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Abstract. We show that the MIC-Kepler probrem is simply solved via the
phase-space formulation of non-relativistic quantum mechanics. The MIC-
Kepler problem is the Hamiltonian system behind the hydrogen atom sub-
jected to the influence of the Dirac’s magnetic monopole field and the square
inverse centrifugal potential force besides the Coulomb’s potential force.
We get the energy spectrum of the bound states explicitly and construct the
Green’s functions for E @ 0 by means of the Moyal product, which is one of
the ‘star’ products denoted by ‘�’.

1. Introduction

In 1978, Bayen et al [1] demonstrated that the quantum mechanics could be re-
placed by a “deformation” of the classical mechanics by introducing an associative
algebra (�-product algebra) and the corresponding Lie algebra. The Moyal product
and the associated Moyal bracket are the most familiar instance of them, which are
directly connected with the definition of quantum commutator.
In this paper, using a star product, more precisely using the Moyal product, we
calculate the energy spectrum and Green’s functions of the MIC-Kepler problem
in the Weyl-Wigner-Moyal (WWM) formalism, which furnishes an alternative
formulation – historically, the latest – of quantum mechanics that is independent
of the conventional Hilbert space and path integral approach.
The motion of the electron in the hydrogen atom is called quantum-mechanical
Kepler problem. In 1970, McIntosh and Cisneros studied the above-mentioned
dynamical system and treated the motion of an electron not only in the Coulomb’s
potential but also in both magnetic monopole field derived from a vector potential
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and a centrifugal potential proportional to the square of the pole strength, which is
referred later on as the MIC-Kepler problem [7].
Our notation is as follows�m and k are positive constants which denote the mass
and the charge of the electron. Moreover Planck’s constant Òh �A 0� appears which
is playing the role of deformation parameter, and µ >

Òh
2Z is the constant specifying

the monopole field.

1. We obtain the (Theorem 10) spectral data of the MIC-Kepler problem as
follows

Eigenvalues: En �
�2mk2Òh2 �n � 2�2 , n � 0,1,2, . . .

Dimension of the �n, l� eigenspace: �n � l � 2��n � l � 2�~4
where l > Z such that S l S B n, l and n are simultaneously even or odd.

2. Restricting to the negative energy levels we construct its Green’s functions
with two local polar coordinates (given in §5.2 below). By the transition
functions connecting two local trivializations, we show that the local ex-
pressions for the Green’s function are equivalent, i.e., Green’s function is a
section of a complex line bundle. (See Theorem 12.)

In 1984, Gracia-Bondía solved the quantum-mechanical Kepler problem in the
WWM formalism with the Moyal product. In addition, they showed that the prob-
lem was essentially reduced to that of a four-dimensional oscillator with a con-
straint by means of the Kustaanheimo-Stiefel (KS) transformation in celestial me-
chanics. They obtained the energy spectrum of bound states and calculated the
Green’s function for E A 0 [2].
In 1986, Iwai and Uwano [5] proved that the MIC-Kepler problem is a reduced
Hamiltonian system that comes out of the four-dimensional “conformal” Kepler
problem, which is closely related to the four-dimensional harmonic oscillator if
the associated momentum mapping takes a fixed value µ. Using this formulation
in the phase-space, we state that the MIC-Kepler problem can be regarded as the
reduced system of the conformal Kepler problem when the momentum mapping
of the S1 action is set to take a nonzero fixed value µ , and besides that the KS
transformation is its principal U(1) bundle π. In this way, the quantum-mechanical
Kepler problem solved by Gracia-Bondía by means of the Moyal product is viewed
as the special case when the momentum mapping takes the value zero, i.e., µ � 0 .
In 1988, Iwai and Uwano presented the quantum version by using an operator
method and constructed the “quantised” MIC-Kepler problem as a reduction of
the “quantised” conformal Kepler problem. A notable theorem is given and the
eigenspaces for negative energy are shown concretely. Their dimension and all
negative eigenvalues are presented in [6]. Our resultant spectrum coincides with
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the results of this theorem except that they choose units where Òh � 1 and m is set
at unity as well (m � 1). More important, they differ from us in quantum setting
as they formulated the quantum system in terms of operators in a Hilbert space,
while our system is described in terms of the phase-space common to the classical
mechanics. Proir to that Mladenov and Tsanov [8] have studied the MIC-Kepler
problem from the view point of geometric quantisation.
Later in 1992, Hoang [3] gave Green’s function of the MIC-Kepler problem which
is different from ours in quantum formulation as Hoang adopted another one using
the method of path integrals. Furthermore, we may emphasize that Green’s func-
tion obtained in this paper is a kind of section of the vector bundle which is used
in Iwai-Uwano [6]. More precisely, we obtain two local expressions and these can
be translated into each other through its transition function g�� . In our notation,
Hoang’s result is only a piece of the local expression of the section.
The organization of this paper is as follows. Section 2 presents an outline of phase-
space formulation called the WWM formalism. Section 3 is also an outline of pre-
vious studies of the MIC-Kepler problem in order to position it as a geometrical
problem. In Section 4, we derive the energy spectrum of the MIC-Kepler prob-
lem through the Moyal product algebra. In Section 5, we construct the Green’s
functions of the MIC-Kepler problem on the basis of �-exponential function.

2. �-Product on Deformation Quantization

In [1], it is suggested that “quantization” can be understood as a “deformation” of
the algebra N of Cª functions on the phase-space with ordinary multiplication of
functions. For f , g > N , the new deformed product on N is denoted by �f , g� (
f � g . Then we base our calculation on the following product and proposition.

Definition 1. Let f�p , x� and g�p , x� be two polynomials on the phase space

�T �Rn, dp , dx� , where dp , dx �

n

Q
j�1

dpj , dxj is the symplectic form. The

Moyal product �f � g� �p, x� is given by

f � g �
�Ð
f e

iÒh
2

�Ð

∂x ,
Ð�

∂p g �

�Ð
f

ª

Q
N�0

1

N !
� iÒh
2
�N��

�Ð
∂

∂x
�

Ð�
∂

∂p
�

�Ð
∂

∂p
�

Ð�
∂

∂x

��
N

g

where the partial differentiation operator with superscript�Ð operates on f written
at the left side of � , and the other one with superscriptÐ� operates on g written at
the right side.

Proposition 2. The canonical coordinates �p, x� on the classical phase-space�T �Rn, dp , dx� satisfy the following Canonical Commutation Relations which
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provides generators of the Weyl algebra�pj � pk� � 0, �xj � xk� � 0, �pj � xk� � �δjk 1 B j , k B n

where �f � g� � �f � g � g � f�~iÒh.
For a Hamiltonian function H�x, p� on the phase space �T �Rn, dp , dx� and
t > R the following series U� �x, p ; t� is called �-unitary evolution function, or
�-exponential.

U� �x, p ; t� � e
it
Òh
H�xp�

�

� 1 �
itÒhH �

1

2!
� itÒh�2H �H �� �

1

N !
� itÒh�N

N³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
H �H �� �H ��

In general, the above power series is not a convergent series. So we consider
instead the following differential equation in order to define the �-exponential.

�iÒh ∂U�
∂t

�H � U� � U� � H, U� �x, p ; 0� � 1.

We shall use also the notation e
it
Òh
H�x ,p�

�
which stands for U� �x, p ; t� throughout

the paper.

3. The MIC-Kepler Problem

3.1. Classical Theory

McIntosh and Cisneros [7] studied the dynamical system describing the motion of
a charged particle under the influence of Dirac’s monopole field and the square
inverse centrifugal potential force besides the Coulomb’s potential force.
Iwai and Uwano [5] gives the Hamiltonian description for the MIC-Kepler problem
as follows.

Theorem 3 (Iwai and Uwano [5], Theorem 3.1). The classical MIC-Kepler prob-
lem is the Hamiltonian system �T �Ṙ3, σµ , Hµ �

Hµ �x, p� � 1

2m
�p2x � p2y � p2z� � µ2

2mr2
�
k

r

σµ � dpx , dx � dpy , dy � dpz , dz � Ωµ

where Ṙ3
� R3

� �0�, �x, p� >T �Ṙ3, r �Õ x Õ�
»
x2 � y2 � z2 and Ωµ stands

for Dirac’s monopole field of strength �µ

Ωµ �
�µ

r3
�xdy , dz � y dz , dx � z dx , dy�.
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3.2. Quantum Theory

Let us consider the principal U�1� bundle π � Ṙ4 � Ṙ3 with the free S1-action ρ
on Ṙ4, where the S1-bundle π � Ṙ4 � Ṙ3 is contractible to the Hopf fibre bundle
S3 � S2. For an integer m, consider the unitary irreducible representation ρm of
U�1� � S1 on C, z � exp�imt~2�z , z > C . Let U�1� act on Ṙ4

�C to the left, then
we get the complex line bundle Lm � �Ṙ4

�mC, πm, Ṙ3�, where πm � Ṙ4
�mC�

Ṙ3 is endowed with the linear connection ©. The curvature form of © is Ωm~2 ,
which gives Dirac’s monopole field of strength �m~2 .
Let Γm be the Hilbert space of square integrable cross sections in Lm . The quan-
tised MIC-Kepler problem is �Γm, Ĥm� where Ĥm is the Hamiltonian operator
such that

Ĥm � �
1

2

3

Q
j�1

©
2
j �

�m~2�2
2r2

�
k

r

and where ©j stands for the covariant derivation of ∂~∂j with respect to the linear
connection. Iwai and Uwano showed also that the quantised MIC-Kepler problem�Γm, Ĥm� is obtained by the reduction of the quantised conformal Kepler prob-
lem (see Theorem 4.1 in [6]). Using the reduction, Iwai and Uwano obtained the
eigenvalues and their multiplicities.

Theorem 4 ([6], Theorem 5.1). The ρm-equivariant eigensubspace S�En ; m� for
the conformal Kepler problem is in one-to-one correspondence with the eigenspace
qmS�En ; m� of negative energyEn � �2k2~�n�2�2 for the quantised MIC-Kepler
problem �Γm, Ĥm�, where n andm are subject to the conditions - Sm S B n,m and
n are simultaneously even or odd.

The qmS�En ; m� is of dimension �n �m � 2��n �m � 2�~4.

3.3. The MIC-Kepler Problem as Reduced System

In this subsection, we recall the method of the S1-reduction which reduces the
conformal Kepler problem on T �Ṙ4 to the MIC-Kepler problem on T �Ṙ3 .

The S1 action on Ṙ4 is defined by a 4 � 4 matrix T �φ�
φ > �0,4π�, Ṙ4

? uz� T �φ�u > Ṙ4

where T �φ� � ���
R�φ� O

O R�φ�
��� , R�φ� � ���

cos φ2 � sin φ
2

sin φ
2 cos φ2

���
and u � �u1, u2, u3, u4� .
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The bundle projection π is given as follows

π � Ṙ4 Ð� Ṙ3

u z� π�u� � x(u) where

¢̈̈̈̈̈
¦̈̈̈̈̈
¤
x�u� � 2�u1u3 � u2u4�
y�u� � 2�u2u3 � u1u4�
z�u� � u12 � u22 � u32 � u42

and we have u2 � u12 � u22 � u32 � u42 � r .
The S1 action on T �Ṙ4 is defined by the lift of the one on Ṙ4 such as in [5], i.e.,

φ > �0,4π�, T �Ṙ4
? �u , ρ�z� �T �φ�u , T �φ�ρ� > T �Ṙ4.

Letψ�u , ρ� be the momentum mapping of T �Ṙ4 associated with the above action,

i.e., ψ�u , ρ� � 1

2
��u2ρ1 � u1ρ2 � u4ρ3 � u3ρ4� , given by the defining equation

� dψ�u , ρ� � η µdθ�u , ρ�
�
1

2
��u2, u1, �u4, u3, �ρ2, ρ1, �ρ4, ρ3�µdθ

where dθ � dρ , du �

4

Q
j�1

dρj , duj .

Next, let ιµ � ψ�1�µ� ` T �

uṘ4 be the inclusion map. Then the quotient space
ψ�1�µ�~U�1� is diffeomorphic to T �Ṙ3 and π�µσµ � ι

�

µdθ . Hence, we have

Theorem 5 ([5], Theorem 2.5). The reduced phase-space of �T Ṙ4,dθ� is sym-
plectomorphic to �T �Ṙ3, σµ� .

The conformal Kepler problem defined in [5] is the triple �T �Ṙ4, dθ, H�,H�u, ρ�
�

1

2m

�� 1

4u2

4

Q
j�1

ρj
2�� �

k

u2
� Then we see π�µHµ � ι�µH and that the MIC-Kepler

problem is obtained by the symplectic reduction of the conformal Kepler problem.
(See Theorem 3).

4. Solution of Eigenspaces

4.1. Harmonic Oscillator

The harmonic oscillator is deeply related to the conformal Kepler problem. In this
subsection we discuss the quantization of the n-dimensional harmonic oscillator
via the Moyal product. We consider the phase-space �T �Rn, dp,dx�. Let m and
ω be positive constants for the mass of the oscillator and the angular frequency



194 Tomoyo Kanazawa and Akira Yoshioka

respectively. Let K�x, p� denotes the Hamiltonian of the harmonic oscillator
defined as follows

K�x, p� � n

Q
j�1

Kj�xj , pj� � 1

2m

n

Q
j�1

p2j �
1

2
mω2

n

Q
j�1

x2j .

We consider the following functions for all j � 1, . . . , n

aj �
1º
2
�½mωÒh xj �

iº
mÒhω pj� , a�j �

1º
2
�½mωÒh xj �

iº
mÒhω pj�

Nj � a
�

j � aj .

The function aj corresponds to the annihilate operator, a�j to the create operator
and Nj to the number operator respectively. Then we get

a � a� � a1a
�

1 � a2a
�

2 �� � ana
�

n �
K�x, p�Òhω (1)

Nj � a
�

j aj �
1

2
, N � N1 �N2 �� �Nn � a � a� �

n

2
�

For all j � 1,�, n , we introduce

fj0 ��Ð
1

πÒh e�2a
�

j aj �
1

πÒh exp��mωÒh x2j �
1

mÒhω p2j�
fkj ��Ð

1

kj !
a�j �� � a�j´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

kj

� fj0 � aj �� � aj´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kj

�
1

kj !
�a�j ��kj fj0 ��aj�kj , kj � 0,1,2 . . . .

We put furthermore

fk �

�Ð
fk1 � fk2 �� � fkn , k � 0,1,2 . . .

where k1,�, kn > N 8 �0� such that k1 �� � kn � k.
Then we have the canonical commutation relations

�aj � ak � � �a�j � a�k� � 0, �aj � a�k� � � iÒh δjk, j , k � 1 ,�, n

which yield the following commutativity�aj � fk0� � �a�j � fk0� � 0, j x k.

Then, we get

N � fk � k fk, k � 0,1,2 . . .


K � fk � Òhω �a � a�� � fk � Òhω �N �
n

2
� � fk � Òhω �N � fk �

n

2
� fk�

� Òhω �k fk � n
2
fk� � Òhω �k � n

2
� fk
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furthermore fk � fl �
1�2πÒh�n fk δkl, k, l � 0,1,2, . . . .

We can get the following proposition.

Proposition 6. The eigenspace of n-dimensional harmonic oscillator associated

with the eigenvalue Ek � Òhω �k � n
2
�, k � 0,1,2,� is spanned by

fk�x, p� � fk1 � fk2 �� � fkn

� f0 ��1�k Lk1�4a�1a1�Lk2�4a�2a2��Lkn�4a�nan�
where k1,�, kn > N 8 �0� such that k1 �� � kn � k

f0 � f10f20�fn0 �
1�πÒh�n exp

���mωÒh
n

Q
j�1

x2j �
1

mÒhω n

Q
j�1

p2j
��

Lkj�4a�j aj� � kj

Q
l�0

��1�l kj !�l!�2�kj � l�! � �4a�j aj�l
4a�j aj � 4

Kj�xj , pj�Òhω � 2�mωÒh x2j �
1

mÒhω p2j� .
4.2. The MIC-Kepler Problem

For a real parameter E let us consider the generalized Hamiltonian Φ�x, p� de-
fined by

Φ�x, p� � r�Hµ �E�.
Then we have

�π�µΦ��u, ρ� � 1

8m
�ρ12 � ρ22 � ρ32 � ρ42� �E�u21 � u22 � u23 � u24� � k.

The energy hyper surface E � Hµ is equivalent to the condition Φ�x, p� � 0 ,
which is preserved by the equation of motion. In what follows we consider the
case E @ 0 . The condition �π�µΦ��u, ρ� � 0 gives

1

2m

4

Q
j�1

ρj
2
� 4SES 4

Q
j�1

uj
2
� 4k

and this equation is equivalent to that of four-dimensional harmonic oscillator, if
K�u, ρ� � 4k with mω2~2 � 4SES . Then, by Proposition 6 for the case of four-
dimension, we have

En � Òhω �n � 4

2
� � Òhω �n � 2� � 4k, n � 0,1,2 . . . .
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Then we have Òh2ω2�n � 2�2 � 16k2, and from ω2
� 8SES~m , we get

E �
�2mk2Òh2 �n � 2�2 , n � 0,1,2 . . . .

The conformal Kepler problem introduced by Iwai and Uwano is the triple �T �Ṙ4,
dρ , du,H� such that

H�u, ρ� � 1

2m

�� 1

4u2

4

Q
j�1

ρj
2�� � k

u2
�

Note that

�π�µΦ��u, ρ� � u2 ¢̈̈¦̈̈¤
1

2m

�� 1

4u2

4

Q
j�1

ρj
2�� � k

u2
�E

£̈̈§̈̈¥ � u2 �H�u, ρ� �E� .
Proposition 6 yields the following one.

Proposition 7. The eigenspace of the conformal Kepler problem associated with

the eigenvalue En �
�2mk2Òh2 �n � 2�2 , n � 0,1,2, . . . is spanned by the functions

fn�u, ρ� � f0 ��1�nLn1�4a�1a1�Ln2�4a�2a2�Ln3�4a�3a3�Ln4�4a�4a4�
where n1, n2, n3, n4 > N 8 �0�, such that n1 � n2 � n3 � n4 � n and for all
j � 1,2,3,4

aj �
1º
2

½
mωnÒh uj �

iº
mÒhωn ρj , a�j � 1º

2

½
mωnÒh uj �

iº
mÒhωn ρj

Òhωn � 4k

n � 2
, n � 0,1,2, . . .

f0 � f10f20f30f40 �
1�πÒh�4 exp

���mωnÒh 4

Q
j�1

u2j �
1

mÒhωn
4

Q
j�1

ρ2j
��

Lnj�4a�j aj� � nj

Q
l�0

��1�l nj !�l!�2�nj � l�! � �4a�j aj�l.
Reduction of conformal Kepler problem by an S1 action is a restriction of the
eigenspaces ofH to that ofHµ, i.e., restriction of the eigenfunctions fn to fnSψ�1�µ�.

Proposition 8. �f Sψ�1�µ���u, ρ� satisfies the following �-characteristic equation

ψ�u, ρ� � f�u, ρ� � µ � f�u, ρ�
.
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We need the eigenfunctions which span the eigenspaces of the Hamiltonian and
that of the momentum mapping simultaneously. For this purpose, we consider the
following functions

b�1�u, ρ� � 1º
2
�a�1 � ia�2�, b1�u, ρ� � 1º

2
�a1 � ia2�

b�2�u, ρ� � 1º
2
�a�3 � ia�4�, b2�u, ρ� � 1º

2
�a3 � ia4�

b�3�u, ρ� � 1º
2
�a�1 � ia�2�, b3�u, ρ� � 1º

2
�a1 � ia2�

b�4�u, ρ� � 1º
2
�a�3 � ia�4�, b4�u, ρ� � 1º

2
�a3 � ia4� .

These functions satisfy the following canonical commutation relations

�bj � bk � � �b�j � b�k� � 0, �bj � b�k� � � iÒh δjk, j, k � 1, 2, 3, 4.

Moreover, we introduce

Na ��Ð
b�3 � b3 � b3b

�

3 �
1

2
, fa0 ��Ð

1

πÒh e�2b
�

3b3

Nb ��Ð
b�1 � b1 � b1b

�

1 �
1

2
, fb0 ��Ð

1

πÒh e�2b
�

1b1

Nc ��Ð
b�2 � b2 � b2b

�

2 �
1

2
, fc0 ��Ð

1

πÒh e�2b
�

2b2

Nd ��Ð
b�4 � b4 � b4b

�

4 �
1

2
, fd0 ��Ð

1

πÒh e�2b
�

4b4 .

We have

b � b� �
4

Q
j�1

bjb
�

j �

4

Q
j�1

aja
�

j � a � a�


 Na �Nb �Nc �Nd � b � b� � 2 � a � a� � 2 � N .
We also introduce for na , nb , nc , nd � 0,1,2 . . . the functions

fna ��Ð

1

na!
b�3 �� � b�3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

na

� fa0 � b3 �� � b3´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
na

�
1

na!
�b�3��na fa0 �� b3�na

fnb
�

�Ð

1

nb!
b�1 �� � b�1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nb

� fb0 � b1 �� � b1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nb

�
1

nb!
�b�1��nb fb0 �� b1�nb

fnc ��Ð

1

nc!
b�2 �� � b�2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nc

� fc0 � b2 �� � b2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nc

�
1

nc!
�b�2��nc fc0 �� b2�nc

fnd
�

�Ð

1

nd!
b�4 �� � b�4´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nd

� fd0 � b4 �� � b4´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nd

�
1

nd!
�b�4��nd fd0 �� b4�nd
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and put
fn �

�Ð
fna � fnb

� fnc � fnd
, n � 0,1,2 . . .

where na, nb, nc, nd > N 8 �0� such that na � nb � nc � nd � n .
Similarly, we get the following commutation relation

�b3 � fb0� � �b3 � fc0� � �b3 � fd0� � �b�3 � fb0� � �b�3 � fc0� � �b�3 � fd0� � 0�b1 � fa0� � �b1 � fc0� � �b1 � fd0� � �b�1 � fa0� � �b�1 � fc0� � �b�1 � fd0� � 0�b2 � fa0� � �b2 � fb0� � �b2 � fd0� � �b�2 � fa0� � �b�2 � fb0� � �b�2 � fd0� � 0�b4 � fa0� � �b4 � fb0� � �b4 � fc0� � �b�4 � fa0� � �b�4 � fb0� � �b�4 � fc0� � 0 .

In this way we can find that

�Na �Nb �Nc �Nd� � fn � n fn, 
N � fn � n fn

and due to (1)

�a � a� � 2� � fn � n fn 
 Òhωa � a� � fn �K � fn � Òhω �n � 2�fn.
As a result, we get

K � fn � Òhω �n � 2�fn, n � 0,1,2, . . .

fn � fl �
1�2πÒh�4 fn δnl, n, l � 0,1,2, . . . .

We can reslate the above-mentioned proposition (Proposition 7) as the following.

Proposition 9. The eigenspace of the conformal Kepler problem associated with

the eigenvalue En �
�2mk2Òh2 �n � 2�2 , n � 0,1,2, . . . is also spanned by

fn�u, ρ� � f0 ��1�nLna�4b�3b3�Lnb
�4b�1b1�Lnc�4b�2b2�Lnd

�4b�4b4�
where na, nb, nc, nd > N 8 �0� such that na � nb � nc � nd � n

Òhωn �
4k

n � 2
, n � 0,1,2, . . .

f0 � fa0fb0fc0fd0 �
1�πÒh�4 exp��mωnÒh 4

Q
j�1

u2j �
1

mÒhωn
4

Q
j�1

ρ2j�
and for all �α , j� � �a ,3� , �b ,1� , �c ,2� , �d ,4�

Lnα�4b�j bj� � nα

Q
l�0

��1�l nα!�l!�2�nα � l�! � �4b�j bj�l.
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In fact

4b�3b3 �
mωÒh �u12 � u22� � 1

mÒhω �ρ12 � ρ22� � 2Òh�u1ρ2 � u2ρ1�
4b�1b1 �

mωÒh �u12 � u22� � 1

mÒhω �ρ12 � ρ22� � 2Òh�u1ρ2 � u2ρ1�
4b�2b2 �

mωÒh �u32 � u42� � 1

mÒhω �ρ32 � ρ42� � 2Òh�u3ρ4 � u4ρ3�
4b�4b4 �

mωÒh �u32 � u42� � 1

mÒhω �ρ32 � ρ42� � 2Òh�u3ρ4 � u4ρ3� .

We get

b�3b3 � b
�

1b1 � b
�

2b2 � b
�

4b4 �
1Òh ��u2ρ1 � u1ρ2 � u4ρ3 � u3ρ4� � 2Òh ψ�u, ρ�


ψ�u, ρ� � Òh
2
�b�3b3 � b�1b1 � b�2b2 � b�4b4� (2)

�

Òh
2
�b�3 � b3 � b�1 � b1 � b�2 � b2 � b�4 � b4� .

By (2) and Proposition 8, the conditional equation for reduction is

�b�3 � b3 � b�1 � b1 � b�2 � b2 � b�4 � b4� � fn � 2Òh µ � fn . (3)

The left side of (3) can be transformed into the form�b�3 � b3 � b�1 � b1 � b�2 � b2 � b�4 � b4� � fna � fnb
� fnc � fnd

� �na � nb � nc � nd� fna � fnb
� fnc � fnd

� �na � nb � nc � nd� fn .
In this way we find the relation

2Òh µ � na � nb � nc � nd � l, l > Z.

Therefore, we get as well¢̈̈̈̈̈̈
¨̈̈¦̈̈̈̈̈
¨̈̈̈¤

2Òh µ � l

2�na � nd� � n � l
2�nb � nc� � n � l




¢̈̈̈̈̈̈
¨̈̈¦̈̈̈̈̈
¨̈̈̈¤

µ �
l

2
Òh �l > Z�

S l S B n
n and l are simultaneously even or odd.

Finally, we obtain the theorem.

Theorem 10. The eigenspace of the MIC-Kepler problem associated with the

eigenvalue En �
�2mk2Òh2 �n � 2�2 , n � 0,1,2, . . . is spanned by the functions

fn�u, ρ� � f0 ��1�n Lna�4b�3b3�Lnb
�4b�1b1�Lnc�4b�2b2�Lnd

�4b�4b4�
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where na, nb, nc, nd > N 8 �0�, l > Z are such that

� 2�na � nd� � n � l
2�nb � nc� � n � l i.e., � S l S B n

n and l are simultaneously even or odd.

Its dimension is

�n � l
2

� 1��n � l
2

� 1� � �n � l � 2��n � l � 2�
4

�

5. Green’s Functions

5.1. Harmonic Oscillator

In order to obtain the �-exponential function e
it
Òh
K

�
of n-dimensional harmonic os-

cillator, we consider the following differential equation

� iÒh ∂

∂t
e

it
Òh
K

�
�K � e

it
Òh
K

�
� e

it
Òh
K

�
� K

� �K �

Òh2ω2

4
n

∂

∂K
�

Òh2ω2

4
K

∂2

∂K2
� e it

Òh
K

�

with the initial condition e
it
Òh
K

�
St�0 � 1 . We solve this differential equation explicitly

and state

Proposition 11. The �-exponential of n-dimensional harmonic oscillator is given
as

e
it
Òh
K

�
� �cos ωt

2
��n exp�i 2KÒhω tan

ωt

2
�, ωt

2
x �l � 1

2
�π, l > Z.

Since this �-exponential function e
it
Òh
K

�
has singularities on the real axis t �t C 0�,

there is a possibility to shift the from variable t to z� � t � iy� � y� x 0� [9].
Then we get

�iÒh ∂

∂z�
e

iz�

Òh
K

�
� K � e

iz�

Òh
K

�
� e

iz�

Òh
K

�
� K

e
iz�

Òh
K

�
� �cos ωz�

2
��n exp�i 2KÒhω tan

ωz�

2
� .

Let n � 4 , then

K�u, ρ� �
1

2m

4

Q
j�1

ρ2j �
1

2
mω2

4

Q
j�1

u2j �
1

2m
ρ2 �

1

2
mω2u2.
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Figure 1. The path of integration Γy� for the Laplace transformation
of K̃�uf , ui ; z

��.

When y� A 0 , we can calculate the inverse Fourier-transform of the following �

exponential

e
iz�

Òh
K�

ui�uf
2

,ρ�
�

� �cos ωz�
2
��4 exp�i 2ÒhωK �ui �uf

2
, ρ� tan ωz�

2
¡

where ui and uf denote initial point and final point respectively.

1�2πÒh�4 S ª

�ª

�S
ª

�ª´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
4

�cos ωz�
2
��4 ei 2

Òhω
K�

ui�uf
2

,ρ� tan ωz�

2 e
i
Òh
ρ � �ui�uf �dρ

�
�m2ω2

4π2Òh2 1

sin2�ωz�� exp ��imω2Òh 1

sin �ωz�� ��u2i � u2f� cos �ωz�� � 2ui �uf�	 (4)

�

Ð�
K̃�uf , ui ; z��

Then we calculate its Green’s function by the Laplace transform of (4) as follows.

lim
Im z���0

iÒh SΓy�

K̃�uf , ui ; z�� e� i
Òh
�ϵ�iy��z�dz�

� lim
y���0

iÒh S ª

0
K̃�uf , ui ; t � iy�� e� y��iϵ

Òh
�t�iy��dt

�
�im2ω2

4π2Òh3 lim
y���0

S
ª

0
e�

i
Òh
�ϵ�iy���t�iy���sin �ωt � iωy����2 (5)

� exp ��imω
2Òh 1

sin �ωt � iωy�� ��u2i � u2f� cos �ωt � iωy�� � 2ui �uf�	dt
�

Ð�
G�uf , ui ; ϵ�.
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Figure 2. The configuration space Ṙ3
� R3

� �0�.

5.2. The MIC-Kepler Problem

We reduce the Green’s function of the four-dimensional harmonic oscillator (ϵ � 4k
and mω2

� 8SES, i.e., the conformal Kepler problem) to that of the MIC-Kepler
problem by the S1 action. We consider the open subsets of Ṙ3

� R3
��0� such that

U� =
�Ð

�x�r, θ, ϕ� > Ṙ3 ; r A 0 , 0 B θ @ π , 0 B ϕ B 2π�
U� =
�Ð

�x�r̃, θ̃, ϕ̃� > Ṙ3 ; r̃ A 0 , 0 B θ̃ @ π , 0 B ϕ̃ B 2π� .
We define two kinds of local coordinate as follows.

π � π�1�U�� ? u�r, θ, ϕ, φ� z� x�r, θ, ϕ� > U�

x � r sin θ cosϕ
y � r sin θ sinϕ
z � r cos θ

¢̈̈̈̈̈̈
¦̈̈̈̈̈
¤̈
u1 �

º
r cos

θ

2
cos

φ � ϕ

2
, u2 �

º
r cos

θ

2
sin

φ � ϕ

2

u3 �
º
r sin

θ

2
cos

φ � ϕ

2
, u4 �

º
r sin

θ

2
sin

φ � ϕ

2

where r A 0, 0 B θ @ π, 0 B ϕ B 2π, 0 B φ B 4π, and

π � π�1�U�� ? u�r̃, θ̃, ϕ̃, φ̃� z� x�r̃, θ̃, ϕ̃� > U�

x � r̃ sin θ̃ cos ϕ̃

y � r̃ sin θ̃ sin ϕ̃

z � �r̃ cos θ̃

¢̈̈̈̈̈̈
¦̈̈̈̈̈̈
¨̈¤
u1 �

º
r̃ sin

θ̃

2
cos

φ̃ � ϕ̃

2
, u2 �

º
r̃ sin

θ̃

2
sin

φ̃ � ϕ̃

2

u3 �
º
r̃ cos

θ̃

2
cos

φ̃ � ϕ̃

2
, u4 �

º
r̃ cos

θ̃

2
sin

φ̃ � ϕ̃

2

where r̃ A 0, 0 B θ̃ @ π, 0 B ϕ̃ B 2π, 2π B φ̃ B 6π .
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Then we have local trivializations τ� � π�1�U�� 	 U� � S1, respectively. The
transition function

g�� � τ� X τ
�1
�

� U� 9U� � S1 Ð� U� 9U� � S1

is given explicitly as

u �x, φ� � u�r, θ, ϕ, φ� ( g���u��x, φ̃� � g���u��r̃, θ̃, ϕ̃, φ̃�
� g���u��r, π � θ, ϕ, φ � 2π� .

Let ω A 0 such that ω x ωn �
4kÒh�n � 2� , n � 0,1,2, . . . . We calculate the

Green’s functions of MIC-Kepler problem as follows, where J l�ξ� is the Bessel
function.

Theorem 12. i) When ui , uf > π�1�U��, the Green’s function is

G� �rf , ri ; E � �mω2~8�
� rfS

4π

0
G�uf , ui ; 4k� exp�i l φi � φf

2
�dφi

� ��1� µ
Òh
�im2ω2

16πÒh3 lim
y���0

S
ª

0
e�

i
Òh
�4k�iy���t�iy���sin �ωt � iωy����2

� exp ��imω
2Òh �ri � rf� cot �ωt � iωy�� � i

2µÒh �
Θ

2
�

�J 2µ
Òh
�mω
2Òh »

2xi �xf � 2ri rf cosec �ωt � iωy��� dt

where l �
2µÒh > Z and

Θ

2
� tan�1

<@@@@@>
xi yf � yi xf

ri zf � rf zi
�

zi zf �
¼�r2i � z2i ��r2f � z2f� � ri rf

zi zf �
¼�r2i � z2i ��r2f � z2f� � xi �xf

=AAAAA? (6)

ii) When ui , uf > π�1�U��, then the Green’s function is written as

G� �r̃f , r̃i ; E � �mω2~8�
� r̃fS

6π

2π
G�uf , ui ; 4k� exp�i l φ̃i � φ̃f

2
�dφ̃i

� ��1� µ
Òh
�im2ω2

16πÒh3 lim
y���0

S
ª

0
e�

i
Òh
�4k�iy���t�iy���sin �ωt � iωy����2

� exp ��imω
2Òh �r̃i � r̃f� cot �ωt � iωy�� � i

2µÒh �
Θ̃

2
	

�J 2µ
Òh
�mω
2Òh »

2xi �xf � 2r̃i r̃f cosec �ωt � iωy��� dt
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where l �
2µÒh > Z and

Θ̃

2
� tan�1

<@@@@@>
yi xf � xi yf

r̃i zf � r̃f zi
�

zi zf �
¼�r̃2i � z2i ��r̃2f � z2f� � r̃i r̃f

zi zf �
¼�r̃2i � z2i ��r̃2f � z2f� � xi �xf

=AAAAA? (7)

iii) When ui , uf > �π�1�U�� 9 π�1�U��� , and using g�� we can easily
find

tan
Θ̃

2
� � tan

Θ

2
� Θ̃ � �Θ

which shows that (6) and (7) are equivalent and we can state that the
Green’s function is a kind of a section.
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