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CHAPTER XII. 

A PARTICULAR FORM OF FUNDAMENTAL SURFACE. 

222. JACOBI'S inversion theorem, and the resulting theta functions, with 
which we have been concerned in the three preceding chapters, may be 
regarded as introducing a method for the change of the independent variables 
upon which the fundamental algebraic equation, and the functions associated 
therewith, depend. The theta functions, once obtained, may be considered 
independently of the fundamental algebraic equation, and as introductory to 
the general theory of multiply-periodic functions of several variables ; the 
theory is resumed from this point of view in chapter XV., and the reader 
who wishes may pass at once to that chapter. But there are several further 
matters of which it is proper to give some account here. The present chapter 
deals with a particular case of a theory which is historically a development* 
of the theory of this volume ; it is shewn that on a surface which is in many 
ways simpler than a Riemann surface, functions can be constructed entirely 
analogous to the functions existing on a Riemann surface. The suggestion is 
that there exists a conformai representation of a Riemann surface upon such 
a surface as that here considered, which would then furnish an effective 
change of the independent variables of the Riemann surface. We do not 
however at present undertake the justification of that suggestion, nor do 
we assume any familiarity with the general theory referred to. The present 
particular case has the historical interest that in it a function has arisen, 
which we may call the Schottky-Klein prime function, which is of great 
importance for any Riemann surface. 

223. Let a, ß> 7, 8 be any quantities whatever, whereof three are 
definitely assigned, and the fourth thence determined by the relation 
a8 — ßy=l. Let f, f be two corresponding complex variables associated 
together by the relation f' = (aC + ß)/(yC+ S). This relation can be put into 
the form 

C-A'^ Ç-A' 
* Referred to by Riemann himself, Ges. Werke (Leipzig, 1876), p. 413. 
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wherein /u, is real, and A are the roots of the quadratic equation 
f = (af -f ß)/(yC + S), distinguished from one another by the condition that 
fi shall be less than unity. In all the linear substitutions which occur in 
this chapter it is assumed that A are not equal, and that yu is not equal to 
unity. We introduce now the ordinary representation of complex quantities 
by the points of a plane. Let the points , be marked as in the figure (6), 

and a point C' be taken between , in such a way that 1 > AG' \G'B > / , 
but otherwise arbitrarily ; then the locus of a point P such that AP/PB 
= AG'/G'B is a circle. Take now a point G also between A and such that 
GB J AG = fiG'BjAC', and mark the circle which is the locus of a point P' 
for which P'B/AP'=CB/AC; since P'B/AP' is less than unity, this circle 
will lie entirely without the other circle. If now any circle through the 
points , cut the first circle, which we shall call the circle C", in the points 
P , Q, and cut the second circle, 0, in and Qx, P and being on the same 
side of AB, we have angle = angle APBt and P1B/AP1 = fiPB/AP ; 
therefore, if the point P be f, and the point Px be £i, we have 

the argument of P vanishing when P is at the end of the diameter of the  
circle remote from C\ and varying from 0 to 2ir as P describes the circle 

G' in a clockwise direction ; if then we pass along the circle G in a counter 
clockwise direction to a point P ' such that the sum of the necessary positive 
rotation of the line BP1 about into the position BP', and the necessary 
negative rotation of the line APX about A into the position AP\ is , and f ' 
be the point P ' , we have 

Thus the transformation under consideration transforms any point f on 
the circle G' into a point on the circle G. If f denote any point within G' 
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the modulus of (f — 2?)/(f — A) is greater than when Ç is on the circumference 
of C', and the transformed point Ç" is without the circle G, though not 
necessarily without the circle C'. If f denote any point without G' the 
transformed point is within the circle G. 

224. Suppose * now we have given p such transformations as have been 
described, depending therefore on 3p given complex quantities, whereof 3 can 
be given arbitrary values by a suitable transformation z' = (Pz + Q)/(Rz + S) 
applied to the whole plane ; denote the general one by 

f' = \ . g*, wherein - ßai = 1, ( = 1, 2, . . . ,p) , 

or also by 

the quantities corresponding to 4 , , ^ a being denoted by Ai} Biy {, ; 
construct as here a pair of circles corresponding to each substitution, and 
assume that the constants are such that, of the 2p circles obtained, each is 
exterior to all the others ; let the region exterior to all the circles be denoted 
by S, and the region derivable therefrom by the substitution ^ be denoted 
by  

If the whole plane exterior to the circle Gi be subjected to the trans
formation {, the circle G( will be transformed into (7 -, the circle Gi itself 
will be transformed into a circle interior to Gi, which we denote by ^ 0 ; , and 
the other 2p — 2 circles which lie in a space bounded by Gi and G{ will be 
transformed into circles lying in the region bounded by %Gi and {, and, 
corresponding to the region 8, exterior to all the 2p circles, we shall have a 
region %S also bounded by 2p circles. But suppose that before we thus 
transform the whole plane by the transformation %, we had transformed 
the whole plane by another transformation Sj- and so obtained, within Cj, 
a region bjS bounded by 2p circles, of which Gj is one. Then, in the 
subsequent transformation, %, all the 2jp — 1 circles lying within Gj will be 
transformed, along with Gj, into 2p — 1 other circles lying in a region, ^ibjS, 
bounded by the circle ò{Cj. They will therefore be transformed into circles 
lying within òiGj—they cannot lie without this circle, namely in %S, because 
*&iS is the picture of a space, S, whose only boundaries are the 2p funda
mental circles G1} Gi, ..., Cp, Gp'. Proceeding in the manner thus indicated 
we shall obtain by induction the result enunciated in the following statement, 

wherein ^ is the inverse transformation to S-$, and transforms the circle Gi 

into Gi : Let all possible multiples of powers ofbly^i , ..., , be formed, 
and the corresponding regions, obtained by applying to 8 the transformations 

* The subject-matter of this section is given by Schottky, Creile, ci. (1887), p. 227, and 
by Burnside, Proc. London Math. Soc* . (1891), p. 49. 
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corresponding to all such products of powers, be marked out In any such 
product the transformation first to be applied is that one which stands to the 
right. Let m be any one such product, of the form 

™ = * / > 
formed by 

+ n + rj + rk, =h 

factors, and let be any transformation other than the inverse of S^, so that 
mbk is formed by the product ofh+1, not h — 1, factors. Then the region mS 
entirely surrounds the region . 

Thus, the region S^$ entirely surrounds the space %bj8, and the latter 
surrounds %bfS, or ^iàjbjcS; but biS is surrounded by ÒÌÒÌ^S or S. The 
reader may gain further clearness on this point by consulting the figure (7), 
wherein, for economy of space, rectangles are drawn in place of circles, and 
the case of only two fundamental substitutions, S-, , is taken. 

The consequence of the previous result is—The group of substitutions 
consisting of the products of positive and negative powers of bl9 ..., % gives 
rise to a single covering of the whole plane, every point being as nearly reached 
as we desire, by taking a sufficient number of factors, and no point being 
reached by two substitutions. 

225. There are in fact certain points which are not reached as trans
formations of points of S> by taking the product of any finite number of 
substitutions. For instance the substitution %m is 

%'- ^ K-At' 
and thus when m is increased indefinitely f ' approaches indefinitely near to 
Bi, whatever be the position of £ ; but Bi is not reached for any finite value 
of m. In general the result of any infinite series of successive substitutions,  

= aß<y..., applied to the region S, is, by what has been proved, a region 
lying within aS, in fact lying within aßS, nay more, lying within aßyS, and 
so on—namely is a region which may be regarded as a point : denoting it by 
K, the substitution transforms every point of the region S and in fact 
every other point of the plane into the same point ; and transforms the 
point into itself. There will similarly be a point K' arising by the same 
infinite series of substitutions taken in the reverse order. 

Such points are called the singular points of the group. There is an 
infinite number of them ; but two of them for which the corresponding 
products of the symbols ^ agree to a sufficient number of the left-hand 
factors are practically indistinguishable ; none of them lie within regions that 
are obtained from S with a finite number of substitutions. The most 
important of these singular points are those for which the corresponding 
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series of substitutions is periodic ; of these the most obvious are those formed 
by indefinite repetition of one of the fundamental substitutions ; we have 
already introduced the notation 

to represent the results of such substitutions. 

226. If ^, be any two substitutions given respectively by 

yr_«K±ß r_AK+B 
Ç~yÇ+8' Ç CÇ+D' 

wherein aS — ßy = 1 = AD — , the compound substitution is given by 

a(AC+B) + ß(CC+D) _ (aA+ßC)C+(aB + ßD) 
Ç y (AÇ + ) + S ( £ + D) (yA + ) + {yB + BB) ' 

and if this be represented by f' = («'£+ ß')/(y'C+ '), we have, in the ordinary 
notation of matrices 

( a' /3' ) = ( a £ ) ( 4 ), 

| S' ! I y S I I O D I 

and a'S' — ß V = («S — ßy) (AD — 5(7) = 1. We suppose all possible substitu
tions arising by products of positive and negative powers of the fundamental 
substitutions Si, ..., Op to be formed, and denote any general substitution by 
£" = (ccf + ß)/(yC+8), wherein, by the hypothesis in regard to the funda
mental substitutions, aB — ßy=l. We may suppose all the substitutions 
thus arising to be arranged in order, there being first the identical substitution 
f = ( f+ 0)/(0. f + 1), then the 2p substitutions whose products contain one 
factor, bi or S^~\ then the 2p (2p — 1) substitutions whose products are of 
one of the forms bibjy òiòf\ S-$_1âj, ^rf^f1, in which the two substitutions 
must not be inverse, containing two factors, then the 2p (2p—l)2 substitutions 
whose products contain three factors, and so on. So arranged consider the 
series 

2 (mod y)~k, 

wherein is a real positive quantity, and the series extends to every sub
stitution of the group except the identical substitution. Since the inverse 
substitution to C' = (aC+ß)/(yC+B) is =( ? - ß)/(-yC' + a), each set of 
2p (2p — l)n~1 terms corresponding to products of n substitutions will contain 
each of its terms twice over. 

Let now ®n denote a substitution formed by the product of n factors, 
and ©71+1 = ®?*^, where S* denotes any one of the primary 2p substitutions 

S"i>^i > •••> S>, % other than the inverse of the substitution whose symbol 
stands at the right hand of the symbol ®n, so that ®n+1 is formed with n + 1 
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factors; then by the formula jus t set down 7 n + 1 = yn
ai+ Snyi, where, if 

**, or = ( « * £ + A ) / ( 7 < f + u ) , be pu t in the form ( f - ) / ( ' - Ai) 
= pi(Ç-Bi)l(Ç-Ai), we have 

« , ßi, > &i 

respectively equal to 

Bjpi —Ajpi _ AiBj(pi — pi) pj — pi _ AjPi " — Bjpj 
I>i — Ai ßi — Ai Bi — Ai ßi — Ai 

the signification of pi is not determined when the corresponding pair of 

circles is given ; bu t we have supposed tha t the values of -, -, 7 -, Si are 

given, and thereby the value of pi. By these formulae we have 

Jn+i _ _i Bj 4 Snfon _ £ ̂  + Sn/ 
yn -f***'Bi-Ai pi Bi-Ai ' 

Herein the modulus of pi may be either /^ or /- "1, according as % is one 

of Si , . . . , *bp or one of S- 1, . . . , ^ p 1 ; the modulus of pi is accordingly either 

less or greater than unity. If now © n = . . . | ^ > \ where S> is one of the 

2p fundamental substitutions ^ , . . . j ^ " 1 , and therefore © » ^ ^ "" 1 ^ - 1 . . . , 

the region ©»*$ lies entirely within the region S>$ (§ 224) or coincides with 

i t ; wherefore the point © 1 (oo ), or — Sn/yn> lies within the circle Cr when 

S> is one of %t . . . , and lies within the circle Cr' when % is one of 

^ i ~ \ . . . , 1 ; thus the points By and —Sn/yn can only lie within the same 

one of the 2p fundamental circles Glt . . . , Cp' when r = i and òr is one of 

, . . . , bp; and the points Ai and — Snjyn can only lie within the same one of 

the 2p fundamental circles Gly . . . , Cv' when == and S> is one of \ , . . . , ^ -p 1 . 

Now, if the modulus of - be less than unity, and r = , Sy must be one 

of ^ f , . . . , Srp , namely must be ^ , since otherwise © ^ would consist 

of n — 1 factors, and not n -f 1 factors ; in t ha t case therefore + — 
7n 

is not of infinitely small modulus ; if, however, the modulus of pt be 
greater than unity, and r = i, S> must be %, namely one ot %, ...9<bp, and 
in tha t case the modulus of Ai + Sn/yn is not infinitely small. Thus, according 
as | pi | > 1, we may pu t 

\ Bi+Sn/yn\>\, \Ai + Sn/yn\>\, 

where . is a positive real quanti ty which is certainly not less than the 
distance of , Aif respectively, from the nearest point of the circle within 
which — Snjyn Hes. 
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I t follows from this that we have 

mod (7„+i/7n) > o". or mod (y'ljy'1) < - , 

where a is a positive finite quantity, for which an arbitrary lower limit may 
be assigned independent of the substitutions of which ©n is compounded, and 
independent of n, provided the moduli fj,1} ..., fipbe supposed sufficiently small, 
and the p pairs of circles be sufficiently distant from one another. 

Ex. Prove, in § 223, that if C' be chosen so that C'G is as great as possible 

J_ C'C=l-*fp 1 
V/A AB i+v7* VM 

and the circles are both of radius d V/*/(l -/*)» where d is the length of AB. 

We suppose the necessary conditions to be satisfied ; then if 70 be the 

least of the p quantities mod ["(/* ~ e"**** ~~ /4 * **)/( *— ̂ *)]> ano^ ^ De posi
tive, the series S mod 7"* is less than 

,-*[*+*^='>+*ÄFir+ ] , 
and therefore certainly convergent if <rk > 2p — 1, which, as shewn above, may 
be supposed, filt ..., JJ,P being sufficiently small. 

227. Hence we can draw the following inference: Let <rlf ..., ap be 
assigned quantities, called multipliers, each of modulus unity, associated 
respectively with the p fundamental substitutions Si, ..., ; with any 
compound substitution S/ iS/ 2 . . . , let the compound quantity 0V"1 ° / 8 • • • be 
associated: let f{x) denote any uniform function of x with only a finite 
number of separated infinities ; let f = (a£ -f ß)/^^ + <5) denote any sub
stitution of the group, and a be the multiplier associated with this 
substitution : then the series, extending to all the substitutions of the group, 

converges absolutely and uniformly * for all positions of f other than (i) the 
singular points of the group, and the points f = — 8/7, namely the points 
derivable from f = 00 by the substitutions of the group, including the point 
f = 00 itself, (ii) the infinities of ƒ (f) and the points thence derived by the 
substitutions of the group. The series represents therefore a well-defined 
continuous function of f for all the values of f other than the excepted ones. 
The function will have poles at the poles of ƒ(£) and the points thence 
derived by the substitutions of the group ; it may have essential singularities 
at the singular points of the group and at the essential singularities of 

/((a? + /9)/(7? + S)). 
* In regard to f ; for the convergence was obtained independently of the value of £*. 



352 COMPARISON OF THE f PLANE [227 

Denote this function by F(Ç); if S-0 denote any assigned substitution 
of the group, and S denote all the substitutions of the group in turn, it is 
clear that ^S-0 denotes all the substitutions of the group in turn including the 
identical substitution; recognising this fact, and denoting the multiplier 
associated with ^0 by <rQ, we immediately find 

or, the function is multiplied by the factor ovT1 (7o?+ SQ)k when the variable 
f is transformed by the substitution, %, of the group. Thence also, if G (f) 
denote a similar function to F(Ç)> formed with the same value of and 
a different function / ( f ) , the ratio F(Ç)jG(X) remains entirely unaltered 
when the variable is transformed by the substitutions of the group. In order 
to point out the significance of this result we introduce a representation 
whereof the full justification is subsequent to the present investigation. 
Let a Riemann surface be taken, on which the 2p period loops are cut ; let 
the circumference of the circle - of the f plane be associated with one side 
of the period loop (bt) of the second kind, and the circumference of the circle 
Cj with the other side of this loop ; let an arbitrary curve which we shall 
call the -th barrier be drawn in the f plane from an arbitrary point P 
of the circle G( to the corresponding point P' of the circle (7̂ , and let the 
two sides of this curve be associated with the two sides of the period loop 
(ai) of the Riemann surface. Then the function F(Ç)/G(Ç), which has the 
same value at any two near points on opposite sides of the barrier, and 
has the same value at any point Q of the circle C/ as at the corresponding 
point Q' of the circle Gif will correspond to a function uniform on the 
undissected Riemann surface. In this representation the whole of the 
Riemann surface corresponds to the region S ; any region Sv$ corresponds to 
a repetition of the Riemann surface ; thus if the only essential singularities 
of F(Ç)jG(^) De a t t n e singular points of the group, none of which are 
within S, F(^)jG(X) corresponds to a rational function on the Riemann 
surface. I t will appear that the correspondence thus indicated extends to 
the integrals of rational functions ; of such integrals not all the values can 
be represented on the dissected Riemann surface, while on the undissected 
surface they are not uniform ; for instance, of an integral of the first kind, 

, the values , + 2 } ) + 2 >'^ 9 + 2 r + 2a>'it r may be repre
sented, but in that case not the value + 4Û>^ r ; in view of this fact the 
repetition of the Riemann surface associated with the regions derived from 
S by the substitutions of the group is of especial interest—we are able to 
represent more of the values of the integral in the J plane than on the 
Riemann surface. These remarks will be clearer after what follows. 

228. In what follows we consider only a simple case of the function 
F(Ç), that in which the multipliers al9 ..., <rp are all unity, = 2, and 
ƒ(f) = 1/(Ç'—a), a being a point which, for the sake of definiteness, we 
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suppose to be in the region S. We denote by £ = ^ (Ç) = (ag + ßi)l(ryiC+ &i) 
all the substitutions of the group, in turn, and call & the analogue of f by 
the substitution in question. The function 

has essential singularities at the singular points of the group, and has poles 
at the places f = a , f = oo and at the analogues of these places. Let the 
points oo, a be joined by an arbitrary barrier lying in S, and the analogues of 
this barrier be drawn in the other regions. Then the integral of this 
uniformly convergent series, from an arbitrary point f, namely, the series 

is competent to represent a function of f which can only deviate from uniformity 
when f describes a contour enclosing more of the points a and its analogues 
than of the points oo and its analogues ; this is prevented by the barriers. 
Thus the function is uniform over the whole f plane; it is infinite at f = a 

like log(f—a), and at f=oo like — log l-rJ, as we see by considering the 

term of the series corresponding to the identical substitution ; its value on 
one side of the barrier aoo is 27 greater than on the other side ; it has 
analogous properties in the analogues of the points a, oo , and the barrier aoo ; 
further, if ^n — %i{K) be any of the fundamental substitutions S^, ..., òp, 

* " * - " = S l o g % ^ = S l o g i ^ ^ + Slog ^ - a - S l o g f^-a, 

where £ is obtained from f by the substitution %%b ; since the first and 
last of these sums contain the same terms, we have 

* " * - * ' *= " * , 
a, «5 a, °° a, oo 

and the right-hand side is independent of f, being equal to n'J ; in order 
to prove this in another way, and obtain at the same time a result which 
will subsequently be useful, we introduce an abbreviated notation ; denote 
the substitution % simply by the letter r\ then if j be in turn every sub
stitution of the group whose product symbol has not a positive or negative 
power of the substitution n at its right-hand end, all the substitutions of the 
group have the symbol jnh, h being in turn equal to all positive and negative 
integers (including zero) ; hence 

2 [log (Sin - a) - log (ft - a)], = S S [log ( |> +1 - a) - log (&nÄ - a)], 
i j h 

is equal to 

. 23 
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where N = n°°,M = n-QD ; but, in fact, %N is ) and %M is An ; thus Tl^ ' j is 
independent of £ ; and if we introduce the definition 

where % is one of the p fundamental substitutions, and, as before,^' denotes 
all the substitutions whose product symbols have not a power of n at the 
right-hand end, we have 

^ _ ££ = ^ = 2 \ 
a, oo , a, °° n 

Ex. If for abbreviation we put 

'i'.-î-.'-ÉH. 
prove that 

being an arbitrary point. 

229. Introduce now the function ', Ô defined by the equation 

then, because a cross ratio of four quantities is unaltered by the same linear 
transformation applied to all the variables, we have also 

wehere r, denoting S>, =%~\ becomes in turn every substitution of the group. 
Thus we have 

where 

Vn , - » Vn, 27ri Z\Og ^ _ ^ A ^ b _ ^ ( ^ J , - ^ nabi 

j denoting as before every substitution whose product symbol has not a 
positive or negative power of n at the right-hand end and £ being arbitrary ; 
hence also 

"• - 2« l l* « - 2* f l0g I ft -T/ " f t ^ " 2 S Ï l0g W=fn ' «~^fJ ' 

where r, = -1, denotes every substitution of the group. 
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There are essentially only p such functions v„ a, according as bn denotes 
Si, 2̂> •••> ^i>; for, taking the expression given last but one, and putting 
n = sty that is, 9-n = S- , we have 

27Tivst -UCa = H & a + n <r, a 

where rj= £t, so that 
£> a & a , £, a 

Vst =VS +Vt , 
and in particular, when st is the identical substitution, as we see by the 
formula itself, 

0 = v8 + vs-i ; 

thus, if r denote Si'S^2 • • • ^ / • • • > we obtain 

flr = \ ^ 1 + +\pVp + , 

so that all the functions v? a are expressible as linear functions of vi a,..., vp'
a . 

230. I t follows from the formula 

j - a _ J_ s îotr / t - .) ; ? Z M ^ ) Ì 
"" - bri 710^ Vf-%(A„) ! a -0}(An)) ' 

that the function v^a is never infinite save at the singular points of the 
group. But it is not an uniform function of f; for let f describe the circum
ference of the circle Gn in a counter clockwise direction ; then, by the factor 

f — Bn, vu increases by unity ; and no other increase arises ; for, when the 
region within the circle Gn, constituted by ònS and regions of the* form 

, contains a point bj(Bn), the product representing the substitution j has 
a positive power of as its left-hand factor, and in that case the region 
contains also the point ^j(An). Similarly if f describe the circle Cn' in a 

clockwise direction, v^ increases by unity. But if f describe the circum
ference of any other of the 2p circles, no increase arises in the value of 

Vn a, for the existence of a point ^ (Bn) in such a circle involves the existence 
also of a point Sj (An). 

It follows therefore that the function can be made uniform in the region 
S by drawing the barrier, before described, from an arbitrary point P of Cn' to 

the corresponding point P ' of Cn. Then v* a is greater by unity on one side 
of this barrier than on the other side. Further if m denote any one of 
the substitutions 9^, ..•, 9^, we have 

* • • - * * - * - * - * • ' - n f c * , 
* Where denotes a product of substitutions in which S-"1 is not the left-hand factor. 

23—2 
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where £ is arbitrary; thus as 11™'^ = ^ ' ^ , the difference is also indepen

dent of f, and we have, introducing a symbol for this constant difference, 

It follows therefore that if the p barriers, connecting the pairs of circles 
Cn', On, and their analogues for all the substitutions, be drawn in the 

interiors of the circles, the functions v{a
y ..., vp

% a are uniform in the region S, 
and in all the regions derivable therefrom by the substitutions of the group. 

The behaviour of the functions v{a, ..., vp
,a in the region S is therefore 

entirely analogous to that of the Riemann normal integrals upon a Riemann 
surface, the correspondence of the pair of circumferences Gn, Cn' and the two 
sides of the barrier P'P, to the two sides of the period loops (6n), (an), on the 
Riemann surface, being complete. And the regions within the circles 
C1} ..., Cp enable us to represent, in an uniform manner, all the values of the 
integrals which would arise on the Riemann surface if the period loops (6n) 
were not present. Thus the f plane has greater powers of representation 
than the Riemann surface. Further it follows, by what has preceded, that 

the integral ', 0 is entirely analogous to the Riemann normal elementary 
integral of the third kind which has been denoted by the same symbol in 
considering the Riemann surface. On the Riemann surface the period loops 
(an) are not wanted for this function, which appears as a particular case of a 
more general canonical integral having symmetrical behaviour in regard to 
the first and second kinds of period loops ; but the loops (bn) are necessary ; 
they render the function uniform by preventing the introduction of all the 
values of which the function is capable. In the £ plane, however*, the 
function is uniform for all values of f, and the regions interior to the circles 
enable us to represent all the values of which the function is susceptible. 
Thus the introduction of Riemann's normal integrals appears a more natural 
process in the case of the £ plane than in the case of the Riemann surface 
itself. 

231. We may obtain a product expression for directly from the 
formula 

T - i - s i,«r &"- »> / g» -V^»)1 . 
T"--2«rogLf-%(^) / r-M^.).r 

let denote in turn every substitution whose product symbol neither has a 
power of at its left-hand end nor a power of ây, at its right-hand end ; 
thus we may write bj = ^m ^ or, for abbreviation, j = m~hk ; and for every 
substitution k, the substitution j has all the forms derivable by giving to h 
all positive and negative integral values including zero, except that, when  

* Barriers being drawn to connect the infinities of the function. 
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is the identical substitution, if m = n, h can only have the one value zero ; 
then applying Of1 to every quantity of the cross ratio under the logarithm 
sign, we have 

., » - 2vi i log ^ ^ _ BJ Kji _ AJ 

_ ^_ y i fÇk-Unh + l — Bn i ? r i m ^ l " An\ 

Zi™ , h \ Çk-imb — Bn I fjfc-lmA — An / ' 

and therefore, if m be not equal to n, 

rn.=-i- s log (y;w-^ / . ^ ) , 
' 2 * e W 1 ( ^ » ) - - B n ' â i T 1 ( ^ » ) - ^ « ' 

while when m = , separating away the term for which is the identical 
substitution, 

2 * 0 g \òi\An) - Bn I bï\An) - A J ' 

where 2 ' denotes that the identical substitution, S* = 1, is not included ; 
thus 

where s denotes every substitution of the group other than the identical 
substitution, not beginning or ending with a power of ̂ n , and excluding 
every substitution of which the inverse has already occurred. 

These formulae, like that for v„ a, are not definite unless the barriers (§ 227) 
are drawn. 

232. Ex. i. If vtl
 a=un + mvn, uny iwn being the real and imaginary parts of v„ a , prove, 

as in the case of a Riemann surface, by taking the integral I dw round the p closed 

curves each formed by the circumferences of a pair of circles and the two sides of the 
barrier joining them, that the imaginary part of N^rn •+• + 2 ^ 2 12 -f is positive, 

xVj, . . . , JVP being any real quantities and u + iw=N1v^,a + + JV v" a. Prove also the 
result Tiïlt n =r n > m by contour integration. 

Ex. ii. Prove that the function of f expressed by 

has analogous properties to Riemann's normal elementary integral of the second kind. 

Ex. iii. Prove that 

where 4 = ( ,- +&)/( , + ,). 
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Ex. iv. With the notation 

r 6r j, 

prove that 

(*, < ) - ( , 0 = 2 W ~ 1 = ( « , & ) - ( , f), 

where f is an arbitrary point, and hence prove that if zi cly . . . , cp, f be any arbitrary 
points, and £ !=#! (f), . . . , $p = $p (f), the function of f expressed by 

| 0, f ) , & f ) , * ( * , f i ) , . » , (*, ÉP) | , 

| (* ), (*1, , (^1, fi), . . . , (< , ( ) \ 

(fy» f), ( , f), ( , fi), . . . , ( , fc) I 

l i , ì , ì ,..., ì ! 

is unchanged by the substitutions of the group, and has simple poles at z, c1} . . . , cp, and 
their analogues, and a simple zero at f, and its analogues. Thus the function is similar to 
the function yfr (#, a ; z, cx,..., cp) of § 122, and every function which is unchanged by the 
substitutions of the group can be expressed by means of it. 

As a function of 2, the function is infinite at 2=f, z = (, beside being infinite at z—co, 
and its analogues; when (<HZ-{-ßi)/(yiZ + oi) is put for z, the function becomes multiplied 
by (yiZ + òi)2.- This last circumstance clearly corresponds with the fact (§ 123) that 
y\r (x, a ; 2, Cj, ..., cp) is not a rational function of z, but a rational function multiplied by 

g(of.Ex.iii.) 

JKr. v. Prove that 

i*W-J LV 
« r \ a - f r « - f r / 

JEr. vi. In case jo = 1 , we have 

where 
(a r - 5 ) / ( a r - A ) = 0 * Ô r ( a - )/( - ). 

Putting, for abbreviation, = 11 =V , and 

«»=..!.<-»-+"'( / ' 
prove, by applying the fundamental transformation once, that 

e^=-^H/^e(ü=-e"2^'a+èT>e(0, 

and shew that 6 (Q is a multiple of the Jacobian theta function (v^ a , q ; £, £). 

Ex. vii. Taking two circles as in figure 6 (§ 223), let C'BjAC'^v and -jril > = > 

take an arbitrary real quantity o>, and a pure imaginary quantity « ' = — log /x, and let 

file:///a-fr
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ff(u) denote Weierstrass's elliptic function of with 2w, 2a>' as periods. Then prove, 
if , denote points outside both the circles, a' denote the inverse point of a in regard to 
either one of the circles, and P, Q be arbitrary real quantities, 

(a) that the function 

is unaltered by the substitution (£' — B)/({' — A)=fi(C~B)/(£- A), and has poles of the 
first order, outside both the circles, only at the points £ = a , Ç=c. 

(ß) that the function, 

^ r ^ l o g - 1 <-» l - V f - ^ l o g i a - " | + -?logì £-" U I - logì «=" 1 
*\jTT < £- } \jTT B<ra-AJ r\jtr 6o-f-^J r\jnr Baa'-AJ 

is real on the circumference of each circle, and, outside both the circles, has a pole of the 
first order only at the point f = a . The arbitrari es P , Q can be used to prescribe the 
residue at this pole. 

Ex. viii. Prove that any two uniform functions of f having no discontinuities except 
poles, which are unaltered by the substitutions of the group, are connected by an algebraic 
relation (cf. § 235) ; and that, if these two be properly chosen, any other uniform function 
of f having no discontinuities except poles, which is unaltered by the substitutions of the 
group, can be expressed rationally in terms of them. The development of the theory on 
these lines is identical with the theory of rational functions on a Riemann surface, but 
is simpler on account of the absence of branch places. Thus for instance we have a 
theory of fundamental integral functions, an integral function being one which is only 
infinite in the poles of an arbitrarily chosen function x. And we can form a function such 
as It (x, z) (§ 124, Chap. VII.) ; but the essential part of that function is much more 
simply provided by the function, (f, ), investigated in the following article. 

233. The preceding investigations are sufficient to explain the analogy 
between the present theory and that of a Riemann surface. We come now 
to the result which is the main purpose of this chapter. In the equation 

;=s log (;-^| fcn=s log , /zu Ci], 

where {Ç,ylzi, fy} denotes a cross ratio, let the point z approach indefinitely 
near to f, and the point approach indefinitely near to 7 ; then separating 
away the term belonging to the identical substitution, and associating with 
the term belonging to any other substitution that belonging to the inverse 
substitution, we have, after applying a linear transformation to every element 
of the cross ratio arising from the inverse substitution 

Tjz,c_]nAz-0(c-y) , y / W ( * < - £ ) ( < * - 7 ) ( * - 6 ) ( c - 7 i ) 

where 2 ' denotes that, in the summation, of terms arising by a substitution 
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and its inverse, only one is to be taken, and the identical substitution is 
excluded. Thus we have* 

Ät_fr_0(.-T,.-'«]^,t-T)n-«=gtez& 
- ( f -7) ir (f, 7/*. , 

i 
where IT has a similar signification to 2 ' and {£, 7/7», &} denotes a cross 

i 

ratio. Consider now the expression 

«T(?.Y)> = ( - 7 ) '{ ,7/7*. }; 

it has clearly the following properties—it represents a perfectly definite 
function of f and 7, single-valued on the whole f-plane ; it depends only on 
two variables, and (f, 7) = — « (7, Ç) ; as a function of f it is infinite, save 
for the singular points of the group, only at f = 00 , and not at the analogues 
of %— oo ; it vanishes only at f = 7 and the analogues of this point, and 
limit^=y ts (f, ry)/(f— ry) = 1. Thus the function may be expected to generalise 
the irreducible factor of the form x — a, in the case of rational functions, and 
the factor a (u — a) in the case of elliptic functions, and to serve as a prime 
function for the functions of f now under consideration (cf. also Chap. VII. 
§ 129 and Chaps. XIII. and XIV.). It should be noticed that the value of  

(f, 7) does not depend upon the choice we make in the product between 
any substitution and its inverse ; this follows by applying the substitution 
S 1 to every element of any factor. 

234. We enquire now as to the behaviour of the function w (f, 7) under 
the substitutions of the group. It will be proved that 

t*(?,7) 7»f+Sn ' 

where (— 1 , (— 1) * are certain + signs to be explained. 

This result can be obtained, save for a sign, from the definition of (f, 7), 

as a limit, from the function s' \ ; but since, for our purpose, it is essential 
to avoid any such ambiguity, and because we wish to regard the function 
w (Ç, 7) as fundamental, we adopt the longer method of dealing directly with 
the product ( f - 7) IT {£ 7/7*, ff}. We imagine the barriers, each connecting 

i 
a pair of circles, which are necessary to render the functions V\a, ...,Vpa 

* This function occurs in Schottky, Creile, ci. (1887), p. 242 (at the top of the page). See 
also p. 253, at the top. The function is modified, for a Kiemann surface, by Klein, Math. Annal. 
xxxvi. (1890), p. 13. The modified function occurs also, in particular cases, in a paper by 
Pick, Math. Annal, xxix., and in Klein, Math. Annal, xxxii. (1888), p. 367. For p = l, the 
theta function was of course expressed in factors by Jacobi. The function employed by Bitter, 
Math. Annal, XLIV. (p. 291), has a somewhat different character. 
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uniform, to be drawn; then the quantities rn>m, } given in §231, and 

defined by vn
m> , vn

n> are definite; so therefore is also ewivny and the quan
tity e™"«.«, which is equal to 

M«n TT' ^*n ~ \i>n)s ƒ -t>n \An)s 

s \_An — (Bn)s i — {An)s J 

where s denotes a substitution, other than the identical substitution, not 
beginning or ending with a power of Srn, and excluding the inverse of a 
substitution which has already occurred. This formula raises the question 
whether , which we take positive, is to be regarded as less than 2 or not, 
since otherwise the sign of e&Kn is not definite. But in fact, as it arises in 

V' T / t — ^ 1 when 
Ç — An\ Ç — An/ 

f' has reached Çn from f by a path which does not cvoss the bavvievs. Thus   
is perfectly definite when the barriers are drawn, and the sign of the 
quantity 

- ^ ^ ' - ( ), / - ( ) 
s \_ — \iJn)s / An (An)s | 

is perfectly definite and independent of the barriers. We denote it by 
( - l^»-1. The annexed figure illustrates two ways of drawing a barrier 
PP'. In the first case is less than 2 . In the second case Ç' must pass 

once round the point and is greater than 2 . When is thus 

determined, the expression by means of of the p2
n which occurs in 

the formulae connecting ) ßni yn, Sn and An> Bn, pn, for instance in the 

formula pn = (l +f>n)/(an + 8n), is also definite; it may be / = / *̂» or 

pi = —/& ** We shall pat pn = (— iy*»/Ane^«. If the whole investigation 
had been commenced with a different sign for each of orn, ßn> yn, Bn, hn would 
have become A» — 1 , but gn, depending only on the circles and the barrier, 
would have the same value. 

We have 
*r(?n, 7) = fn-7 ' ?fa~7 - Ki-  

(?»7) ?-7 i ft-7 ' 7i-? 4m-£V 
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where i denotes in turn all substitutions which with their inverses give the 
whole group, except the identical substitution ; thus i denotes all substitutions 
nK for \ = 1, 2, 3, ..., oo, as well as all substitutions nhsnk, where s has the 
significance just explained and , take all positive and negative integer 
values including zero. Therefore 

( > 7 ) ^ ? - 7 (TnM-i-7 7» — Kn O - f 
™ ( > ) ? ~~ 7 £> - 7 ' 7«A — ? ?»x+1 ~ ft» 

£ » * + 1 — 7 7n ĝn^ — £n ^ W " J 

fc, «, ft SnAm^ — 7 7»**»* "*" ? £»*«n* +1 "" fn 

= ?»-7 &*+* - 7 £ > - £ 7 - £* £n*+* - g 
f - 7 A £ i * - 7 A £ > + 1 - £ A 7n^ - f ' fn^+1 - Sil 

TT ( % ) ~~ 7 ( < ~~ ? ^ ~ bnbsn* +1 ~ 
-, s ( ^ W ) A — 7 (Bn)nhs — A, s, ft 7nAm* "" ? £n*«»* +1 — £w ' 

the transformation of the second part of the product being precisely as in the 
first part, 

f - 7 " ( T » - 7 ' Ä n - f A 7 - f n - A ' fn-Én*-* 

TT ^ n'nhs ~~ 7 v"-n)n*g — rr 7 -~bn-fcg-ini-ft » ~ Çn-ks-in-b 
h, s (An)nhs ~ 7 (-On)n*e ~ ? A, e, A 7 — fw-*en~* b» """(f»-**-l»l-* 

^Bn-y Çn-Ç _7_Z?_ ? - (Bn)nhs - 7 ( i f t ^ j ^ f 
Bn — Ç'Ç-y'y-Àn' Çn-Ç ht8{An)nbs-y' (Bn)nh8- ? 

7 ~ (Bn)n-ks-l Kn~ (An)n-*s-i . 

*, ft 7~"(-^n)w-*e-i f n ~ (^n)»-*e- i ' 

since A and —k have the same range of signification we may replace — by , 
in the last form, and obtain, by a rearrangement of the second product, 

*r(Çn,y)= Bn-y g ^ ~ j l n K-(An)nbs - (Bn)nhs 

•a (£, 7) ^ - f ' r ^ M f - ( ' 7 - (^ ) 

- 7 — (Bn)nfts-l Çn — (An)nhs-i . 

tf, Ä 7 ~~ ( ^ n)nÄS - 1 f n ~" \ ) 8 - 1 
but, from the formula 

where j can have the forms , -1, or be the identical substitution, 
we have 

2iriv;t^Ç-Bn^7- An - ( ) ^ , y-(An)nhs Ç-jBnXb-i -( )„ -1. 
?—An y - BnhtSÇ—(An)nhs'y-(Bn)nhSS)hÇ— (An)nh8-i'y — (Bn)nhg-i ' 
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therefore 

(gn, 7) e
2"iv» = _ Kn-An -(Bn)nhs^± g n - l 4 n ) n * « - l 

& (£> ) ~~ An s,hÇn~-\Bn)nb8-l "" (An)nhs-i 

Çn -"- Çsn~h -E>n Çml~h -"-

- " «, 1 - - » Ssn-Ä— - " 

- " \ - " /$ -Q?i - ^ ^ 

~~ -"- s \&n)s ~~ ^ (-"n)s "~ - " 

and hence 

»(£7) ~ r - ^ n
( ^n/t""e -' 

now from the formula ( *- - ) = ( - )1{ - ) , and the 
values of a„, ßn, yn, Sn given in § 226, we immediately find 

( ? - A) / (?« - „) = [f - „ - pn (Ç- Bn)]/(Bn - An), 

7»?+8. = [p'J ( - il») - />i (f- . . - -4«) ; 
thus, as p* = ( - l)A»/4eè"n, we have 

( --*«)/(&. - 4 . ) = ( - 1)A„^ e*«« (7nf + S„); 
hence, finally 

where (— l)flr»e~îrtT»«»e'lc» is independent of how the barriers are drawn, and 

(—\yinynj (_ 1) «8 are independent of the signs attached to yn and 8n. 

235. The function *r(f, 7), whose properties have thus been deduced 
immediately from its expression as an infinite product, supposed to be 
convergent, may be regarded as fundamental. Thus, as can be imme
diately verified, the integral Uz£y is expressible by ^ (g , 7), in the form 

and thence the integrals < v arise, by the definition fln
,Y = -—. ^ , and 

thence, also, integrals with algebraic infinities, by the definition 

x ~dx xa 

(cf. Ex. ii, § 232). Further, if F'(f) denote any uniform function of f whose 
value is unaltered by the substitutions of the group, which has no discontinui
ties except poles, it is easy to prove, by contour integration, as in the case of 
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a Biemann surface, (i) That F(Ç) must be somewhere infinite in the region S, 
(ii) That F(Ç) takes any assigned value as many times within 8 as the sum 
of its orders of infinity within S, (iii) That if o ,̂ ..., a* be the poles and 
ßlt ..., ßk the zeros of F (Ç) within S, and the barriers be supposed drawn, 

Vi + -Vi = mL + Titl + + mp riiPy ( = 1, ..., p)y 

where m1? ..., mp> m/, ..., wi/ are definite integers. Thence it is easy to 
shew that the ratio 

F( \ / ( £ > & ) CT(^ & ) e - 2 (mi'tf a + ... + m'pv% a) 
KUI <*(t,ai) *(?,«*) 

is a constant for all values of f. And replacing some of ßlt ..., ak in this 
expression by suitable analogues, the exponential factor may be absorbed. 

Ex. In the elliptic case where there is one fundamental substitution (Ç — B)l{(' — A) = 

p ({- )/(£- ) we have (£ - 2?)/(& - A) = pl (f - B)j{^-A\ and thence putting w, v, respec

tively for the integrals ^ , «?, so that < * = (£- ) £- \ e2niv=(y-B)l(y-A), we 

immediately find 

C-Ji Ç- &_1-2 1 82 (u- v)+p2i - B z A s i n n ( u ~ v ) 
y-Ji y~(i~ (l-/^)2 ' 2 S in 7TW S in 7TV ' 

and hence 

. B — A S\I\TT(U-V) » 1 - 2 * 8 27 (« — v)+P2 i   

(C' 7 ) - _ 2 " s i i T ^ s m ^ (1-p*)2 ' 

which*, putting e*tT=p*, is equal to 

(ë^él? e-*!»(«-*?<, \2„(u-v); 2o>, 2û>rl^sin7r^sin7rv, 

where a> is an arbitrary quantity, and 

236. The further development of the theory of functions in the f plane 
may be carried out on the lines already followed in the case of the Riemann 
surface. We limit ourselves to some indications in regard to matters bearing 
on the main object of this chapter. 

The excess of the number of zeros over the number of poles, in any 
region, of a function of f, ƒ(£), which is uniform and without essential 
singularities within that region, is of course equal to the integral 

2 ^ l o g / ( f ) , 

* See, for instance, Halphen, Fonct. Ellipt. (Paris, 1886), vol. i. p. 400. 
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taken round the boundary of the region. If we consider, for example, the 

function nn(Ç'), = dvw'7/dÇ', which is nowhere infinite, in the region S, the 

number of its zeros within the region S is 

2™ _ „( ) nn(0\ ç' 
where the dash denotes a differentiation in regard to f, and the sign of 
summation means that the integral is taken round the circles 0 / , ..., Gp', in 
a counter-clockwise direction. Since X2n (fr) = (yrf+ K)2 ^n (?)> the value is 

r 

or 2p ; thus as (f) vanishes to the second order at £ = oo in virtue of the 

denominator dÇ, we may say that dvà y has 2p — 2 zeros in the region S, in 
general distinct from £ = oo . The function (£) vanishes in every analogue 
of these 2p — 2 places, but does not vanish in the analogues of £= oo. 

The theory of the theta functions, constructed from the integrals v„ v, and 
their periods > will subsist, and, as in the case of the Biemann surface 
there will, corresponding to an arbitrary point m, which we take in the 
region 8, be points m1} ..., mp in the region 8, such that the zeros of the 
function ®(y£w — ^>m i — — vÇP,mp^ a r e the places £1? ..., Çp. And 
corresponding to any odd half period, ^QSfS', there will be places n1} ..., np_ly 

in the region S} which, repeated, constitute the zero of a differential dv^ v, and 
satisfy the equations typified by 

| f ì S ) S - = vmp,m - tf»i»wi - - ^ - i ' m P - i , 

The values of the quantities e™T«,n and the positions of m1} ...ymp may 
vary when the barriers which are necessary to define the periods ) are 
changed. 

But it is one of the main results of the representation now under 
consideration that a particular theta function is derivable immediately from 
the function (£, 7) ; and hence, as is shewn in chapter XIV., that 
any theta function can be so derived. Let v denote the integral whose 
differential vanishes to the second order in each of the places , . . . , ^ _ 1 . 
Consider the expression vdv/dÇ in the region S. It has no infinities and it is 
single-valued in the neighbourhood of its zeros, as follows from the fact that 
the p zeros of dv/dÇ are all of the second order. Hence if the region S be 
made simply connected by drawing the p barriers, and joining the p pairs of 
circles by p - 1 further barriers ( ..., (cp-i), of which (cr) joins the circumfer
ence Gr' to the circumference Gr+1, */dvjdÇ will be uniform in the region 8 so 
long as f does not cross any of the barriers. For the change in the value of 
\Zdv/dÇ when f is taken round any closed circuit may then be obtained by 
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considering the equivalent circuits enclosing the zeros. But in fact the 
barriers (d), ..., (c^-i) are unnecessary ; to see this it is sufficient to see that 
any circuit in the region S which entirely surrounds a pair of circles, such 
as Ci y Glt encloses an even number of the infinities of dv/dÇ which are at the 
singular points of the group. Since these infinities are among the logarithmic 

zeros and poles of v{y, ..., vp'
y, whereof v is a linear function, the proof 

required is included in the proof that any one of the functions v{y, ..., vp
,y is 

unaltered when taken round a circuit entirely surrounding a pair of the 
circles, such as / , . Thus when the barriers which render the functions 

v{y
 y ..., vp

,y uniform are drawn, the function >Jdv/dÇis entirely definite within 
the region S, save for an arbitrary constant multiplier, provided the sign of 
the function be given for some one point in the region S. And, this being 

done, if 7 be any point, the function * / ~rz\l ~r is independent of this sign. 

This function, with a certain constant multiplier, which will be afterwards 
assigned, may be denoted by sfr (£). 

237. We proceed now to prove the equation 

where s'v ' y = SiVx '
 y + + sp'vp'

Y, and is constant, independent of f and 
7. I t is clear first of all that the two sides of this equation have the same 
poles and zeros in the region S. For ® (v^ y + ̂ £ls,s') vanishes to the first 
order at the places 7, nly ..., ? _1} and ^ ( f ) vanishes to the first order at 
nlt ..., Wp_i, 00, while (f, 7) vanishes to the first order at f = 7 , and is 
infinite to the first order at £= 00 *. Thus the quotient of the two sides of the 
equation has no infinities within the region S. Further the square of this 
quotient is uniform within the region S, independently of the barriers; for 
this statement holds of each of the factors 

And, if Ç be replaced by fn, the square of the quotient of the two sides of the 
equation becomes (cf. § 175, Chap. X.) multiplied by the factor 

L + J 

which is equal to unity. Now "f" a function of f, which is unaltered by the 
substitutions of the group, and is uniform within the region S, and has no 

* At the analogues of £= 00 neither w (£, 7) nor 1/ \j/ (f ) becomes infinite. 
f If U + iV be the function, the integral jUdV, taken round the 2p fundamental circles is 

expressible as a surface integral over S whose elements are positive or zero. In the case 
considered the former integral vanishes. 
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infinities, must, like a rational function on a Biemann surface, be a constant. 
Since the square root of a constant is also a constant the proof of the equation 
is complete. 

From it we infer (i) that 

* ( £ . ) / * (?) = ( - 1)*+*» (7»?+ 8») ( - l)Sn> 

and (ii) that the values of yfr (f) on the two sides of a barrier have a quotient 
of the form (— l)s'n. The constant factor to be attached to yfr (Ç) may be 
chosen so that -4 = 1. For this it is sufficient to take for the integral v the 
expression 

where &j ( ) = ®( )/ . Then (cf. § 188, p. 281) the right-hand side, 
when f is near to 7, is equal to A (f — 7) + ..., while the left-hand side has 
the value (£ — 7) + 

238. The developments of an equation analogous to that just obtained, 
which will be given in Chap. XIV. in connection with the functions there 
discussed, render it unnecessary for us to pursue the matter further here. 
The following forms an interesting example of theta functions, of another kind. 

Suppose that the quantities fily..., fip are small enough to ensure (cf. § 226) 
the convergence of the series 

~~ f1 

wherein fi denotes an arbitrary place within the region S, and i denotes a 
summation extending to every substitution of the group. It will appear that 
this function is definite in all cases in which the function (f, / ) is definite. 
The function is immediately seen to verify the equations 

X (f»> M) = (7n? + Sn) X (f, /A), X (?, fin) = (ynfi + 8„) X (f, /x), 

and X ( * 0 « 2 _ _ _ 2 ^ _ _ _ 

= _S ! 

fr-m 
where r denotes the substitution inverse to that denoted by . Thus 

The function has one pole in the region S, namely at fiy and no other 
infinities, and if the series be uniformly convergent near f = 00 , as we assume, 
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the function vanishes to the first order at f = 00 . The excess of the number 
of its zeros over the number of its poles in S} which is given by 

i f /TV(gn,/*) x'(C,/*)"bf 
2m «Ti J |_\ (fn, AO X (?» /*) J 

where the dash denotes a differentiation in regard to f, and the integrals are 
taken counter-clockwise round the circles 0 / , ..., Gp\ namely by 

is equal to p. Thus the function has p zeros in S other than f = 00 ; denote 
these by /A,, ..., /tp. Within any region Sr№fi> the function has the analogue of 
/4 for a pole, and the analogues of fi1} ..., fip for zeros ; it does not vanish at 
the analogue of f = 00. This result may be verified also by investigating 
similarly the excess of the number of zeros over the number of poles in any 
such region ; the result is found to be p — 1. 

Consider the ratio 

where v is any linear function of v^7, ..., vp
y ; let £\, ..., fap_2 denote the 

zeros of dv. Then ƒ (£) is uniform within the region S, and is unaltered by 
the substitutions of the group. It has poles /A2, Çlt ..., f2p-2> and no other 
infinities in S, and has zeros /1^, ..., fip

2, the square of a symbol being written 
to denote a zero or pole of the second order. Thus we have, precisely as for 
the case of rational functions on a Riemann surface, 

2vT* + Vn'*' + vi" *l + + ^ P - 3 , % - 1 + ^2p-2,%-i == 0, (jt=l, 2, . . . , p)9 

or (§ 179, p. 256), 

and therefore, if , ..., W2P denote the points in $, derivable from fi (§ 236), 

such that 0 (é,ii' — vXu Wl - _v'
xp>mP) vanishes in Ç=œlt ..., ? = $ , we 

have (§ 182, p. 265). 
(/V5, . . . , A*P8) = • • • > * V)-

When the barriers are drawn, let 

C ' " + + C " P = i (*i + * i 4 i + +kP'ritP), ( 1=1 ,2 , . . . , / , ) , 

ÄJi, ..., &p, &/, ..., kp' being integers. 

Now consider the product X (f, yu,) (f, //,). I t has no poles, in 8, and its 
zeros are fxly ..., fip. I t is an uniform function of f, and, subjected to one of 
the fundamental substitutions of the group it takes the factor 
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Hence the function 

F(X) = X ̂  **) CT & rì é*1^' * 
© (/' * - £ß) 

wherein tfv*'*1 denotes k^^* + +kp'v%lu, and denotes the p quantities 
ki + kiTit J 4- +kpTitP, has, within £, no zeros or poles, and is such that, 
for a fundamental substitution, 

(cf. § 175, Chap. X.); thus, as in the previous article, F(g) is a constant 
thus, also, gn + hn — kn is an even integer, = 2Hnt say, and we have 

X (?, A*) * « » = 4e - « ^ * (/'M - *P), 

where P denotes the p quantities <ft +A* + &I'T< |1 + + kpriiPy and J. is 
independent of Ç But, if f describe the circumference (7n, the left-hand side 
is unchanged, and the right-hand side obtains the factor "_7 * Thus the 
integers &/, ...,hp are all even ; put kr'= 2Hr'\ then, as 

( ^ _ ^ - ' ) - 1 '(- , ' -€ ) - ^ (^ ' ' - + * ) , 

where the notation is that of § 175, Chap. X., we have 

X(£ ,*)«• (f, /*) = 50 (/• " - £ ± * ) , 

wherein is independent of £ and therefore, since the interchange of f, / 
leaves both sides unaltered, is also independent of /A. The value of may 
be expressed by putting f = / t ; thence we obtain, finally, 

This equation may be regarded as equivalent to 2P equations. For if in 
one of the p fundamental substitutions *àrÇ = («rÇ + ßr)/( + & )> w e consider 
the signs of a,., ßr, yr, $r all reversed, the function \ (f, / ) , which involves the 
first powers of these quantities, will take a different value. The function  

(f, fi), the p fundamental circles, and the integrals and their periods   
, and therefore the integers glt ..., ^ , will remain unchanged, if the 

barriers remain unaltered. But the integer hr will be increased by unity. 
If, on the other hand, the coefficients a, ß, 7, 8 remaining unaltered, 

one of the barriers be drawn differently, the left-hand side of the equation 
remains unaltered; on the right-hand one of hly ..., hp will be increased by 
an integer, say, for example, hr increased by unity, and therefore each of 
Ti,r> •••> TPir also increased by unity. Putting for if'11 — \g-\hy and 

. 24 
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neglecting integral increments of it, the exponent of the general term of the 
theta series is increased, save for integral multiples of 27 , by 

27 (— ̂ ) nr + iirnr
2
t 

which is an even multiple of 7 , so that the general term is unchanged. 

Ex. i. Prove that the function X (f, /z) can be written in the form 

i " - i 

where the sign of summation refers to all the substitutions of the group, other than 
the identical substitution, with the condition that when any substitution occurs its inverse 

must not occur, and {f, & ! /*> Pi} denotes j ƒ y-—- . 

Ex. ii. In case p = l, where the fundamental substitution is 

putting e2iriu={Ç-B)l(C-A\ êldv = {ii-B)l{ii-A\ prove that 

t - _ - ^ ~ ~ — Sin 7 (U-V) , . , t SJn2 7 (U - V) 
Ç ' * " 2 - * ' i C ' C i l / X ' R ' ~ P - ^ ^ - ^ + 2 ' ' 

and hence 
2^sin7TMsin7r# » 4 ( — \) ¥ (1 + p*) sin2 n(u —  

^ ^ " ~ ( _ - _ ) s i n i r ( t t - v ) L l - 2 p i c o s 2 7 r ( w - v ) + p2i J * 

When h—0 this becomes* 

4 _ sin TTU sin ? o-3 [2Û> (w — #)] 
( _ - _ ) 3(0) <r[2»(tt-«0] ' 

where the sigma functions are formed with 2©, 2Û>T as periods, a> being an arbitrary 
quantity. Thus (§ 235, Ex.) 

"(CrtMfcfO-* _ _ _ _ _ _ _ _ _ _ _ _ — ^ ( j j — , 

where the symbol S0 is as in Halphen, Fond. Ellvp. (Paris, 1886), Vol. I. pp. 260, 252. 

This agrees with the general result ; in putting ^= we have taken g = l ; and, as 

stated, h is here taken zero. 

When Ä = l we similarly find 

\(t „x 4ûttsinirMBinirt; < [ 2 » ( « - + £ ,.- *.( -«) 
M U J " ~ ( -3 -„ )7 < (_) cr[2o,(w-*)] * 

and hence 

(_\ fOMC» ) - , ~ 2 ? >( " ) 2 - 2 ?< ( "' ) 0"3^2 ) ^ ~ + ^ _ _ _ _ _ _ 
- s ( » ) ' e ( 0 ) ' 

also in agreement with the general formula. In these formulae e(u) denotes the series 

zJHun+innfl _ 1 + 2q c o s ( 2 7 r w ) + 2 q i c o s ( 4 ? r w ) + 2 q 9 c o s ( 6 ? m ) + ^ 

where q = eXWT. 

* Cf. Halphen, JYrnc*. _Ki_p. (Paris, 1886), Vol. i. p . 422. 
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Ex. iii. Denoting 

where the summations include all substitutions of the group except the identical sub
stitution, respectively by umt n , vm, w, prove that, when f is near to / , 

^ ^ = 1 - - )2*<2,2+^^^  

Ex. iv. If 0, s be two single-valued functions of f, without essential singularities, 
which are unaltered by the substitutions of the group, the algebraic * relation connecting 
z and s may be associated with a Riemann surface, whereon f is an infinitely valued 
function ; and if z, s be properly chosen, any single-valued function of f without essential 
singularities, which is unaltered by the substitutions of the group, is a rational function on 
the Riemann surface. But if 

where C = -r, etc., we immediately find that the value Z=(aC+ß)/(y{+ò) gives 

{Z, *}={£> * } ; 

therefore, as {f, 2}, = -{z, (} 1(- > is a single-valued function of f without essential 

singularities, and is unaltered by the substitutions of the group, we have 

{f, 4 = 2/(2, ,), 

where ƒ denotes a rational function. Therefore, if Y denote an arbitrary function, and 

P— — — log ( Y2 -p ) , and £Y are the solutions of the equation 

ï+?ï+[/+^+if]r=„, 
/efe 

and if Y be chosen so that Y2 -TL is a rational function on the Riemann surface, the 

coefficients in this equation will also be rational functions. Thus for instance we may 

/di 
take for Y the function / -rz, in which case P = 0 , or we may take for Y the function 

^ (f ), = A / - ^ - j ^ , considered in § 236, which is uniform on the f plane when the barriers 

are drawn, in which case P = - -r log -7-, and the equation takes the form - ^ + R. F = 0 , 

where R is a rational function, or again we may take for Y the uniform function of 
f, X (Ç, /x), considered in § 238 f. 

* Ex. viii. § 232. 
t Cf. Riemann, Ges. Werke (Leipzig, 1876), p. 416, p. 415; Schottky, Creile, LXXXIII. (1877), 

p. 336 ff. 
24—2 
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Ex. v. If, as in Ex. iv., we suppose a Riemann surface constructed such that to 
every point f of the ( plane there corresponds a place {z, s) of the Riemann surface, and 
in particular to the point f = £ there corresponds the place (x, ) , and if R, S be functions 
of £ defined by the expansions 

^ lo g e r ( f ,ö= - r i 5 + /4 - ( * - * )Ä+ , ^^= l - i<S (C-£ ) 2 + , 

prove tha t 

and that Ä, £ are rational functions of x and 3 

Ex. vi. The last two examples suggest a problem of capital importance—given any 
Riemann surface, to find a function f, which will effect a conformai representation of the 
surface to such a f-region as that here discussed. This problem may be regarded as that 
of finding a suitable form for the rational function I {z, s). The reader may consult 
Schottky, Creile, LXXXIII. (1877), p. 336, and Creile, ci. (1887), p. 268, and Poincaré, 
Acta Mathematica, iv. (1884), p. 224, and Bulletin de la Soc. Math, de France, t. xi. (18 May, 
1883), p. 112. In the elliptic case, taking 

where #> denotes Weierstrass's function with 1 and as periods, it is easy to prove that 

A / -JZ and f A / -JT are the solutions of the equation 

№Y dY 

239. There is one case of the theory which may be referred to in 
conclusion. Take p circles Clt ..., Gp, exterior to one another, which are all 
cut at right angles by another circle 0 ; take a further circle G cutting this 
orthogonal circle 0 at right angles; invert the circles G1, G2, ... in regard to 
C. We shall obtain p circles 0/ , G2', ..., Cp' also cutting the orthogonal 
circle 0 at right angles. The case referred to is that in which the circles 
Clt d', ..., Cp, Gp' are the fundamental circles and the angles /clt ..., Kp a r e 
all zero, so that, if denote one of the p fundamental substitutions, the 
corresponding points f, lie on a circle through An and Bn. We may 
suppose that the circles Clt ..., Gp are all interior to the circle G I t can be 
shewn by elementary geometry that An, Bn are inverse points in regard to 
the circle G as well as in regard to the circle Gn, and further that if to denote 
the process of inversion in regard to the circle G and > that of inversion in 

regard to Gn, the fundamental substitution is œn(û, so that ( =S-»\ or 

u)Srn = S^1u>. Hence if the points of intersection of the circles 0, Gn be 
called dn, bn, the points of intersection of 0, Gn be called an, bn, and the 
points of intersection of 0, G be called a, b, it may be shewn without much 
difficulty that 

vlr'°r = pntr, vyb" = % + Qn, va
n'

b=% + R, (n,r = l, 2,...,p; w + r), 
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where , Qni R are integers, and the integrations are along the perimeters 
of the several circles. Hence it follows that the uniform functions of f 

2 2 c 

expressed by ar>br, e a>ò are unaltered by the substitutions of the group. 
Denote them, respectively, by xr (f) and x (f ). Each of them has a single 
pole of the second order, and a single zero of the second order, and therefore, 
as in the case of rational functions on a hyperelliptic Riemann surface, we 
have, absorbing a constant factor in xr (f), an equation of the form 

_ x(K)-x{ar) 

But it follows also that the function 

is unaltered by the substitutions of the group. Hence we have*, writing 
y, x for (f), x (f), etc., 

[x-x(a1)] [x-x(ap)] 
- ... - [ _ { [x_x(bp)y 

Thus the special case under consideration corresponds to a hyperelliptic 
Riemann surface; and, for example, the equations vn

ni n = ^ + Qn, eta, cor
respond to part of the results obtained in § 200, Chap. XI. I t is manifest 
that the theory is capable of great development. The reader may consult 
Weber, Göttinger Nachrichten, 1886, "Ein Beitrag zu Poincaré's Theorie, 
u. s. w.," also, Burnside, Proc. London Math. Soc. xxiu. (1892), p. 283, and 
Poincaré', Acta Math. in. p. 80 and Acta Math. iv. p. 294 (1884); also 
Schottky, Grelle, evi. (1890), p. 199. For the general theory of automorphic 
functions references are given by Forsyth, Theory of Functions (1893), 
p. 619. The particular case considered in this chapter is intended only 
to illustrate general ideas. From the point of view of the theory of this 
volume, Chapter XIV. may be regarded as an introduction to the theory 
of automorphic functions (cf. Klein, Math. Annalen, xxi. (1883), p. 141, and 
Ritter, Math. Annalen, XLiv. (1894), p. 261). 

* The function x here employed is not identical in casej? = l with the z of Ex. vi. § 238. 


