

(
Tθ0E

rθ

)∗
= Ann(rθ) ≤ T ∗

θ0E.

Similarly, when k = ∞ and l = 1, the natural projection q reads

ν∞ : J∞,1(E,n, n− 1) −→ J1(E, n− 1)

ν∞ is naturally interpreted as the infinite-order normal bundle, which plays a
prominent role in the approach to natural boundary conditions ([6–8]).
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3.4. Canonical Embedding into Iterated Jet Spaces

Besides the case k = l = 1, the case k = l = ∞ is the simplest one, due to the
fact that on J∞ the relative distribution is a true distribution. Intermediate cases
will be examined somewhere else.
The next result, which generalizes the discussion made in Subsection 2.6, casts a
bridge between jets of pairs of manifolds and iterated jet spaces.

Lemma 3. J∞,∞(E,n2, n1) is embedded canonically into J∞(J∞(E,n2), n1).

Proof: For any point ([L2]
∞
y , [L1]

∞
y ) the jet prolongation

j∞(L2) : L2 −→ J∞(E, n2)

can be used to lift L1 inside J∞(E, n2).
So we obtain the n1-dimensional submanifold (j∞(L2))(L1), of which we can
take the ∞-jet at the point [L2]

∞
y

([L2]
∞
y , [L1]

∞
y ) 7−→ [(j∞(L2))(L1)][L2]∞y

.

�

3.5. The Space of Initial Data

In the codimension one case, J∞,∞(E, n, n − 1) can be easily describes as an
equation, namely

E = {(ϕj
(σ+ln)

)(µ) = ϕj
(σ+1µ+ln)

+ ϕj
σ+(l+1)n

t(µ)}∞.

Definition 7. J∞,∞(E,n, n− 1) is the diffiety of initial data.

The space of initial data can be found in literature (see, for instance, [9]), but its
nature of infinitely prolonged nonlinear PDEs has never been recognized before.
This result has been independently found by L. Vitagliano.

3.6. Structure of J∞,∞(E,n, n− 1)

Lemma 3 allow to frame J∞,∞(E, n, n− 1) into the following diagram

J∞(J∞(E, n), n− 1)

J∞,∞(E,n, n− 1)

puulll
lll

lll
lll

l
q

))SSS
SSSS

SSSS
SSS

OO

J∞(E,n) J∞(E, n− 1)
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where the projections are infinite-dimensional analogues of the ones described in
Lemma 2. So, it looks evident that J∞,∞(E, n2, n1) possesses an inherited (n−1)-
dimensional distribution D, and two infinite-dimensional distributions. Denote by
C̃ the one induced by p∗ and by C̃′ the one induced by q∗.

Lemma 4. Leaves of C̃ are precisely the embedded jet spaces J∞(L, n1), and as
such are in one-to-one correspondence with the leaves of C in J∞(E,n).

Proof: Any n-dimensional manifold L produces the embedding j̃∞(L)
of J∞(L, n− 1) into J∞,∞(E, n, n− 1), which closes the diagram

J∞(L, n− 1)
j̃∞(L)//

π∞,0

��

J∞,∞(E, n, n− 1)

p

��
L

j∞(L) // J∞(E, n)

�

Cirillary 1. Any equation E is equivalent to its own lifting Ẽ = p∗(E).

3.7. Further Developments

In order to develop differential calculus over the diffiety of initial data along the
lines described in Subsection 2.11, nontrivial results have to be proved:

• the leaves of C̃′ are jet spaces of the infinite-order normal bundle, restricted
to n1-dimensional submanifolds

• the D-spectral sequence is one-line
• the term E1 of the C̃-spectral sequence is trivial above the line q = n.

To the author’s opinion, the results above looks intuitively true, however a rig-
orous proof might be hard due to the infinite-dimensionality of the objects under
consideration.
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