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CHAPTER XVIL

A DIRECT METHOD OF OBTAINING THE EQUATIONS CONNECTING Y-PRODUCTS.

290. THE result given as Ex. xi. of § 286, in the last chapter, is a
particular case of certain equations which may be obtained by actually
multiplying together the theta series and arranging the product in a
different way. We give in this chapter three examples of this method, of
which the last includes the most general case possible. The first two furnish
an introduction to the method and are useful for comparison with the
general theorem. The theorems of this chapter do not require the charac-
teristics to be half-integers.

291. Lemma. If b be a symmetrical matrix of p® elements, U, V, u, v,
A, B, f,9.9.7f.9,9, v, M, N, s, t, mn be columns, each of p elements,
subject to the equations
ni{+m=2N +¢, g+r=f, q+r=f U+ V=2u=A4,
—n+m=2M+¢, —¢+r'=¢g, —q+r=9, -U+V=2=B8,
then
2U(n+q)+b(n+ ¢ )+ 2miqg(n+q)+ 2V (m+7") + b (m + 1)+ 2mir (m + 1)
=2A(N+iii)+%(N+s+f)ﬂawg<N+iii)
2 2 2
, ’ Y /N 2 ’ ’
+ 2B(M+t—"2'l>+2b (M+t Eg) +27m'g(M+t ’;g)

This the reader can easily verify.

Suppose now that the elements of s’ and ¢’ are each either 0 or 1, and
that » and m take, independently, all possible positive and negative integer
values. Toany pair of values, the equationsn+m=2N+5, —n+m=2M +¢
give a corresponding pair of values for integers N and M, and a pair of
values for & and ¢. Since 2m=2N+ 2M +5 +t,s +¢ is even, and there-
fore, since each element of s’ and ¢ is < 2, s’ must be equal to ¢. Hence by
means of the 2? possible values for s, the pairs (n, m) are divisible into 27
sets, each characterised by a certain value of . Conversely to any assignable
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integer value for each of the pair (N, M) and any assigned value of " (< 2)
corresponds by the equations n=N—M, m=N+ M+ a definite pair of
integer columns n, m.

Hence, b being such a matrix that, for real «, ba? has its real part negative,

[Ze* Un+q)+b(n+q)*+2mig(nt+q) ] [Ee’ V (m+7') +b in+7')3+2mir (m+7) ]
n m

5[5 (Y ()]
s LN

[‘ew (M+ L' ) 2 (M+ s+g ) +omig (M+ LisA ):l
n

2
thus, if S (u; A), or Y (u; ;) , denote TN Hb+X)HamidntX) Yy (4, N) or
n
’

Ny (u; l) denote Setun+X)+dm+X)Hemidm+X) we have
n

et ey

where the equation on the right contains 27 terms corresponding to all
values of &', which is a column of p integers each either 0 or 1; all other
quantities involved are quite unrestricted.

Therefore if @ be a symmetrical matrix of p® elements and % any matrix
of p* elements, we deduce, replacing « by hu, and v by kv, and multiplying
both sides by e*#+e¥ the result

o ) = (€ +g+7) 3 —g'+7)
S (u v,q)%(u+v,r)—§?rl|: g+r Y, |v; —qtr ,
where ¢ denotes all possible 27 columns of p elements, each either 0 or 1,

and Y, differs from % only by having 2a, 2k, 2b instead of @, A, b in the
exponent ; thus we may write, more fully,

S {'2@,2&) (u+7),

7 | 20, 2&)')
2, 2"1

29’

_ FE+g+) 0, 20 =g +7)
2%[ q+r 217,4n:|%[v’ —-q+r

0, 20’
€ 27]’ 4’"7’ '

Ezx. i. When the characteristics g, 7 are equal half-integer characteristics, say

a
g=r=}% ( a’) ’
the equation is

e""““'s[u+v; 5(2’)]3[“"”; 5(2’)]=§,9”"“'31 (u; %(e’o-ka')) 9% <v; é()") ;

multiplying this equation by ™", when 7 denotes a definite row of integers, each either
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0 or 1, and adding the equations obtained by ascribing to a all the 2? possible sets of values
in which each element of a is either O or 1, we obtain

o9, (u; 5(n(-)|-a’)>31(”; éon)=§emm+a')9 utw; %(Z'):If}l:u—'v; %(Z,):I»

for we have
somiale+m) _ [14€mctm)],
a i=1

Ex. ii. Deduce from Ex. i. that when p=1, the ratio of the two functions

crass QO Le-ess Qeoovess (-3
Lo Qs oot 1)

is independent of .

FEz. iii. Prove that the 27 functions 9, (u ; d(e (-)I- @ )> , obtained by varying ¢/, are not
connected by any linear equation with coefficients independent of u.

Ez. iv. Prove that if a, o’ be integral,

#lest Q)]s (T o[+ 16))

From this set of equations we can obtain the linear relation connecting the squares of
2P +1 (or less) assigned theta functions with half-integer coefficients.

Ex.v. Using the notation |\, ;| for the matrix in which the j-th element of the i-th
row is A;,;, prove that if u,, ..., %,, #j, ..., v, be 2.2P arguments, and 5(‘:) any half-

integer characteristic,
91[“*'3 %e‘,;a’]? S| v é&’]

s (o 1(3] -

and, denoting the determinant of the matrix on the left hand by {»;, v;} and the determi-
nant of the second matrix on the right hand by {v}, deduce that

{vi, ?’j}=32p‘l1ri‘4{”}2) {us, 7’1'}:\/{“&1 Ui, it
where 4 is the sum of the p elements of the row letter a. When the characteristic (‘;)

b

is odd, {u;, %} is a skew symmetrical determinant whose square root is* expressible
rationally in terms of the constituents 9| u;+u;; %(2)]9[1&.——-1&,-; %(‘:)]

instance when p=1, we obtain, with a proper sign for the square root, the equation of
three termst.

Since any 27 + 1 functions of the form 9| u+vg; 3 (‘;)] 9 [u -vg; % (‘;)] are connected

by a linear equation with coefficients independent of %, it follows that if wu, ..., u,,
DYy o0y Uy be any 2m arguments, m being greater than 27, the determinant of m rows and

columns, whose (7, j)th element is ${ u;+7;; Q(‘;)]S[ui—vj; %(Z)], vanishes identi-

cally, When } (Z) is odd and m is even, for example equal to 2P+2, this determinant is

* Scott, Theory of determinants (Cambridge, 1880), p. 71.
+ Halphen, Fonct. Ellip. (Paris, 1886), t. 1. p. 187,
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a skew symmetrical determinant whose square root may be expressed rationally in terms of
the functions $ I:u‘--i-vj; 3 (';)] 3 [u,- -v; % (‘;)] . The result obtained may be written

{“i) %}i=0}
wherein* the determinant {u;, v;} has m rows and columns, m being even and greater than
22, When m is odd the determinant {;, v;} itself vanishes.

A proof that for general values of the arguments the corresponding determinant
{u;, v}, of 27 rows and columns, does not identically vanish is given by Frobenius, Crelle,
XcvI (1884), p. 102.

A more general formula for the product of two theta functions is given below
Ex. ii. § 292.

292. We proceed now to another formula, for the product of four theta
functions. Let J denote the substitution

(-1 1 1 1),
1 -1 1 1
1 1 -1 1
1 1 1 -1
and J,; be the element of the matrix which is in the r-th row and the s-th
4
column ; then 3 J;, Ji;=0 or 1, according as r&s, orr=s8(r,s=1, 2, 3, 4).
i=1

Let u,, u,, us, u, denote four columns, each of p quantities; written down
together they will form a matrix of 4 columns and p rows. Let U, U,, U;,
U, be four other such columns, such that the j-th row of the first matrix
(j=1,2, ..., p)is associated with the j-th row of the second by the equation

((m)s, (wa)j, (us)s, (wa)y) = J (U, (U, (Uss, (U)).
Let v,, v, v, v, and Vy, V,, V5, V, be two other similarly associated sets,

each of four columns of p elements. Then if 2 be any matrix whatever, of p
rows and columns, we have

kv, + huyv, + hugvs + huw, =AUV, + RU,V, + AU,V + U,V ,;

this is quite easy to prove: an elementary direct verification is obtained by
selecting on the left the term A (u,)e(v.); + A (ts)e(Va)i+ Rk (s e (va)j+ i (Ui (v,);

=t 3 [ (Ut Toa (U +-Joa (U T U (V) + T (V)
+Ta (Vo + T (VD))
= hie (%) (U2 (Vs + (ETad o) (U (V) + (Ve (V)] + .-}

= g {( U, 1)k ( Vl)j + ( Uz)k (Vz)j + ( Us)k ( Vs)j + ( U, 4)Ic (Vt)j})
and this is the corresponding element of AU, V, + AUV, + hU,V, + hU,V,.

* The theorem was given by Weierstrass, Sitzungsber. der Berlin. Ak. 1882 (1.—xxvr., p. 506),
with the suggestion that the theory of the theta functions may be & priori deducible therefrom, as
is the case when p=1 (Halphen, Fonct. Ellip. (Paris (1886)), t. 1. p. 188). See also Caspary,
Crelle, xcvI. (1884), and ibid. xcvir. (1884), and Frobenius, Crelle, xcvr. (1884), pp. 101, 103.
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Now we have

¥ (U, 1) Y (U §2) ¥ (s, 45) ¥ (s Qo)
= 2 30 +23huy (Nt qy') +3b (Bp+ gy ) 3+ 2miZgr (rtqr)

Wy Nay N3y Ny

In the exponent here there are four sets each of four columns of p quantities
namely the sets
Ury Ny Grs Grs

we suppose each of these transformed by the substitution J. Hence the
exponent becomes

s EZAUA+ISR T, (Nt Q) +3b (Npt Q) o+ 2miZQr (N, +Q')

-~

va Nﬂ' Nan N4
wherein the summation extends to all values of V,; given by
Noj =3 (m + noj + 5 + 15— 2my5),
for which all of n,; are integers.

All the values N,; will not be integral. But since N,; — Ny =ng — n,; the
fractional parts of NV,;, N,j;, Ny;, N,; will be the same, = ¢/, say, (¢f =0 or 1).
Let m,; be the integral part of N,;. We arrange the terms of the right hand
into 27 classes according to the 27 values of ¢/. Then since

Myj = F (M + gj + 0+ 1 — 2n5) — §¢f,

every term of the left-hand product, arising from a certain set, of values of
the 4p integers n,;, gives rise to a definite term of the transformed product on
the right with a definite value for ¢, while, since

My = & (Mg + Moy + Mgy + Mg — 2m) + § ¢, .
every assignable set of values of the 4p integers m,; and value for ¢ (which
would correspond to a definite term of the transformed product) will arise,
from a certain term on the right, provided only the values assigned for m,; be
such that % (m,; + my; + my; + my; + ¢;') is integral.

Now we can specify an expression involving the quantities
Hip = (g4 oy + maj + my; + &),

which is 1 or 0 according as g = (u;, s, ..., ptp) is & column of integers or
not. In fact if e=(e,, ..., ) be a column of quantities each either 0 or 1—
so that e is capable of 2 values—the expression

1o, 1 . . 1 , . .
gp ST = gy (Sepriom). .. (Setriewn) = o (1 -+ i) (L4 v (1 + o)

has this property; for when u,, ..., u, are not integers they are half-
integers.
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Hence if the series —21;26”"(’“1+’"2+"‘3+m¢+") be attached as factor to every

€

term of the transformed product on the right we may suppose the summation
to extend to all integral values of m,;, for every value of €.

Then the transformed product is

.l. SaUZ+2shUy (Mp+3e'+Q'y) +3b (Mr+3e’+ Q') 2 +2miZQy (Mptie + Q') +mrie (M +mgtmatmy+e)
9p e
mymomsmye
= 2% EH g"'Uz+2h Uy (mr+p"y) +b (Mpt-p'r) 2 2mipy (MptD'y) | g te (EP'T"G')’
r
where
’ ’ ’

Pr=%€+ Qr: Pr =%€ +er

so that

Sp, =2¢ +3Q, = 2¢ + 3¢,
Thus we have

N (w1, 1) Y (e, 2) S (s, g3) Y (%, 9u)
-5 E s | 0,04 (5) |s[taers (D)5 voari(f)]

N [U.‘, Qu+1 (‘i)] .

This very general formula obviously includes the formula of Ex. xi., § 286,
Chap. XV. It is clear moreover that a similar investigation can be made for
the product of any number, %, of theta-functions, provided only we know of a
matrix J, of £ rows and columns, which will transform the exponent of the
general term of the product into the exponent of the general term of the sum
of other products.

It is for this more general case that the next Article is elaborated.
It is not necessary for either case that the characteristics ¢y, ¢,, ... should
consist of half-integers.

Ez.i. If g be a half-integer characteristic, =@, say, and we use the abbreviation

G (0, 0,85 @)=3(u; @)9(v; Q3(w; QIC; )

we have

P (u+a, u—a, v+b, v-b, Q)=21—,, s ¢ plutd, u—b vta, v—a; Q+%(‘E>],
€, €

where the summation on the right hand extends to all possible 2% half-integer character-
istics %( ) ; putting @+3 (e )=R, so that R also becomes all 2% half-integer character-
€

€
€
istics, this is the same as
Q¢ (uta, u—a, v4+b,v-b; Q)=2l,;§e"“q"”+"“’”¢(u+b, u—b,v+a,v—a; R),
where,

it o=(%), 2=3(%), then |QI=a, |RI=88, 1@ Rl=af~dB.
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By adding, or subtracting, to this the formula derived from it by interchange of v and
a, we obtain a formula in which only even or odd characteristics R occur on the right hand.
Thus, for p=1, we derive the equation of three terms.

Ez.ii. If a, B, v, 8 be integers such that ay is positive and 83 is negative, p=ad - By,
and r be the absolute value of p, prove that

e(u; ayr 0) e(v; —Bér 0>= s G(uB—QJy; pydt F/P> e(—uB-H)a; — pafr l'/p>
0 0)= .2 o 0
=r- oy et \of- . flp )
" O.ﬁzy, 2" (u8 o3 pybe —79+6b) e( uB+va; —pafr ag—ph/)’

where © (u; T

:) denotes the theta function in which the exponent of the general term is
2wtu (n+€)+imr (n+ €)%+ 2mte (n+€),
and p, » are row letters of p elements, all positive (or zero) and less than r, subject to the

condition that (8u—Bv)/p, (av—yp)/p are integral, while e, £, g, & are row letters of p
elements which are all positive (or zero) and less than r.

FEy. iii. Taking, in Ex. ii., a, B, 7, 8 respectively equal to 1, 1, 1, —%, we find
p=v<k+1, k being positive. Hence, taking #=3, prove the formula (Konigsberger,
Crelle, LX1V. (1865), p. 24), of which each side contains 2P terms,

3\ _ o -mis's ( . 0
—fa 0(0;r 1)’

fe(u; T i:’) e(u; 3r is gs) e<2u; 3r

s, & being rows of p quantities each either 0 or 1.
293. We proceed now to obtain a formula* for the product of any
number, %, of theta functions.

We shall be concerned with two matrices X, #, each of p rows and &
columns; the original matrix, written with capital letters, is to be trans-
formed into the new matrix by a substitution different for each of the
p rows; for the j-th row this substitution is of the form

1
(Xl,j, Xz,j, ceey Xr,j, ooy Xk,j)="—'—.wj (-’171’]', .’L‘,’j, ceey w,,j, ceey w,,,j);
J

herein 7; is a positive integer; w; is a matrix of £ rows and columns,
consisting of integers; the determinant formed by the elements of this
matrix is supposed other than zero, and denoted by w;; bearing in mind
that throughout this Article the values of r are 1, 2, ..., k and the values of j
are 1, 2, ..., p, we may write the substitution in the form

1
(Xr,5) = - i (@r,5)-
7

The substitution formed with the first minors of the determinant of w; will
be denoted by Q;; that formed from Q; by a transposition of its rows and

. = e 1 .
columns will be denoted by ;. Then the substitution inverse to S @ 18
J

;—’.(_)J, denoting the former substitution by A;, the latter is ;7
7

* Prym und Krazer, Neue Grundlagen...der allgemeinen thetafunctionen, Leipzig, 1892.
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If for any value of j a set of k integers, P, ;, be known such that the &
quantities

AP, ) = f; 0 (P,,))

are integers, then it is clear that an infinite number of such sets can be
derived ; we have only to increase the integers P, ; by integral multiples of
u;.  But the number of such sets in which each of P, ;is positive (including
zero) and less than the absolute value of u; is clearly finite, since each
element has only a finite number of possible values. We shall denote this
number by s; and call it the number of normal solutions of the conditions

_r_,-' Q;(P,, ;) = integral ;
Hi

it is the same as the number of sets of % integers, positive (or zero) and less
than the absolute value of u;, which can be represented in the form A;(p.,;),
for integral values of the elements p,, ;.

The k theta functions to be multiplied together are at first taken to be
those given by
0O, = Z2VrNrt BN (r=1,...,k),

wherein B, is such a symmetrical matrix that, for real values of the p
quantities X, the real part of the quadratic form denoted (§ 174, Chap. X.) by
B,X*? is negative. The p elements of the row-letters V,, N, are denoted by
Viis Npj(7=1, ..., p). The substitutions A; are supposed to be such that

k
the equations (X, ;) =\;(#,;) transform the sum X B,X,* into a sum
r=1

i
3, b, in which the matrices b, are symmetrical and have the property that
r=1

for real «, the real part of b, is negative.

Taking now quantities m,. ;, v, ; determined by
r: — —_ 1 -
(e ) =N W) = (Vo) (0n3) =X (Vi) = L (V23

x k k
the expressions 3 B,N,?, 3 N,V, are respectively transformed to 2 bm,?
r=1 r=1 r=1
and

4 - k
2 x']' (m",j) ( V'r,j) = 2 Xj(Vr,j) (mr, j) =3 VM
Jj=1 i=1 r=1

230, myp+32bpmy2
éer r

k
hence the product II®, is transformed into = , Where the

r=1 Nyyooos Nk
quantities m,, ; have every set of values such that the quantities \;(m,, ;) take
all the integral values, N, ;, of the original product,
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As in the two cases previously considered in this chapter, we seek now to
associate integers with the quantities m, ;. Let (P, ;) be any normal solution
of the conditions

,% Q;(P,,5) = integral, = (p,,;), say;
put, for every value of j,

N, 5) = (Pr ) = (M, ) + (E,)), (r=1,..., k)
wherein (M, ;) consists of integers, and (&', ;) consists of positive integers
(including zero), of which each is less than the absolute value of u;. For an
assigned set (P, ;) this is possible in one way ; then

o p— 'r‘ — "
(m,, )= ; BN, ) = (pas) + 150 (M) + L (B )

1.,
= (na', j) + - (G 7y j): say,
K
() = () + 15 (M, 5), () =755(E",5);
by this means there is associated with (X, ;), corresponding to an assigned

set (P, ;), a definite set of integers (n,, ;), and a definite set (&£, ;). We do
not thus obtain every possible set of integers for (n,, ;), for we have

where

1 1
7y @ (1.3 = 2 (Prg) 45 (Mo, 5) = (P i)+ 5 (M., ),
so that the values of n, ; which arise are such that A;(n,, ;) are integers.

Conversely let (n.;) be any assigned integers such that A;(n, ;) are

integers ; put
A (ny, ) = (P, 5) + i (M, 5),

wherein the quantities M, ; are integers, and the quantities P, ; are positive
integers (or zero), which are all less than the absolute value of u;; this is
possible in one way; then taking any set of assigned integers (%, ;), which
are all positive (or zero) and less than the absolute value of u;, we can define
a set of integers N, ; by the equations, wherein A7 (P, ;) = integral,

) =(F ) + (P )+ p (M, ) = (', 5) + 75 (v, ).

. . . . 2V, Ny+B, Ny
Thus, from any set of integers (X, ;), arising with a term g7 BTN B

f
k - - . . .

the product II®,, we can, by association with a definite normal solution
r=1

(P,,;) of the conditions ;7 (P, ;) = integral, obtain a definite set (&', ;), and
a definite set (n,,;) such that \;(n,, ;) are integers. And conversely, from any
set of integers (n, ;) which are such that \;(n, ;) are integral, we can, by
association with a definite set (&', ;), obtain a definite normal solution (P, ;)
and a definite set (I, ;).
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k
It follows therefore that if the product IT ®, be written down s,...s, times,
r=1

S@VANr+BNA) | . . . .
a term e* being associated in turn with every one of the s;...s,

normal solutions of the p conditions ;™ (P;) = integral, then there will arise,
once with every assigned set (', ;), every possible set (n,, ;) for which A;(n,, ;)
are integers.

We introduce now a factor which has the value 1 or O according as the
integers (n,, ;) satisfy the conditions A;(n,, ;)= integral, or not. Take % in-
tegers (&,, ;), which are positive (or zero), and less than r;; put

(er,5) =@ (Ey,5);
then

2 2’ € (’”r it < ]) 22 Gr,J'mr,J = 27‘? (&, ) (mr,5) = 27\1 (m, ) (&4, 5)
j=17r=17j ]
= 2 (Nr,j) (&, ;)= N,E,,
j

and this is integral when N, is integral, that is, for all the values (n,, ;) which
actually occur; in fact the quantities N, ; defined by

€\ 1 . ,
(Wr,5) =N (my, 5) = w] (n"'J + }:;]> B ’I_'; 0j (M, 5) + (E'r, 5) = X5 (nr, 5) + (B, 5)
are integral or not accordmg as A;j (n,, ;) are integers or not.

Hence, for a given set n, ;, and a given set &', ;, the sum

2 2"1:2 2 7 (nr i+ ) 2e2”W'E’ II E [e2mN,- J]ET J,
rJ Bpj

wherein the summation extends to all positive (and zero) integer values of

(E,, ;) less than 7, is equal to 7} ... 7% when (&, ;) are all integral, and other-
wise contains a factor of the form

(e2n-ier,~,j — 1)/(62111'1\’,-,5 —_ 1)’

which is zero because 7; (I, ;) is certainly integral. Hence if we denote

1 €, 1 €
Zz_er .(n .+ r:]) b z_er(nr_'. _1‘)’
ir ,,.j s J T J ,L] y " R l“‘
R having the values 7y, ..., rp, then we can write

2m2—€r net+T
(—7‘,,_)"% - ( ) 1, or 0,

according as A; (n,, ;) are all integers or not.

If then every term of the transformed series, in which, so far, only those
values of n, ; arise for which \;(n,, ;) are integers, be multiplied by this factor,
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and the transformed series be completed by the introduction of terms of the
same general form as those which naturally arise in this way, so that now all

possible integer values of (n,, ;) are taken in, the value of the transformed
series will be unaltered. In other words we have

>

n®r= 12 VrNr+BrNy? — 1 s He2v,1n,<+brm,’+2rillze,(n,+%‘
r r Sl---‘%("ﬁ---"p)"N‘,...,Nk,E’,E r
5/7' €r\? .1 €r
=(8 ... Sp) (M) S e (nrt57) +or (e ) ami e (et ,
nE,Er
wherein all possible integer values of (n,, ;) arise on the right; thus the right-
hand side is equal to
s () 3 11O, (5 Ef/")-
S )7 (o) EZE > T\" ¢/R)
and this is the desired form of the transformed product. For con-
venience we recapitulate the notations; X, £, each denote a column of
p integers, positive or zero, such that ', ;< ||, B, ; <75; (€,5) =750 (E', 3);
(e,,5) =w;(£, ;); s; is the number of sets of integral solutions, positive or
zero, ea,ch_ less than |u;|, of the conditions u;j'r;Q;(P,, ;)= integral;
(v,,;)=7"w;(V,, ;); the function O, is a theta function in which the ordinary
matrices a, b, b (§ 189) are respectively 0, b,, 1; by linear transformation of
P Y y

the variables of the form V,=#h,W,, and, in case the matrices w; be suitable,
34,V
multiplication by an exponential e” ", these particularities in the form of

the theta functions may be removed.

The number of sets (%, ;) is (ry...7p)f; the number of sets (&, ;) is
|m ... u¥|; the product of these numbers is the number of theta-products on
the right-hand side of the equation.

Ez.i. We test this formula by applying it to the case already discussed where w; is
an orthogonal substitution given by

wj=(-1 1 1 1 ) =osay,
1 -1 1 1
1 1 -1 1
1 1 1 -1

which is independent of j, r;=2, b,=b, k=4; then y=—16, E, ;<2, £', ;<16, and
. — 1 -1 1 1, ’
e ] B T T B O P S LAY
thence ésl,,-—l—llzez,,=E2’,-—El,,-=integral, etc., so that the fractional part of 1—,13:.,,,- is in-
dependent of 7: similarly the fractional part of %(e’.,',-) is independent of 7 and we may
write L (¢y.) =€+ Ly s, 354+ Lo gy o b5+ Ly ;) Wherein 2L, ;+¢;<16. By the formula
14

B. 31



482 EXAMPLES OF THE APPLICATION . [293

9 (v, g+ N)=e2"4¥N 9 (v, q), when N is integral, we know that e, (vr ;€ '/1';) is independent
€,

of the integral part of €’,/u. Hence the (16)% =216’ terms on the right-hand side of the
general formula, which, for a specified value of }w (£, ;), correspond to all the values of
Lw (£, ;), reduce to 27 terms, in which, since (E',;)=1e (j+Ly;, ..., 35+ 1L,;), all
values of ¢ (<2) arise. Hence there is a factor 21% and instead of the summation in
regard to £, £’ we have a summation in regard to Z, ¢, the right hand being in fact

&€
C.2%r 3 HG( 5 1 )
E, ¢ 7 o %‘0 (Er,j)
and containing 2% terms.
Now put 3 (B, i+ By i+ By, i+ By j)=%e+ M,

AM; being integral ; then the factor of a general term of the expanded right-hand product
which contains the quantities 3o (&, ;) is

HeQiri%kr(nr + ie’),
-

where
b j=Ey, i+ By, j+ By + By j—2E, j=¢+2 (M- E,;),
a’nd 2 . . .
e{nne Elcr — II e%‘ﬂ’léj’ (4e;+8M;—2¢;—4M;) _ H o — emke"
. Jj J

while

S3wiky, iy, j=w1ZS€ Ny, j (mod. 2), =mie. Sn,,

Jjr jr »
so that

HeZm:Hcr (nrt+ie’) _ [Hg21ri£s(nr+}e')] e~ rise';
r r

therefore the right-hand product consists only of terms of the form [ne <'vr, %E )]e"’”.‘".
r 2€

Hence the 2% terms arising, for a specified value of ¢, for all the values of £, ;, reduce to

27 terms, and there is a further factor 23»—the right hand being

1 .,
C.21% 3 [H <'v,., Ef}]e"”‘“ s
€| r €

where -
C=(8...8) "1 (ryuunvp) ¥ =(8;...8p) "1 27 =5"P 274,

To determine the value of ¢ we must know the number (s) of positive integral
solutions, each less than 16, of the conditions e (z)=integral, =(y) say, namely of the
conditions, #; + 2, +2;+2,=2 (#,+y,). Now of these any positive values of z;, ,, 25, 24
(< 16) are admissible for which #,+2,+2;+2, is even. They must therefore either be
all even, possible in 8% ways, or two even, possible in 6. 82. 82 ways, or all odd, possible in

1
8* ways, Hence s=8.8t=215 Hence ('=1/2152%=1/219% and therefore C. 218 = 9"

Making now in the formula thus obtained, which is

1 _rice’ 3
o (7, 0=, 2,703 ()]

the substitution V,=AU,, we have v, =4(V,+ Vy,+ Vi + V, — 27,) = hu,, where
=% (U;+ U+ U+ U;—20,) ; and if we multiply the left hand by UrtalitaUs+als
which is equal to M O FAUTHIUS o Ghtain

1 (o iee €
19 (0, 0)=g5 3677 119 u,,}q(eﬂ.
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Therefore if @, @,, @5, @4 denote any characteristics, and, as formerly, Qq, denote the
period-part corresponding to @,, we have

09 (U,, @)=me U & 9T, + g, 0)=11e"(Tr &) 19 (U, + 04, 0),
T r T r

of which the first factor is easily shewn to be Ite " 9 if (¢ g0 0. g) =10 (@), @y, @ss @) ;

thus

1

n8(U,, @)= --Se~ ™= g~ Mur ) g u,.+0qr,§(€,>:|
r r €

s ’e—me ]ge‘A('"fry qr) e)‘(’”'ry qr)—21ritir(z‘ss)3 I:ur’ Qr+é <i):|

€, €

—wi & € !
'2_‘1,6’2(‘8 wie (3¢ 0+ )3 Uy, ‘h"‘% (€’>]o-.\9[U4, 94+% (:>],

which is exactly the formula previously obtained (§ 292).

T |

. 1
Ez. ii. More generally let )\=; ; be any matrix such that the linear equations
i}

(Xr) =X (‘”r) give
X2+, +X2=m(z2+...... +2332),

wherein 1 is independent of #y, ..., 2 ; then, since, by a property of all linear substitutions,
the equations (¥,)=AX (¥,) lead to

we have also¥*
YIX1+......+Y,CX,‘=m(yl.7;1+ ...... +3/kxk).

Hence, if 4 be any matrix of p rows and columns and

(XT,J'):)\ (‘Z'r‘, f)’ (.7: 1, .y P),
we have

ILXIY1+kX2Y2+...+thYk= .EVIL,-’J'SX,.,J' Yr‘ i=m .Ejhi,jmr,jg/r,i=m(hx1y1+---+hxkyk>7
i r Wi .or

where X}, z,, etc. now denote rows of p quantities.

Thus any orthogonal substitution furnishes a case of our theorem. Taking a case
where
m=1, r=r, wj=0, p=+7% B, ;<r, B ;<|p| <7
we have

1 1 1,, Q5 g L= 1_ .
g len )= (B ) u (€)= 7‘—’(5 m')=|:;‘-’:| (B )= @ (B ),
s0 that the new characteristics will be 7-th parts of integers.

Suppose now, in particular, that the substitution is

1
(Xpyoos Xy o X)=7 (2-F 2 2 ) (T wery Ty vers Ty

* Therefore mey =XY =z . \y=MA\zy, 50 that \\=m; hence the determinant formed with the
elements of A has one of the values /m*.

31—2
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which gives

X.2 "2 2 I . 4 )2 g 4 2
24+ X =§ z(x1+...+(vk) -, =/c/?2(x1+...+.z,,) +3z, —/—sz,.(xl+...+xk)=2x, s

and
X+ +Xp=24...... +ay, X— Xy=x,—2,, etc.

The previous example is a particular case, namely when £=4. In what follows we
may suppose £ odd so that 7;=#. When % is even 7; may be taken=4% The work is
arranged to apply to either case.

The fractional parts of 1 (€', j) being independent of the suftix »—because
®

1, 1
LI 'y, 5=L";— E',,j, et

—we may put 1({,., j)=(; &+Ly i ... ; & + Ly, j) , and may therefore write
I

i i
1;19 <’0r, :r // g) in the form I;Ie (v,, :r//R) .
The equation

1, 1., 1
Go+ns)=1oEn)=ra &)

shews that all values of %ej’ (<1) do arise. Hence for a given value of (Z,,;) there are,

ingtead of |u[*?=r¥P terms given by the general formula, only 72, and the factor »(*-1Ip
divides out.

The values of 1173(“”' ;) given by the general formula are in number |r{*, corresponding

to all the values of (£, ;). As before the fractional part of ,i) is independent of . Let

R(‘r
1, ., ;
7 Bt et B, )=+ 1,

where ;:<1 ; then

1 1 2¢; 2
e )= 0 ()= ((El,,+ ...... + By - E,,) 2, %, ..),(mod. 1).

The factor in the general term of the expanded product on the right hand which
contains e, ; is

1 ,
‘K=]f[]:[e2m;€ J'( TJ+r EJ)
jir

Now
1
S —e, ;=3 (&, ) =¢+kM;;
s -

therefore, as r is £ or a factor of £,

omile Ler  omile tRMYY  omi ST
e 7 rir s _ ZrilGtRip S emi il
and
1 2
2 et =2| p(By it e+ By ) = By | 5

-2[2"+2M E,,,:|n,,,_ Segtr,; (mod. 1)
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Hence the factor above is
. 2¢ € . €€ . €€
K= [He%n; <nr+;)] e—m Py . e2m R
T

and the general term of the right hand is

[re (o 2) ]

Since IITZ<€"’ j)=(27‘j+2.M;'—Er, 5) we may suppose all values of ¢; <% to arise. Hence

instead of r*» we have & and a factor #*»/k? divides out.

To evaluate the factor (ry...7,)"1(s;...$,) "%, =C, say, we must enquire how many
positive solutions exist of the conditions

2 .
Z (2 +.cnnn +2;) — x,=integral,
namely, how many solutions of the conditions
% (24 oee.. + ;) =integral,

exist, for which each of &, ..., 23 <7*; let s be this number ; then C=s—rr~k and
— 2miee’

_rla-1p dfr
w7, 0" 3, [me (v )]

where ¢ <7, € < £, the number of terms on the right being (r£)?. For values of >§ we

may utilise the equation 9 (v, g4+ N)=e*"¥? 9 (v, ¢). For example, when k=r=3 there

are 3% terms, corresponding to characteristics (2‘ // g) . When k=4, r=2, the character-

istics gkf =% will, effectively, repeat themselves. We can reduce the number of terms from

Y
82 or 2% to 2%, We shall thus get factors (esz.z) =1 and so the formula reduces to
that already found.
Ex. iii. Apply the formula of the last example to the orthogonal case given by w;=w,
(Y, ¥, % T, 0, V)=%“’(xy Y % & U ),
o=( 1 1 0 0 1-1) @ '=( 1 1 1-1 0 0),
1 1 0 0-1 1 11—11001
o 0 1 1 1-1
0

1-1 1.1 0 O

-1 1.1 1 0 0 o 1 1-1 1
0o 0 1-1 1 1 1-1 0 0 1 1
0 0-1 1 1 1 -11 0 0 1 1

which lead to p=64 and
X2} V24 204 T2+ U2+ V=224 2+ 24+ 2wt 402
X +Y +Z +T +U +V =2 4y +2 +t +u +v
Z-T=z-y, U-V=z-t, X—Y=u—v,
X+ Y=2+y, Z+T=2+t, U+V=u+o



