
CHAPTER XVIII 

FUNCTIONS OF A COMPLEX VARIABLE 

178. General theorems. The complex function (a; y) -f ίv (.τ, y), 
where (x, y) and v (x, y) are single valued real functions continuous 
and differentiable partially with respect to x and y, has been defined 
as a function of the complex variable z = x + iy when and only when 
the relations ux = v'y and uy = — vx are satisfied (§73). In this case 
the function has a derivative with respect to z which is independent 
of the way in which z approaches the limit zero. Let w = f(z) be a 
function of a complex variable. Owing to the existence of the deriva­
tive the function is necessarily continuous, that is, if e is an arbitrarily 
small positive number, a number δ may be found so small that 

l/(*)-Λ*o)l<« w h e n l * - * o l < δ > ( i ) 
and moreover this relation holds uniformly for all points z0 of the 
region over which the function is defined, provided the region includes 
its bounding curve (see Ex. 3, p. 92). 

I t is further assumed that the derivatives ux, u¦n vx, vy are continuous 
and that therefore the derivative f(z) is continuous. * The function 
is then said to be an analytic function (§ 126). All the functions of a 
complex variable here to be dealt with are analytic in general, although 
they may be allowed to fail of being analytic at certain specified points 
called singular points. The adjective "analyt ic" may therefore usually 
be omitted. The equations 

w = f(z) o r u = u (xι y)j v = v (x, ) 

define a transformation of the æ¿/-plane into the i¿v-plane, or, briefer, of 
the «-plane into the ¾#-plane; to each point of the former corresponds 
one and only one point 'of the latter (§63). If the Jacobian 

¦ĵ ļ\ = (“^ + OCř = \f( )f (2) 
I vχ I 

* It may be proved that, in the case of functions of a complex variable, the 
continuity of the derivative follows from its existence, but the proof will not be 
given here. 
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of the transformation does not vanish at a point z , the equations may 
be solved in the neighborhood of that point, and hence to each point 
of the second plane corresponds only one of the first: 

x = x(u, v), y = '¿/(U}V) 0 Γ z = φ(w). 

Therefore it is seen that if w = f{z) is analytic in the neighborhood 
ofz = z , and if the derivative f ' (z¿) does not vanish, the function may be 
solved as z = φ(tv), where φ is the inverse function of f and is like­
wise analytic in the neighborhood of the point w = wQ. I t may readily 
be shown that, as in the case of real functions, the derivatives f'(z) and 
φ'(tt') are reciprocals. Moreover, it may be seen that the transfor?na-
tion is conformai, that is, that the angle between any two curves is 
unchanged by the transformation (§ 63). For consider the increments 

Δ«> = [ƒ'(*„) + ζ] s =f'(e0) [1 + Ĉ//'(So)j Δ*. ƒ'(*„) ≠ 0. 

As £ and τv are the chords of the curves before and after transforma­
tion, the geometrical interpretation of the equation, apart from the infin­
itesimal £, is that the chords z are magnified in the ratio | / ' ( s 0 ) | to 1 
and turned through the angle of f'(z0) to obtain the chords Aw (§ 72). 
In the limit it follows that the tangents to the w-curves are inclined at 
an angle equal to the angle of the corresponding ^-curves plus the angle 
of f'(z0). The angle between two curves is therefore unchanged. 

The existence of an inverse function and of the geometric interpre­
tation of the transformation as conformai both become illusory at points 
for which the derivative ƒ ' (z) vanishes. Points where f'(z) = O are 
called critical points of the function (§ 183). 

I t has further been seen that the integral of a function which is ana­
lytic over any simply connected region is independent of the path and 
is zero around any closed path (§ 124) ; if the region be not simply con­
nected but the function is analytic, the integral about any closed path 
which may be shrunk to nothing is zero and the integrals about any 
twb closed paths which may be shrunk into each other are equal (§ 125). 

. Furthermore Cauchy's result that the value 

Jo 
of a function, which is analytic upon and within a closed path, may be 
found by integration around the path has been derived (§ 126). By a 
transformation the Taylor development of the function has been found 
whether in the finite form with a remainder (§ 126) or as an infinite 
series (§ 167). I t has also been seen that any infinite power series 
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which converges is differentiable and hence defines an analytic function 
within its circle of convergence (§ 166). 

I t has also been shown that the sum, difference, product, and quotient 
of any two functions will be analytic for all points at which both func­
tions are analytic, except at the points at which the denominator, in the 
case of a quotient, may vanish (Ex. 9, p. 163). The result is evidently 
extensible to the case of any rational function of any number of analytic 
functions. 

From the possibility of development in series follows that if two 
functions are analytic in the neighborhood of a point and have identical 
values upon any curve drawn through that point, or even upon any set 
of points which approach that point as a limit, then the functions are 
identically equal within their common circle of convergence and over all 
regions which can be reached by (§ 169) continuing the f unctions analyti­
cally. The reason is that a set of points converging to a limiting point 
is all that is needed to prove that two power series are identical pro­
vided they have identical values over the set of points (Ex. 9, p. 439). 
This theorem is of great importance because it shows that if a function 
is defined for a dense set of real values, any one extension of the defi­
nition, which yields a fraction that is analytic for those values and for 
complex values in their vicinity, must be equivalent to any other such 
extension. I t is also useful in discussing the principle of permanence of 
form; for if the two sides of an equation are identical for a set of 
values which possess a point of condensation, say, for all real rational 
values in a given interval, and if each side is an analytic function, then 
the equation must be true for all values which may be reached by ana­
lytic continuation. 

For example, the equation sin x = cos (ļ — x) is known to hold for the values 
0 ≤ x Ë≡ 17Γ. Moreover the functions sin z and cos z are analytic for all values of z 
whether the definition be given as in § 74 or whether the functions be considered 
as defined by their power series. Hence the equation must hold for all real or 
complex values of x. In like manner from the equation e?ev = ex + v which holds 
for real rational exponents, the equation ezew = ez + w holding for all real and im­
aginary exponents may be deduced. For if be given any rational value, the 
functions of x on each side of the sign are analytic for all values of x real or com­
plex, as may be seen most easily by considering the exponential as defined by its 
power series. Hence the equation holds when x has any complex value. Next 
consider x as fixed at any desired complex value and let the two sides be con­
sidered as functions of regarded as complex. It follows that the equation must 
hold for any value of y. The equation is therefore true for any value of z and w. 

179. Suppose that a function is analytic in all points of a region ex­
cept at some one point within the region, and let it be assumed that 
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the function ceases to be analytic at that point because it ceases to be 
continuous. The discontinuity may be either finite or infinite. In case 
the discontinuity is finite let | f{z) ļ < G in the neighborhood of the 
ļjoint z = a of discontinuity. Cut the point out 
with a small circle and apply Cauchy's Integral to 
a ring surrounding the point. The integral is appli­
cable because at all points on and within the ring 
the function is analytic. If the small circle be 
replaced by a smaller circle into which it may be 
shrunk, the value of the integral will not be changed. 

//t^z\z \ 

L ' t J 

Now the integral about γ¿ which is constant can be made as small 
as desired by taking the circle small enough ; for | f{t) \ < G and 
\t — z\ > \a — z\ — r{, where r{ is the radius of the circle γ¿ and hence 
the integral is less than 2 TΓΊ\G/[_\Z — a\ — Ί\¯\. A S the integral is con­
stant, it must therefore be 0 and may be omitted. The remaining inte­
gral about C, however, defines a function which is analytic at z = a. 
Hence if ƒ (a) be chosen as defined by this integral instead of the 
original definition, the discontinuity disappears. Finite discontinuities 
may therefore be considered as due to bad judgment in defining a 
function at some point; and may therefore be disregarded. 

In the case of infinite discontinuities, the function may either become 
infinite for all methods of approach to the point of discontinuity, or it 
may become infinite for some methods of approach and remain finite for 
other methods. In the first case the function is said to have a pole at 
the point z = a of discontinuity; in the second case it is said to have 
an essential singularity. In the case of a pole consider the reciprocal 
function 

The function F{z) is analytic at all points near z = a and remains 
finite, in fact approaches 0, as z approaches a. As F (a) = 0, it is seen 
that F{z) has no finite discontinuity at z = a and is analytic also at 
z = a. Hence the Taylor expansion 

F{z) = am{z - a)m + am+1(z - a)™+1 + • • • 

is proper. If E denotes a function neither zero nor infinite at z = a, 
the following transformations may be made. 
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F(z) = (z- a)»E¿z), f(z) = (s - a)' mE2(z), 

f(z\ =
 r ¯ " + (;¯™+ι + - - . + - ^ -

'' w (s - a)m (z - )1»"1 s - a 
+ C0+C1(z-a)+C¿z-a)*+.... 

In other words, a function which has a pole at « — a may be written 
as the product of some power (z — a)~m by an ^-function; and as the 
^-function may be expanded, the function may be expanded into a 
power series which contains a certain number of negative powers of 
(z — a). The order m of the highest negative power is called the order 
of the pole. Compare Ex. 5, p. 449. 

If the function f(z) be integrated around a closed curve lying within 
the circle of convergence of the series CQ -f- Cχ(z — a) + • • •, then 

+ f íCo + Cι(z - « ) + •• -¯\dz = 2πiC_l9 
Jo 

or Cf{z)dz = 2iTίC_^ (4) 
Jo 

for the first m — 1 terms may be integrated and vanish, the term 
C_ļ/(z — a) leads to the logarithm (7_ļlog(£ — a) which is multiple 
valued and takes on'the increment 2πiC_l9 and the last term vanishes 
because it is the integral of an analytic function. The total value of 
the integral of f(z) about a small circuit surrounding a pole is there­
fore 2 7Γ¿C_ļ. The value of the integral about any larger circuit within 
which the function is analytic except at z = a and which may be shrunk 
into the small circuit, will also be the same quantity. The coefficient 
C_ļ of the term (z — d)~1 is called the residue of the pole ; it cannot 
vanish if the pole is of the first order, but may if the pole is of higher 
order. 

The discussion of the behavior of a function f(z) when z becomes 
infinite may be carried on by making a transformation. Let 

*' = J> * = ¿i' A*)=/(J)=^')- (5) 
To large values of z correspond small values of z' ; if f(z) is analytic 
for all large values of z, then F(z') will be analytic for values of z' near 
the origin. At z' = 0 the function F(z') may not be defined by (5) ; but 
if F(z') remains finite for small values of z', a definition may be given 
so that it is analytic also at z' = 0. In this case F(O) is said to be the 
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value of f(z) when z is infinite and the notation f(∞) = F(O) may . 
be used. If F(z') does not remain finite but has a pole at z' = 0, then 
f(z) is said to have a pole of the same order at z = αo; and if F(z') 
has an essential singularity at z' = 0, then f(z) is said to have an essen­
tial singularity at z = αo. Clearly if f(z) has a pole at z = oo, the value 
of f(z) must become indefinitely great no matter how z becomes infi­
nite; but if f(z) has an essential singularity at z = oc, there will be 
some ways in which z may become infinite so that f(z) remains finite, 
while there are other ways so that f(z) becomes infinite. 

Strictly speaking there is no point of the £¯plane which corresponds 
to z' = 0. Nevertheless it is convenient to speak as if there were such 
a point, to call it the point at infinity, and to designate it as z = co. If 
then F(z') is analytic for z' = 0 so that f(z) may be said to be analytic 
at infinity, the expansions 

F(z1) = C0 + C / + / - + • • • + Cnz'» + . . . = 

are valid ; the function f(z) has been expanded about the point at infin­
ity into a descending power series in z, and the series will converge for 
all points z outside a circle \z¦ = R. For a pole of order m at infinity 

f(z) = C_w*» + _ + 1 «—! + • • • + C_,s + C0 +
 (-f + ≤f + • • -. 

Simply because it is convenient to introduce the concept of the point 
at infinity for the reason that in many ways the totality of large values 
for z does not differ from the totality of values in the neighborhood of 
a finite point, it should not be inferred that the point at infinity has 
all the properties of finite points. 

EXERCISES 
1. Discuss sin (x + y) = sin x cos y + cos x sin y for permanence of form. 

2. If f(z) has an essential singularity at z = α, show that I/f(z) has an essential 
singularity at z = a. Hence infer that there is some method of approach to z = a 
such that f(z) = 0. 

3. By treating f(z) — and [/(z) — c]~1 show that at an essential singularity a 
function may be made to approach any assigned value by a suitable method of 
approaching the singular point z = a. 

4. Find the order of the poles of these functions at the origin : 
(a) cot z, (ß) esc2 z log (1 — z), (y) z (sin z — tan z)~1. 
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5. Show that if f(z) vanishes at z = a once or n times, the quotient f(z)/f(z) has 
the residue 1 or n. Show that if f(z) has a pole of the mth order at z = a, the 
quotient has the residue — m. 

6. From Ex. 5 prove the important theorem that : If f(z) is analytic and does 
not vanish upon a closed curve and has no singularities other than poles within 
the curve, then 

—— dz = nΛ -f ‰ + • • • + * — mΛ — m0 — • • — mi = N — M, 
2 id J o f(z) 

where N is the total number of roots of f(z) = 0 within the curve and M is the 
sum of the orders of the poles. 

7. Apply Ex. 6 to 1/P(z) to show that a polynomial P(z) of the nth order has 
just n roots within a sufficiently large curve. 

8. Prove that ez cannot vanish for any finite value of z. 

9. Consider the residue of zf(z)/f(z) at a pole or vanishing point of f(z). In 
particular prove that if f(z) is analytic and does not vanish upon a closed curve 
and has no singularities but poles within the curve, then 

1 zf'(ź) 
— : ļ — — dz = ļdļ + n0α0 + • • • + *«* — — m2b2 — • • • — mfa, 
2πi Jo f(z) 

where α l ţ α2, • • •, α¾ and n1? n2, • • •, are the positions and orders of the roots, 
and öj, ò2, • • •, bι and m1? m2, • • •, of the poles of f(z). 

10. Prove that θļ(z), p. 469, has only one root within a rectangle 2 by 2 i řΓ . 

11 . State the behavior (analytic, pole, or essential singularity) at z = for : 

(a) z* + 2z, . (ß) e«, (7) z/(l + z), (δ) z/{z* + 1). 
12. Show that if f(z) = (z - α)*K(z) with - l < < 0, the integral of f(z) about 

an infinitesimal contour surrounding z = a is infinitesimal. What analogous theo­
rem holds for an infinite contour ? 

180. Characterization of some functions. The study of the limita­
tions which are put upon a function when certain of its properties are 
known is important. For example, a function which is analytic for all 
values of z including also z = ∞ is a constant. To show this, note that 
as the function nowhere becomes infinite, ļ f(z) \ < G. Consider the dif­
ference ƒ(z0) — ƒ(0) between the value at any point z = zQ and at the 

origin. Take a circle concentric with z = 0 and of radius R > \zQ\. 

Then by Cauchy's Integral 

0 1 | / ( ^ ĵ { O ) ¦ < 2ir R(R - \z0\) R-\z0\ 

By taking R large enough the difference, which is constant, may be 

made as small as desired and hence must be zero; hence f(z) = / ( 0 ) . 
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Any rational function ƒ(z) = P(z)/Q(z), where P(z) and Q(z) are 
polynomials in z and may be assumed to be devoid of common factors, 
can have as singularities merely poles. There will be a pole at each 
point at which the denominator vanishes; and if the degree of the 
numerator exceeds that of the denominator, there will be a pole at in­
finity of order equal to the difference of those degrees. Conversely it 
may be shown that any function which has no other singularity than a 
pole of the mth order at infinity must be a polynomial of the mth order ; 
that if the only singularities are a finite number of poles, whether at in­
finity or at other points, the function is a rational f unction ; and finally 
that the knowledge of the zeros and poles with the multiplicity or order 
of each is sufficient to determine the function except for a constant 
multiplier. 

For, in the first place, if ƒ ( ) is analytic except for a pole of the mth order at 
infinity, the function may be expanded as 

f(z) = a-mzm + • • • + α_iz + a0 + a^~1 + <½z~2 + • • •, 

or f(z) - [a-mzm + - • • + α_iz] = α0 + a^~1 + a2z~2 + • • •. 

The function on the right is analytic at infinity, and so must its equal on the left 
be. The function on the left is the difference of a function which is analytic for 
all finite values of z and a polynomial which is also analytic for finite values. 
Hence the function on the left or its equal on the right is analytic for all values 
of z including z = oo, and is a constant, namely α0. Hence 

f(z) = α0 + α_iz + • • • 4-α_røZ"1 is a polynomial of order m. 

In the second place let z1? z2, • • •, z*, αo be poles of f(z) of the respective orders 
m-ļ, m2, • • -, m¾, m. The function 

φ (z) = (Z - Z^(Z - ¾ P . . . (2 - ¾ f *ƒ (Z) 

will then have no singularity but a pole of order m1 -{• m2 + • • • +m¾ + ffl 
at infinity; it will, therefore be a polynomial, and f(z) is rational. As the 
numerator φ(z) of the fraction cannot vanish at z l ţ z2, •• -, z¿, but must have  

_ţ_ _ļ_ . . . _ļ_ mk _ļ_ m roots, the knowledge of these roots will determine the 
numerator φ(z) and hence ƒ(z) except for a constant multiplier. It should be 
noted that if f(z) has not a pole at infinity but has a zero of order m, the above 
reasoning holds on changing m to — m. 

When f(z) has a pole at z = a of the mth order, the expansion of 
f(z) about the pole contains certain negative powers 

P(z -a)= C¯m h C¯m+l h • • • 4- °¯x 

and the difference f(z) — P(z — a) is analytic at z = a. The terms 
P(z — a) are called the principal part of the function f(z) at the pole a. 
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If the function has only a finite number of finite poles and the prin­
cipal parts corresponding to each pole are known, 

Φ(s) = *) - *\{s - *•) - p¿? - ¾) *'& - ¾) 

is a function which is everywhere analytic for finite values of z and 
behaves at z = oc just as f(z) l¿ehaves there, since Pv P2, • • •, Pk all 
vanish at z = GO. If f(z) is analytic at £ = GO, then φ(z) is a constant; 
if ƒ (V) has a pole at « = oo, then φ (z) is a polynomial in ,¾ and all of 
the polynomial except the constant term is the principal part of the 
pole at infinity. Hence if a function has no singularities except a finite 
number of poles, and the principal parts at these poles are known, the 
function is determined excepjt for an additive constant. 

From the above considerations it appears that if a function has no 
other singularities than a finite number of poles, the function is ra­
tional ; and that, moreover, the function is determined in factored form, 
except for a constant multiplier, when the positions and orders of the 
finite poles and zeros are known ; or is determined, except for an addi­
tive constant, in a development into partial fractions if the positions 
and principal parts of the poles are known. All single valued functions 
other than rational functions must therefore have either an infinite 
number of poles or some essential singularities. 

181. The exponential function ez = ¢*(cos y -f- i sin y) has no finite 
singularities and its singularity at infinity is necessarily essential. The 
function is periodic (§ 74) with the period 2 τri and hence will take on 
all the different values which it can have, if z, instead of being allowed 
all values, is restricted to have its pure imagi­
nary part y between two limits yQ^y<y0 + 2τr; 
that is, to consider the values of ez it is merely 
necessary to consider the values in a strip of 

-co r 7 Γ * L í00 

the £-plane parallel to the axis of reals and of breadth 2 ir (but lacking 
one edge). For convenience the strip may be taken immediately above * 
the axis of reals. The function ez becomes infinite as z moves out 
toward the right, and zero as z moves out toward the left in the strip. 
If = a -\- is any number other than 0, there is one and only one 
point in the strip at which ez = c. For 

ex = /a'2 -4- V2 and cos + i sin = _ + ί —. 
J ¯7 V«* + ¿2 v V + 62 

have only one solution for x and only one for if be restricted to an 
interval 2 . All other points for which ez = have the same value fol­
ic and some value ± 2nπ for y. 
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A n y ra t iona l funct ion of ez, as 

„ 2λ ,„ β"g + < / 1 β ( w ¯ 1 > 8 + . - • + ^ - ļ β 2 +   
i l ( ) = ; ; — ; —- > 

will also h a v e t he per iod 2 πi. W h e n z moves oft' t o t h e left in t h e 
s t r ip , R (ez) wi l l app roach Can/bm if bm φ 0 a n d will become infini te if 
bm = 0. W h e n z moves off to t h e r igh t , 11 (ez) m u s t become infinite if 
n > m, a p p r o a c h if n = m, a n d a p p r o a c h 0 if n < m. T h e denomi­
na to r m a y be fac tored in to t e r m s of t h e form (eř — a)k, a n d if t h e frac­
t ion is in i ts lowest t e r m s each such factor wil l r e p r e s e n t a pole of t h e 
ktih o rder in t h e s t r i p because ez — a = 0 ha s j u s t one s imple root in 
t h e s t r ip . Converse ly i t m a y be s h o w n t h a t : Any function f(z) which 
has the period 2 ττi, which further has no singularities but a finite 
number of poles in each strip, and which either becomes infinite or ap­
proaches a finite limit as z moves off to the right or to the left, must be 
f(z) = R(e*)ĵ a rational function of ez. 

The proof of this theorem requires several steps. Let it first be assumed that f{z) 
remains finite at the ends of the strip and has no poles. Then f(z) is finite over all 
values of z, including z = <x>, and must be merely constant. Next let f(z) remain 
finite at the ends of the strip but let it have poles at some points in the strip. I t will 
be shown that a rational function (ez) may be constructed such that f(z)— (ez) 
remains finite all over the strip, including the portions at infinity, and that there­
fore f(z) = B(ez) + For let the principal part of f(z) at any pole z = be 

-rw - C-fc+l C-l , C-hßkc C-k 
P(z-c) = h fl±L_.+ . . . + L ; then -÷-± = ^ 4 . . . . 

(z — c)k (z — c)*~1 z — c (ez — ec)k (z — c)k 

is a rational function of ez which remains finite at both ends of the strip and is 
such that the difference between it and P(z — c) or f(z) has a pole of not more 
than the ( — l)st order at z = c. By subtracting a number of such terms from 
f(z) the pole at z — may be eliminated without introducing any new pole. 
Thus all the poles may be eliminated, and the result is proved. 

Next consider the case where f(z) becomes infinite at one or at both ends of the 
strip. If f(z) happens to approach 0 at one end, consider f(z) + C, which cannot 
approach 0 at either end of the strip. Now if f(z) or f(z) + C, as the case may be, 
had an infinite number of zeros in the strip, these zeros would be confined within 
finite limits and would have a point of condensation and the function would vanish 
identically. I t must therefore be that the function has only a finite number of 
zeros ; its reciprocal will therefore have only a finite number of poles in the strip 
and will remain finite at the ends of the strips. Hence the reciprocal and conse­
quently the function itself is a rational function of ez. The theorem is completely 
demonstrated. 

I f t h e re la t ion f(z + ω) = f(z) is satisfied b y a funct ion, t h e func­
t i on is sa id t o h a v e t h e per iod ω. T h e funct ion ƒ ( 2 τriz/ω) wi l l t h e n 
h a v e t h e per iod 2 πi. H e n c e i t follows t h a t if f(z) has the period ω, 
becomes infinite or remains finite at the, ends of a strip of vector breadth 
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ω, and has no singularities but a finite number of poles in the strip, the 
function is a rational function of e2πίz/ω. In particular if the period 
is 2 τr, the function is rational in eiz, as is the ¡ 
case with sin z and cos z; and if the period is / " \ . 
ir, the function is rational in eiz/2, as is tan z. ^ ^ \ z l > < ^ ω 

I t thus appears that the single valued elemen- Γ ^ ~ ^ \ 
tary functions, namely, rational functions, and ^ ^ ^ 
rational functions of the exponential or trigonometric functions, have 
simple general properties which are characteristic of these classes of 
functions. 

182. Suppose a function f(z) has two independent periods so that 

ƒ(* + »)=ƒ(*), ƒ(* + «.')=ƒ(*). 
The function then has the same value at z and at any point of the 
form z + mω + nω', where m and n are positive or negative integers. 
The function takes on all the values of which it is capable in a parallel­
ogram constructed on the vectors ω and ω'. Such „, , 
a function is called doubly periodic. As the values z+ω' 
of the function are the same on opposite sides of \ ^ ¿ - \ ω + ω ' 
the parallelogram, only two sides and the one in- ^\\ \ ZΛ-(JÌ 
eluded vertex are supposed to belong to the figure. \ \ Ĺ ^ ^ ^ \ 
I t has been seen that some doubly periodic- fune- V ^ ^ _ ^ ^ ω 

tions exist (§ 177); but without reference to these ° 
special functions many important theorems concerning doubly periodic 
functions may be proved, subject to a subsequent demonstration that 
the functions do exist. 

If a doubly periodic f unction has no singularities in the parallelogram, 
it must be constant ; for the function will then have no singularities at 
all. If two periodic functions have the same periods and have the same 
pjoles and zeros (each to the same order) in the parallelogram, the quo­
tient of the f unctions is a constant; if they have the same poles and the 
same principal parts at the pjoles, their difference is a constant. In these 
theorems (and all those following) it is assumed that the functions 
have no essential singularity in the parallelogram. The proof of the 
theorems is left to the reader. If f(z) is doubly periodic, f(z) is also 
doubly periodic. The integral of a doubly periodic function taken 
around any parallelogram equal and parallel to the parallelogram of 
periods is zero; for the function repeats itself on opposite sides of the 
figure while the differential dz changes sign. Hence in particular 

£*•>*-* £$<•-* Lm^ 


