
PART II 

THEORY OF INVARIANTS IN NON-SYMBOLIC 
NOTATION 

15. Homogeneity of Invariants. We saw in § 11 that two 
binary quadratic forms / and / ' have the invariants 

d = ac — b2, s = ac'+a'c — 2bb' 

of index 2. Note that s is of the first degree in the coefficients 
a, by c of / and also of the first degree in the coefficients of / ' , 
and hence is homogeneous in the coefficients of each form 
separately. The latter is also true of d, but not of the invariant 
s+2d. 

When an invariant of two or more forms is not homogeneous 
in the coefficients of each form separately, it is a sum of invariants 
each homogeneous in the coefficients of each form separately. 

A proof may be made similar to that used in the following 
case. Grant merely that s+2d is an invariant of index 2 of 
the binary quadratic forms / and / ' . In the transformed forms 
(§ 11), the coefficients A, B, C of F are linear in a, b, c\ the 
coefficients A', B', C of Ff are linear in a', b', cr. By hypothesis 

AC'+A'C-2BB' + 2(AC-B2) = A2(s+2d). 

The terms 2dA2 of degree 2 in a, b, c on the right arise only 
from the part 2(AC—B2) on the left. Hence d is itself an 
invariant of index 2; likewise s itself is an invariant. 

However, an invariant of a single form is always homo­
geneous. For example, this is the case with the above dis­
criminant d of / . We shall deduce this theorem from a more 
general one. 

30 
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Let / be an invariant of r forms / i , . . . , / r of orders p\y 

. . . , pT in the same q variables xi, . . . , #a. Let a particular 
term t of / be of degree d\ in the coefficients of / i , of degree 
^2 in the coefficients of/2, etc. Apply the special transformation 

of determinant A =aQ. Then/* is transformed into a form whose 
coefficients are the products of those of ft by cA Hence in 
the function / of the transformed coefficients, the term cor­
responding to t equals the product of / by 

This factor therefore equals Ax, if X is the index of the invariant. 
Thus 

r 

2 dtpi = \q. 
\=i 

Hence 2dipt is constant for all the terms of the invariant. 

For the above two quadratic forms, r = pl = p2 = 2. For invariant d, 
we have di = 2, d2 = 0, 2dipi = 4; = 2\. For s, we have di = d2—\, 2di/>i=4. 
Again, the discriminant (§8) of the binary cubic form is of constant degree 
4 and index X = 6; we have ̂ Ldipx = 4 • 3 = 2X. 

If, as in the last example, we take r = l, we see that an 
invariant of index X of a single ^-ary form of order p is of 
constant degree d, where dp = \q, and hence is homogeneous. 

16. Weight of an Invariant / of a Binary Form f. Give to 
/ a n d / the notations in § 7. Let 

/ = ca0
e°aiei . . . a/v 

be any term of / , and call 

w = ei+2e2+3es + . . ,+pep 

the weight of t. Thus w is the sum of the subscripts of the 
factors at each repeated as often as its exponent indicates. 
We shall prove that the various terms of an invariant of a binary 
form are of constant weight, and hence call the invariant isobaric. 
For example, aox2+2aixy+a2y2 has the invariant an02— 0i2, 
each of whose terms is of weight 2. 
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To prove the theorem, apply t o / the transformation 

* = £ , y=arj. 

We obtain a form with the literal coefficients 

Ao = ao, Ai=aia, A2 = a2a2, . . . , Ap = apa
p. 

Hence if / is of index X, 

I(ao9 aia, . . . , apa
v)=o^I{ao, a\, . . . , ap), 

identically in a and the a's. The term of the left member 
which corresponds to the above term / of I is evidently 

cotfoe° • • • av
evaw. 

Hence w = \. The weight of an invariant of degree d of a 
binary >̂-ic is thus its index and hence (§15) equals \dp. 

17. Weight of an Invariant of any System of Forms. Let 
/ i , . . . , /» be forms in the same variables Xi, . . . , xq. We 
define the weight of the coefficient of any term of ft to be 
the exponent of xa in that term, and the weight of a product 
of coefficients to be the sum of the weights of the factors. 
For q = 2, this definition is in accord with that in § 16, where 
the coefficient a* of x\p~kX2k was taken to be of weight k. 
Again, in a ternary quadratic form, the coefficients of x\2, 
x\X2 and X22 are of weight zero, those of XiXz and #2#3 of weight 
unity, and that of xz2 of weight 2. 

Under the transformation of determinant a, 

#i = £i, . . . , xq-i = £q-i, xQ=a£g, 

ft becomes a form in which the coefficient c' corresponding 
to a coefficient c of weight k in ft is cak. If I is an invariant, 
7(^')=ax /(c), identically in a. Hence every term of / is of 
weight X. 

Thus any invariant of a single form is isobaric; any invariant 
of a system of two or more forms is isobaric on the whole, but 
not necessarily isobaric in the coefficients of each form separately. 

The index equals the weight and is therefore an integer ^ 0. 
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EXERCISES 

1. The invariant a^a\-\-aia\—2aia\ of 

aox2 +2aixy+a2y
2, a'^x2 +2a\xy +a\y2 

is of total weight 2, but is not of constant weight in a0f ai, a2 alone. 
2. Verify the theorem for the Jacobian of two binary linear forms. 
3. Verify the theorem for the Hessian of a ternary quadratic form. 
4. No binary form of odd order p has an invariant of odd degree d. 

18. Products of Linear Transformations. The product TV of 

IT 5| 

V: £ = a'X+/3'F, v = y'X+6'Y, A ' = K ^ U o , 
I y o \ 

is defined to be the transformation whose equations are obtained 
by eliminating £ and rj between the equations of the given 
transformations. Hence 

,. { x=a"X+$"Y, y = y"X+b"Y, 
' \a" =a*f+$yr ,$" =a&+$b\y" = ya' +W J' = y& +**' -

Its determinant is seen to equal AA' and hence is not zero. 
By solving the equations which define T, we get 

. 8 j8 —7 , a 
£ = -x—y, rj= x-\—y. 
* A A " A A7 

These equations define the transformation T~l inverse to T; 
each of the products TT~l and T~lT is the identity trans­
formation x = X, y = Y. 

The product of transformation Te, defined in § 1, by Te
f is seen to equal 

Td+e', in accord with the interpretation given there. The inverse of 
Te is 

T-Q\ £=x cos 0+ysin e, r?=— x sin d+y cos 0. 

Consider also any third linear transformation 

Tn X=aiU+PiV, Y = y1U+81V. 

To prove that the associative law 

{Tr)Tx = T(TfTi) 
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holds, note that the first product is found by eliminating first 
£, 7] and then X, Y between the equations for T, T', 7 \ , while 
the second product is obtained by eliminating first X, Y and 
then £, rj between the same equations. Thus the final eliminants 
must be the same in the two cases. 

Hence we may write TT'T\ for either product. 

19. Generators of All Binary Linear Transformations. Every 
binary linear homogeneous transformation is a product of the 
transformations 

Tn: x=£+nr}, y = rj; 

St: s=f, y = krj (k*0); 

V: x=-ri, y = f . 
From these we obtain * 

y-i = ys. x = r]^ y=-i; 

V-lT-nV = Tf
n: x=x', y = y'+nx'; 

V-'SkV =S't: x = kx', y = y' (yMO). 

For 6^0, the transformation J in § 18 equals the product 

SsS A/STQS/AT y/s. 

For 5 = 0, so that 0 7 ^ 0 , T equals 

SyO' —pi — a/p V. 

20. Annihilator of an Invariant of a Binary Form. The 
binary form in § 7 may be written as either of the sums 

/ = 2 ( . ) a-ia;p-y = 2 l\) dp-i&yP-K 
t = 0 V / i=0\l/ 

Transformation V} of determinant unity, replaces the second 
sum by 

i=o\i; 

Comparing this with the first sum we see that an invariant 
o f / m u s t be unaltered when 

(1) at is replaced by ( - l > ' ^ - < (i = 0, 1, . . . ,p). 

* The T's are of the nature of translations, and the S's stretchings. 
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By § 16, a function I(ao, . . . , ap) is invariant with respect 
to every transformation St if and only if it is isobaric. 

Finally, the function must be invariant with respect to 
every Tn\ under this transformation let 

>-i(f) *>*-*• 
Differentiating partially with respect to n, we get 

°"M0{^ {p"v- i 4 i (^^p" i' l ,'<+1}' 
since rj = y is free of w, while £ = x — nrj. The total coefficient 
of £P~V is 

(5)!H>-'+»*-* 
the second term being absent if j =0 . But 

C M A ) ^ -
Hence] 

3^ 3^ 

^ 3 ^ o > • ->^p) _ ^ 3^ j_o j 3^ _LQJ 3^ _j_ _ L ^ J 3 / 
(2) ^ Att+MldAa

+*A*dAz + --+pA'-1QA; 
Now /(ao, . . . , ap) is invariant with respect to every 

transformation Tn, of determinant unity, if and only if 

I(A0, . . . , Ap)=I(ao, . . . , ap), 

identically in n and the a's. This relation evidently implies 

dI(A0, . . . ,AP) _Q 

dn 

Conversely, the latter implies that I(Ao, . . . , Ap) has the 
same value for all values of n and hence its value is that given 
by n = 0, viz., /(ao, • . . , ap). Hence / has the desired property 
if and only if the right member of (2) is zero identically in 
n and the a's. But this is the case if and only if 
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identically in the a's, where 12 is the differential operator 

G = f l 9 +2a1 :£- + 3 a 2 - - + . . .+pap-lzp-. 
dai dd2 9^3 9<V 

In other words, / must satisfy the partial differential 
equation Q/ = 0. In Sylvester's phraseology, / must be anni­
hilated by the operator Q. 

From this section and the preceding we have the important 
THEOREM. A rational integral function I of the coefficients 

of the binary form f is an invariant of f if and only if I is iso-
baric, is unaltered by the replacement (1), and is annihilated 
byti. 

EXAMPLE 

An invariant of degree d of the binary quartic (§6) is of weight 2d 
(end of § 16). For d=l, the only possible term is ka2\ since Q=Sl(ka2) 
= 2kai, we have &=0. For d=2, we have 

/ = r a 0 a i +sa,ia% -\-ta2
2, 

Ql=(s+4r)a0a3+(4:t+3s)ai(h = 0, 

s=— 4r, t=3r, /=r(0O04-40i0i+30i 2 ) . 

EXERCISES 

1. Every invariant of degree 3 of the binary quartic is the product of a 
constant by 

/ = 000204 + 2010203 — 0O032 — 01204— 02 3 . 

2. The invariant of lowest degree of the binary cubic 

0o#3 +3aiX2y+3a2xy2 +03y3 

is its discriminant (0003—0102)2—4(0002—0i2)(0i03—022). 

3. An invariant of two or more binary forms 

0 o * P l + . . . , &o*P2+. . . , Co*P 3+. . . 

is annihilated by the operator 

2Q = 0 O — + 2 0 ! — + . . .+bo~-+2b1~r+. . .+Co—+. . . . 
30i 302 3&i 3&2 dCi 

4. Every invariant of 

0o*2 +20iry+0 2 y 2 , box2+2blxy+b2y
2 
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of the first degree in the a's and first degree in the b's is a multiple of 

5. A binary quadratic and quartic have no such lineo-linear invariant. 

6. Find the invariant of partial degrees 2, 1 of a binary linear and 
a quadratic form. 

7. Find the invariant of partial degrees 1, 2 of a binary quadratic and a 
cubic form. 

8. The first two properties in the theorem of § 20 imply that / is homo­
geneous. For, under replacement (1), any term ca0

eo. . . ap
ev of / , of 

weight w = e!+2e2-{- . . . +peP, implies a term icao^a i 6 ?- 1 . . . ap
eo 

of weight w = ep-i+2ep-2+ . . . + (p — l)ei + pe0. Adding the two 
expressions for w, show that the degree d = e0+ei+ . . . -\-ep is the constant 
2w/p. 

21. Homogeneity of Covariants. A covariant which is not 
homogeneous in the variables is a sum of covariants each homo­
geneous in the variables. 

For, if a, b, . . . are the coefficients of the forms, and K 
is a covariant, 

K(A, B, . . . ; f, ry, . . .)=A*K(a, b, . . .; x, y, . . .)• 

When x, y, . . . are replaced by their linear expressions in 
£, 77, . . . , the terms of order a> in x, y> . . . o n the right (and 
only such terms) give rise to terms of order co in J, 77, . . . on 
the left. Hence, if K\ is the sum of all of the terms of order 
co of K, 

KM, B, . . . ; £ , 77, . . . )=A\£i (a , 6, . . . ; x, y, . . .), 

and K\ is a covariant. In this way, K = Ki+K2 + . . . . 
Henceforth, we shall restrict attention to covariants which 

are homogeneous in the variables, and hence of constant order. 

A covariant K of constant order co of a single form f is homo-
geneous in the coefficients, and hence of constant degree d. 

For, let / have the coefficients a, b, . . . and order p, and 
apply the transformation x=a%, y=arj, . . . . The coefficients 
of the resulting form are A =apa, B=apb, . . . . Thus 

K(a*a,avb,. . . ; a-lx,a~ly,. . .) = (a«)xK(a,b, . . .;x,y,...)9 

identically in a, a, b, . . . , x, y} . . . , since the left member 
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equals K(A, B, . . . ; £, v, • - •)• Now K is homogeneous 
in x, y, . . . , of order co; thus 

oraK(apa, apb, . . .; x, y, . . .)=aqXK(a, b, . . . ; x} y, . . .)• 

Thus if i£ has a term of degree d in a, &, . . . , then 

«-".«*** =a«x , pd — w = q\, 

so that J is the same for all terms of K. 
If f is a form of order p in q variables and if K is a covariant 

of degree d, order co and index X, then pd — u = q\. 

22. Weight of a Covariant of a Binary Form. In 

f = aoxp+paiXp-ly + . . . + ( ? W p - \ y * ' + . . .+apyv 

the weight of a* is k. We now attribute the weight 1 to x 
and the weight 0 to y, so that every term of / is of total 
weight p. 

Apply to f the transformation x=£, y=arj. The literal 
coefficients of the resulting form are 

Ao = ao, Ai=aai, . . . , Ap=apap. 

If K is a covariant of degree d, order co, and index X, then 

K(A0, . . . , Ap; £, 77) =axK(a0, . . . , ap; x, y). 

Any term on the left is of the form 

d 0 M i c i . . . Ap
ep^rT'r (e0+e!+ . . . +ep=d). 

This equals 

ca0
eoaiei . . . apVx'y'oF-* (W = r+ei+2e2+ . . . +M>)-

This must equal a term of the right member, so that 
W — co = X. But PF is the total weight of that term. Hence 
every term of K is of the same total weight. A covariant 
of index X and order co of a binary form is isobaric and its weight 
is co+X. 

For a form/of order p in q variables, we attribute the weight 1 to xl} x2f 

. . . , sfl_! and the weight 0 to xq; then (§17) every term of / is of total 
weight p. By a proof similar to the above, a covariant of index X and order 
w of / is isobaric and its weight is w-fA. 
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Consider a covariant K homogeneous and of total order to in the variables 
Xi, . . . , xg of two or more forms /». As in § 15, K need not be homo­
geneous in the coefficients of each form separately, but is a sum of covariants 
homogeneous in the coefficients of each. Let such a K be of degree d% in 
the coefficients of /<, of order pt. As in § 21, Zptdi— u = q\. The total 
weight of K is co+X. 

For example, if pi = p2 = q = 2, 

f1 = a0x
2+2a1xy+a2y

2, f2 = boX2+2bixy+b2y
2. 

The Jacobian of /i and /2 is 4X, where 

X = (a05i—aib0)x
2 + (a0&2—a2b0)xy+(ai62—fl^My2-

Here 
di = d2=l, co = 2, X=l, and K is of weight 3. 

23. Annihilators of Covariants K of a Binary Form. Pro­
ceeding as in § 20, we have instead of (2) 

^K(A0, . . . ,A,; «, ,) - I M M>+M | | + M . | ? 
3w y=o 9 ^ 9« 9? 3» dn dn 

and obtain the following result: K is covariant with respect 
to every transformation x=£+nr), y = rj, if and only if it is 
annihilated by * 

(1) O-y^ / 0 = floiL + . . , + ^ 9 V 

The binary form is unaltered if we interchange x and y, 
a% and <zp_» for i = 0, 1, . . . , p. Hence K is covariant with 
respect to every transformation x = £, y = r]+n^ if and only 
if it is annihilated by 

(2) 0-x§- (o=pai^-+(p-l)a2^-+. . .+«,=£-). 
dy \ ddo ddi ddp-\/ 

Denote a covariant of order co of the binary p-\c by 

K=Sx"+Six<a-1y+. . ,+Svy03. 

* For another derivation, see the corollary in § 47. 
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By operating on K by (2), we must have 

(OS-Si)xf*+(OSi-2S2)x»-1y+. . . + (QSu,-i-aSu)xy"-1 

identically in x, y. Hence K becomes 

(3) K=Sxf*+OSx«-1y+%02Sx<a-2y2+' • .+ Ko*Sy, 

whik , by 05*0, = 0, 

(4) O»+1S = 0. 

Hence a covariant is uniquely determined by its leader S. 
(Cf. §25). 

Similarly, K is annihilated by (l) if and only if 

(5) 125 = 0, QSi = a*S, 1252=(co-l)5 ,i, . . . , ttS„=Sa-i. 

The function 5 of ao, . . • , ap must be homogeneous and 
isobaric (§§ 21, 22). If such a function S is annihilated by 
12, i t is called a seminvariant. If we have £», we may find 
Su-i by (5), then &,-2, • • • , and finally Si. But if K is 
a covariant, we can derive S* from 5. For, by § 20, the 
transformation x=— rj, y = £ replaces / by a form in which 
Ai={—l)iap-u by the covariance of K, 

S(A)?+. • . = S ( i 4 ) y + . • .=£(*)*" + . . .+S„(a)F, 

so that Sw(a)=SC4). Hence 5W is derived from S by the 
replacement (1) in § 20. 

When the seminvariant leader S is given, and hence also o 
(see Ex. 1), the function (3) is actually a covariant of/; likewise 
the function whose coefficients are given by (5). Proof will be 
made in § 25. In the following exercises, indirect verification 
of the covariance is indicated. 

EXERCISES 

1. The weight of the leader 5 of a covariant of order o of a binary form 
/ i s W — o)=\ and hence (§ 21) is %(pd—u>). Thus S and / determine a>. 

2. The binary cubic has the seminvariant S = a0a2—#i2. A covariant 
with S as leader of is order &> = 2 and is 

(a0a2—ai2)x2+(a0a3—^i^)^y -f (#103—a2
2)y2. 

Since this is the Hessian of the cubic, it is a covariant. 
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3. Find the covariant of the binary cubic / whose leader is 
0o203—3a0tfia2+2ai3, the only seminvariant of weight 3 and degree 3. I t 
is the Jacobian of / and its Hessian. 

4. A covariant of two or more binary forms is annihilated by 

212-y—, 2 0 - z — . 
9* dy 

5. Find a seminvariant of weight 2 and partial degrees 1, 1 of a binary 
quadratic and cubic. Show that it is the leader of the covariant 

(a0b2—2aibi +a2b0)x + (a0b3 — 2aib2 +a2bi)y. 

24. Alternants. Consider the annihilators 
P pk V— 1 pi 

12 = 2 jaj-i— = 2 (* + l )a*——, 

0 = 2 ( ^ - y + l ) a , - ^ - = 2 1 ( ^ - * ) a t + i - ^ 

of invariants of a binary form. We have 

p - i f o v 02 1 
012 = 2 (p-k)at+1 \(k + l)——+27V1—5— . 

*=o I 9a*+i i=i 9a*9a>J 
The terms involving second derivatives are identical. Hence 

120-012 = 2 ( i+l) ( />- i )a«— - S i ( ^ - i + l ) a « - ^ -
t=o 9a< »=i 3#t 

= 2(^-2i)ar- 9-
• = 0 c w 

since the first sum is the first sum in 120 with j replaced by* 
i+1, and the second is the first sum in 012 with k replaced 
by i — 1. 

If 5 is a homogeneous function of of total degree 
d and hence a sum of terms 

caoeoaie" . . . ap
ev (tfo+£i+. . .+£p=d) , 

we readily verify Euler's theorem: 

*=o 9a« 
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If 5 is isobaric, it is a sum of terms 

t = ca0
eoaiei . . . ap

ep (ei+2e2+. . .+peP=w) 

where w is constant; then 
p Pit p p ^S* 
2 tat — = 2 iej = wt,- 2 *a4— = mS. 

»=o 9#< »=o i=o 9a< 

Hence if 5 is both homogeneous (of degree d) and isobaric 
(of weight w) in a0, • . . , aPy then 

(1) (120 -012)5 = o>5, a> = pd-2w. 

A covariant with the leader 5 has the order w. (Ex. 1, § 23.) 
Since 0 5 is of degree d and weight w + 1 , we have 

(1202-0212)5 = (120-012)05+0(120-012)5 
= (« - 2 ) 0 5 + c u 0 5 = 2 ( « - 1 ) 0 5 . 

Hence for r = 1 and r = 2, we have 

(2) (!20--Or12)5 = r ( c o - r + l ) 0 J - 1 5 . 

To proceed by induction, note that (2) implies 

(I20r+1 -O r + 1 !2)5= (I20 r-0 r12)05+0 r(l20-012)5 
= r(a-2-r+l)OrS+aOrS = (r+l)(u--r)0'S, 

so that (2) holds also when r is replaced by r + 1 . 

25. Seminvariants as Leaders of Binary Covariants. 

LEMMA. If 5 is a seminvariant, not identically zero, of degree 
d and weight w, of a binary p-ic, then dp — 2w^.O. 

Suppose on the contrary that 5 is a seminvariant for which 
u)<0, where oo = dp — 2w. By the definition of a seminvariant, 
125 = 0. Hence, by (2), §24, 

(1) 120r5 = r ( c o - r + l ) O r ~ 1 5 (r = l, 2, 3, . . .) 

and no one of the coefficients on the right is zero. But 

being of degree d and weight dp + 1; in fact, the largest weight 
of a function of ao, • • • , av of degree d is dp, the weight of 
a/. Then (l) for r = dp-w+l gives 0 ^ - ^ 5 = 0. Then (l) 
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for r=dp-w gives Odp-w~1S = 0} etc. Finally, we get 5 = 0, 
contrary to hypothesis. 

THEOREM. There exists a covariant K of a binary p-ic 
whose leader is any given seminvariant S of the p-ic. 

The covariant K is in fact given by (3), § 23. By (1), 
for r = w + l , 

i2O°+15 = 0. 

Hence 0 W + 1 5 is a seminvariant of degree d and weight 

wf=w+oo+l =pd—w+l. 

Then dp-2w' = ~{pd-2w)-2 is negative. Hence (4), §23, 
follows from the Lemma. Thus K is annihilated by the 
operator (2), § 23. Next, in 

the coefficient of tf*~ryT is 

r\ (r — l)i r\ 

which is zero by (1). Hence K is covariant with respect to all 
of the transformations Tn and T'n of § 19. Now 

T-xT'iT-^Vi x=-Y, y=X, 

as shown by eliminating £, rj, £i, rjx between 

f *=*-*, J *= *i, Ui=X-F, 

Since i£ is of constant weight, it is covariant with respect to 
every S* (§ 16). Hence, by § 19, K is covariant with respect 
to all binary linear transformations. 

26. Number of Linearly Independent Seminvariants. 
LEMMA. Given any homogeneous isobaric function S of 

ao, . . . , ap of degree d and weight w, where ai = dp — 2w>0, 
we can find a homogeneous isobaric function S\ of degree d and 
weight w+1 such that 125i=5. 
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In (2), § 24, replace S by ttr~1S, whose degree is J and 
weight isw — r+lj so that its w is co+2r — 2. We get 

120^r-16,-Or12r5, = r(co+r-l)O r-1O r-15. 
Multiply this by 

( - l y - 1 . 
v J r!co(co + l) . . . ( « + r - l ) 

The new right member cancels the second term of the new 
left member after r is replaced by r — \ in the latter. Hence 
if we sum from r = l to r = w+l, the terms not cancelling are 
those from the first terms of the left members, that from the 
right member for r = l, and that from the second term on 
the left for r=w+l. But the last is zero, since Qw+1S=0, 
ttwS being of weight zero and hence a power of ao. Hence 
we get QSi=Sy where 

w+i r i y - i 
Si= 2 —7 x / ' ,0 rfl r-15. 

r_ir!«(« + l) . . . ( « + r - l ) 
THEOREM.* The number of linearly independent seminvariants 

of degree d and weight w of the binary p-ic is zero if pd—2w<0, 
but is 

(w; d, p)-(w-l; d, p), 
if pd—2w'tOJ where (w; d, p) denotes the number of partitions 
of w into d integers chosen from 0, 1, . . . , p, with repetitions 
allowed. 

If p=4, (4; 2, #) = 3, since 4+0, 3 + 1, 2+2 are the partitions of 4 into 
2 integers. Also, (3; 2, p) = 2, corresponding to 3+0, 2 + 1 . Hence the 
theorem states that every seminvariant of degree 2 and weight 4 of the 
binary p-ic, p^A, is a numerical multiple of one such (see the Example 
in §20). 

The literal part of any term of a seminvariant 5 specified 
in the theorem is a product of d factors chosen from ao, 0i, 
. . . , ap, with repetitions allowed, such that the sum of the 
subscripts of the d factors is w. Hence there are (w; d, p) 
possible terms. Giving them arbitrary coefficients and oper­
ating on the sum of the resulting terms with 12, we obtain 
a linear combination S! of the (^—1; d, p) possible products 

* Stated by Cayley; proved much later by Sylvester. 
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of degree d and weight w—1. By the Lemma there exists * 
an S for which US is any assigned S'. Thus the coefficients 
of our 5" = 125 are arbitrary and hence are linearly independent 
functions of the (w; d, p) coefficients of S. Hence the con­
dition &S = 0 imposes (w — 1; d, p) linearly independent linear 
relations between the coefficients of S and hence determines 
(w—1; d, p) of the coefficients of 5 in terms of the remaining 
coefficients. Thus the difference gives the number of arbitrary 
constants in the general seminvariant S, and hence the number 
of linearly independent seminvariants 5 . 

27. Hermite's Law of Reciprocity. Consider any partition 

w = ni+fi2 + . . .+n5 

of w into 8^d positive integers such that p^-n{t.n2 . . . ^ n8. 
Write n\ dots in a row; then in a second row write n^ dots 
under the first 712 dots of the first row; then in a third row 
write ti3 dots under the first n% dots of the second row, etc., 
until w dots have been written in 8 rows. 

Now count the dots by columns instead of by rows. The 
number m\ of dots in the first (left-hand) column is 8; the 
number m2 in the second column is £ m\; etc. The number 
of columns is n\ £ p. Hence we have a partition 

w = rni+ni2 + . . .+mx 

of w into IT £ p positive integers not exceeding d. 

Hence to every one of the (w; d, p) partitions of the first 
kind corresponds a unique one of the (w; p, d) partitions of 
the second kind. The converse is true, since we may begin 
with an arrangement in columns and read off an arrangement 
by rows. The correspondence is thus one-to-one. Hence 
(w; d, p) = (w; p, d). 

By two applications of this result, we get 

(w; d,p)-(w-l; d,p) = (w; p,d)-(w-l; p,d). 

Hence, by the theorem of § 26, the number of linearly independent 

•Provided pd-2(w-l)>0, which holds if pd-2w^X). But if pd-2w<0, 
our theorem is true by the Lemma in § 25. 
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seminvariants of weight w and degree d of the binary p-ic equals 

the number of weight w and degree p of the binary d-ic. 

Let dp — 2w = o):Zz0. Then, by the theorem of §25, each 

seminvariant in question uniquely determines a covariant of 

order w. 

The number of linearly independent covariants of degree 

d and order co of the binary p-ic equals the number of linearly 

independent covariants of degree p and order o> of the binary d-ic. 

The covariants are of course invariants if and only if o> = 0. 

EXERCISES 

1. Show by means of (1), § 24, that w—ipd for an invariant. 

2. Show that (6; 6, 3) = 7, (5; 6, 3) = 5. Find the two linearly inde­
pendent seminvariants of weight 6 and degree 6 of the binary cubic. 

3. There are only two linearly independent seminvariants of degree 
4 and weight 4 of a binary quartic. Find them. 

4. There is a single invariant or no invariant of degree 3 of the binary 
P-ic according as p is or is not a multiple of 4. (Cayley.) 

Hint: Every invariant of the binary cubic is a product of a constant 
by a power of its discriminant, of order 4 (§30). 

5. The binary p-ic has a single covariant or no covariant of order p 
and degree 2 according as p is or is not a multiple of 4. (Cayley.) 

Hint: Every covariant of the binary quadratic / is of the type c Dnfn
t 

where c is a constant and D the discriminant of / (§ 29.) The degree 2n+m 
of the product equals its order 2m if m — 2n. Thus / has a covariant of 
order and degree p if and only if p = 4tti, viz., c Dnf2n. 

6. No covariant of degree 2 has a leader of odd weight. 

7. If 5 is of degree di in the coefficients of a binary pi-ic, of degree 
d2 in the coefficients of a p2-ic, . . . , and of total weight w, (2), §24, 
holds with 12 and 0 replaced by XQ and 20, and a> replaced by 2pidi—2w. 
For any such S, there exists an Si of partial degrees di and total weight 
iv+ 1 for which (2Q)Si = S. If 5 is a seminvariant, co>0. Generalize 
§§ 26, 27, using (w; di, p\\ d2, pi, . . ) to denote the number of ways in 
which w can be expressed as a sum of d\ or fewer positive integers ^pif 

of d2 or fewer positive integers^2 , etc. 
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FUNDAMENTAL SYSTEM OF COVARIANTS OF A BINARY FORM, 

§§ 28-31 

28. Certain Seminvariants. For ao?^0, we may set 

f=aoxp+paixp~ly+. . ,+apy
p = ao(x —a\y) . . . (x—apy). 

Apply to / the transformation 

Tn: x=£+nr), y = y. 

Then each root a% of/ = 0 is diminished by n, since 

x — a%y= Z — (ai — n)rj. 

Hence the difference of any two roots is unaltered. 
In particular, if w= — 01/00, f is transformed into the 

reduced form 

where 
„' „ a i 2 „' „ Q 0 i02 , o 0 i 3 

a 2 = 02 , 0 3 = 03 — 6 \-2—-, . . . , 
00 do 00 

and the roots of/' = 0 are on+ai/ao (z = l, . . . , p). Since 

. 01 2 a i (at— a i ) + . . . + (««— a„) 
<*H = «i — = , 

a0 p p 
each root of / ' = 0 is a linear function of the differences of the 
roots o f / = 0 and hence is unaltered by every transformation 
Tn. The same is true of a'2/ao, a's/ao, • • • , which equal 
numerical multiples of the elementary symmetric functions 
of the roots of/' = 0. Hence the polynomials 

A 2 = 0o0r2 = 00^2 — 012, 
4̂ 3 = 0o20'3 = 0o203 — 3aO0i02+20i3, 

A 4 = 0o30r4 = 0o304 — 4ao
20i03+60o0i202 — 30i4 

are homogeneous and isobaric,* and are invariants of / with 
respect to all transformations Tn. By definition they are, 
therefore, seminvariants of / provided the subscript of each A 
in question does not exceed p. 

* This is evident for A2} Ah A4. Further A's will not be employed here. A 
general proof follows from § 34. 



48 ALGEBRAIC INVARIANTS 

Since f was derived from / by a linear transformation of 
determinant unity, any seminvariant S of / has the property 

S(d0, . . . ,ap)=S(a0,0,a'2j . . . ,a'p)=s(a0, 0, — , . . . , —~zi). 
\ o0 a0

p 7 

Hence any rational integral seminvariant is the quotient 
of a polynomial in ao, Ao, . . . , Av by a power of ao. For 
/> = 4, we shall find which of these quotients equal rational 
integral functions of ao, . . . , ap and hence give rational integral 
seminvariants. The method is cue to Cayley. 

For p = l, S is evidently a numerical multiple of a power 
of ao. Since ao is the leader of the covariant f=aox+a\y of 
/ , we conclude that every covariant of a binary linear form / 
is a product of a power of / by a constant; in particular, there 
is no invariant. 

29. Binary Quadratic Form. Since A 2 does not have the 
factor ao, we conclude that every rational integral seminvariant 
is a polynomial in a0 and ^ 2 . Now A2 is an invariant of / 
(§4), and'Oo is the leader of the covar ian t / of/. Hence a 
fundamental system of rational integral covariants of the binary 
quadratic form f is given by f and its discriminant A 2. We express 
in these words our result that any such covariant is a rational 
integral function of / and Ao. 

30. Binary Cubic Form. We seek a polynomial P(a0, ^2 , ^3 ) 
with the implicit, but not explicit, factor ao. Write A\ for 
the terms of At free of ao: 

(1) ^ /
2 = - a 1

2 , ^ ,
3 = 2a1

3. 

We desire that P(0, Af2, A'3) = 0 , identically in a\. Now 

4 ^ V + ^ , 3 2 = 0, 

(2) 4A23+A3
2^a0

2D, 

where D is the discriminant of the cubic form, 

D = ao2a.32 — 6aoa 1020-3 +4aoa23+4ai3a3 — 3ai2a22. 
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By means of (2) we eliminate As2 and higher powers of 
As from P{CLQ, A2, A3) and conclude that any seminvariant 
is of the form 7r/aok, where w is a polynomial in ao, A2, As, D, 
of degree 1 or 0 in As. If k>0, we may assume that not every 
term of T has the explicit factor ao. In the latter case, w does 
not have the implicit factor a0. For, if it did, 

7r' = 7r(0, A'2, A'S, Z?')=0, Z>/ = 4ai3a3-3ai2a2
2 . 

Since as occurs in D', but not in Af2 or A's, w' is free of D'. 
By (1), the first power of A'3 is not cancelled by a power of 
A'2. Hence 7/ is free of A'3 and hence of 4 ' 2 . 

A fundamental system of rational integral seminvariants of 
the binary cubic is given by ao, -42, As, D. They are connected 
by the syzygy (2). 

A fundamental system of rational integral covariants of the 
binary cubic f is given by f, its discriminant D, its Hessian H, 
and the Jacobian J of f and H. They are connected by the syzygy 

(3) 4#3+/2=/2ZX 

The last theorem follows from the first one and (2), since 
ao, A2, As are the leaders of the covariants/, H, J. 

31. Binary Quartic Form. We first seek polynomials 
P(ao, A2, As, A4) with the implicit, but not explicit, factor 
ao. Thus 

i>r = P(0, A'2, Afs,AU)=0, A'2=-ai2, ,4'3 = 2ai3, A\= - 3 a ! 4 . 

The simplest P' is evidently ZAf
2
2+A\. We get 

yl4+3^42
2 = ao2/, / = aoa4 —4aia3+3a2

2. 

We drop A± and consider polynomials 7r(ao, A2, As, I) with 
the implicit, but not explicit, factor, ao. Such a polynomial 
is given by (2), § 30. For a0 = 0, D = - a x

2 / = A '2I. We have 

A2I—D = aoJ, 

J = aoa2a± — aoa32+2a\a2a3 — ai2a± — a23. 

Eliminating D between this relation and (2), § 30, we get 

(1) a 0
3 / - a o 2 ^ 2 / + 4 ^ 2

3 + ^ 3 2 = 0. 
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In view of their origin, / and / are seminvariants of the 
quartic / . Since they are unaltered by the replacement (1), 
§20, they are invariants o f / (cf. §20, Example and Ex. 1). 
In view of (1), -K equals a polynomial <f> in #o, ^ 2 , A 3, / , / , 
of degree 0 or 1 in A3. Suppose that </> does not have the 
explicit factor a0. Then the equal function of a0, . . . , a± is 
not divisible by a0. For, if it were, 

0(0, — ai2, 2#i3, 3#22 — 4aia3, — ai2<Z4+. . . )=0 . 

In view of the term a±, <j> cannot involve / , and hence not / . 
Nor can <t> be linear in A3 in view of the odd power ai3 . Hence </> 
is free of A3 and hence of A2. 

A fundamental system of rational integral seminvariants of 
the binary quartic is given by ao, A2, A3, 7, / . They are con­
nected by the syzygy (1). 

A fundamental system of rational integral covariants of the 
binary quartic f is given by / , its invariants I and J, its Hessian 
H and the Jacobian G of f and H. They are connected by the 
syzygy 
(2) fJ-j2HI+±H*+G2^0. 

The second theorem follows from the first one, since ao, 
A2, A3 are the leaders of the covariants/, H, G. 

I t would be excessively laborious, if not futile, to apply 
the same method to the binary quintic, whose fundamental 
system is composed of 23 covariants,* most of which are 
very complex. The symbolic method is here superior both 
as to theory and as to compact notation (see Part III .) . 

CANONICAL FORM OF BINARY QUARTIC. SOLUTION OF QUARTIC 

EQUATIONS 

32. Theorem. A binary quartic form / , whose discrim­
inant is not zero, can be transformed linearly into the canonical 
form 
(1) X4 + F 4 +6mX 2 F 2 . 

* Faa di Bruno, Theorie der Bindren Formen, German tr. by Walter, 1881, 
pp. 199, 316-355. Salmon, Modern Higher Algebra, Fourth Edition, 1885, p. 
227, p. 347. 
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The reason there is here a parameter m lies in the existence 
of two invariants / and / of weights (and hence indices) 4 
and 6, and hence a rational absolute invariant P/J2, i.e., one 
of index zero, and consequently having the same value f o r / 
and any form derived f r o m / b y linear transformation. 

Since / vanishes for four values of x/y and hence is the 
product of four linear functions, it can be expressed (in three 
ways) as a product of two quadratic forms, say those in the 
right members of the next equations. To prove our theorem 
it suffices to show that there exist constant p, q, r, s (each^O) 
and a, j3 {a^0) such that 

p(x+ay)2+q(x+/3y)2 = ax2+2bxy+cy2, 

r(x+ay)2+s(x+/3y)2=gx2+2hxy+ky2. 

For, the product / o f these becomes (1) by the transformation 

X = <fpr(x+ay), Y = </pt(x+t3y), 

of determinant =^0. The conditions for the two identities are 

p+q = a, pa+q@ = b, pa2+qP2 = c, 
r+s = g, ra+sp = h, ra2+sl32 = k. 

The first three equations are consistent if 

[ 1 1 a I 
a p b\+(p-a)=c-b(a+P)+aap = 0. 

\a2 p2 c\ 

If p = 0, or if ? = 0, the same equations give b2 = ac, so that the 
first quadratic factor of / and hence / would have a dcuble 
root. Similarly, the last three equations have solutions r ^O , 
s^O, if 

k-h(a+0)+gaP = O. 

If the determinant ah — bg is not zero, the last two relations 
determine a+/3 and afi, and hence give a and fi as the roots of * 

{ah — bg)z2 — (ak — cg)z+bk — ck = 0. 

* Its left member is obtained by setting x/y——z in the Jacobian of the two 
quadratic factors of/. 
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If its roots were equal, the two relations would give 

C-2ba+aa2 = 0, k-2ha+ga2 = 0, 

and the two quadratic factors of / would vanish for x/y = -a. 
If ah — bg = 0, but ch — bk^O, we interchange x with y 

and proceed as before. If both determinants vanish, either 
b?*0 and the second quadratic factor is the product of the 
first by h/b, or else 6 = 0 and hence h = 0 and no transfor­
mation of/ is needed. 

33. Actual Determination of the Canonical Quartic. Let 
A denote the determinant of the coefficients of x, y in X, Y. 
Then / , its invariants I and / and Hessian H are related to 
the canonical form, its invariants and Hessian, as follows: 

f=X4 + Y4+6mX2Y2, 

7 = A4(l+3w2) , J = AQ(m-m3), 

H = A2\m{X4 + Y4) + (l-3m2)X2Y2\. 

Thus A2m may be found from the resolvent cubic equation 

4 (A 2 m) 3 - / (A 2 m)+/ = 0. 

Then A4 may be found from I. We may select either square 
root as A2 and hence find m. In fact, by replacing X by 
XV — 1 in / , the signs of A2 and m are changed. By elim­
inating X4+Y4, we get 

A 2 m / - # = A 2 ( 9 w 2 - l ) X 2 F 2 . 

If 9 m 2 = l , / is the square of X2±.Y2 and the discriminant of 
/ would vanish. Hence we obtain XY by a root extraction. 
Thus X and Y are determined up to constant factors / and 
t~l. We may find / by comparing the coefficients of x4 and 
x?y in / and the expansion of its canonical form, or by use 
of the Jacobian G of / and H: 

G = A 3 ( l - 9 m 2 ) X F ( X 4 - F 4 ) , 

and combining the resulting X 4 - F 4 with the earlier X4 + Y4. 
Or from / and XY we can find X2 + Y2 and then X±Y. 

To so lve /=0, we have only to find the canonical form 
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SEMINVARIANTS, INVARIANTS, AND COVARIANTS OF A BINARY 

FORM / A S FUNCTIONS OF THE ROOTS O F / = 0 , §§34-37. 

34. Seminvariants in Terms of the Roots. Give / the nota­
tion used in § 28, so that ai, . . . , av are the roots of / = 0 . 
After removing possible factors a0 from a given seminvariant 
of / , we obtain a seminvariant S not divisible by a0. Let 
5 be the degree of the homogeneous function S of the a's. 
Thus S is the product of #o5 by a polynomial in ai/ao, . . . , ap/ao 
of degree <5. The latter equal numerical multiples of the ele­
mentary symmetric functions of a\, . . . , ap, each of which 
is linear in every root. Hence our polynomial equals a sym­
metric polynomial a in a\, . . . , av of degree 5 in every 
root. 

Since S is of constant weight w and since at/ao equals a 
function of total degree i in the roots, a is homogeneous in 
the roots and of total degree w in them. 

Besides being homogeneous and isobaric in the a's, a sem­
invariant must be unaltered by every transformation Tn of 
§ 28. Under that transformation, each root is diminished, 
by » ( § 2 8 ) . Since 

ai=ai+(ai— ai) (* = 2, . . . , p) 

we can express a as a polynomial P{a\) whose coefficients 
are rational integral functions of the differences of the roots. 
If P(ai) is of degree ^ 1 in ai , we have P (a i )=P(a i—n) , for 
all values of n. But an equation in n cannot have an infinitude 
of roots. Hence P{a\) does not involve ai , so that a equals 
a polynomial in the differences of the roots. 

Multiplying by the factors #o removed, we obtain the 
theorem: 

Any seminvariant of degree d and weight w of the binary 
form aoxp-{-. . . equals the product of aod by a rational integral 
symmetric function a of the roots, homogeneous {of total degree 
w) in the roots, of degree £ d in any one root, and expressible 
as a polynomial in the differences of the roots. 

Conversely, any such product can be expressed as a poly-
nomial in the aJs and this polynomial is a seminvariant. 



5 4 ALGEBRAIC INVARIANTS 

Since the factor <r is symmetric in the roots, and is of degree 
= d in any one root, its product by aod equals a homogeneous 
polynomial in the a's whose degree is d. This polynomial is 
isobaric since a is homogeneous, and is unaltered by every 
transformation Tn, since a is expressible as a function of the 
differences of the roots. 

The importance of these theorems is due mainly to the 
fact that they enable us to tell by inspection (without com­
putation by annihilators) whether or not a given function of 
the roots and #o is a seminvariant. A like remark applies to 
the theorem in § 35 on invariants and that in § 36 on covariants. 

EXAMPLE 

The binary cubic has the seminvariant 

3 

= ao2{(Sai)2-3Saia2}=a0
2 | ( — ~ - ] - 3 | — j 1 = -9(a0fl2-ai2). 

35. Invariants in Terms of the Roots. A seminvariant of 
/ is an invariant of/ if and only if it is unaltered by the trans­
formation x= — rj, y = £ (§ 20). For the latter, 

so that aT is replaced by — l/a r , and hence ar—a5 by 

(XrOls 

The coefficient of £p in the transformed binary form is 

Ao = ( — l)pa:ia2 . . . aPao. 

By § 34, any seminvariant of / is of the type 

aod2Ci(product of w factors like ar—as). 

Hence this is an invariant if and only if it equals 

(__l)pd(ai . . . ap)
daod2Ci(product of the w corresponding———), 

\ aras J 
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and hence if ±aid . . . a/ equals the product of the factors 

aTas in the denominators. This is the case if and only if each 

root occurs exactly d times in every term of the sum and if 

pd is even. By the total number of as, pd = 2w. 

Any invariant of degree d and weight w of the binary form 

ao%VJr . . . equals the product of aod by a sum of products of 

constants and certain differences of the roots, such that each root 

occurs exactly d times in every product; moreover, the sum equals 

a homogeneous symmetric function of the roots of total degree w. 

Conversely, the product of any such sum by aod equals a rational 

integral invariant. 

EXERCISES 

1. a0
2(«i—«2)2 is an invariant of the binary quadratic form. Any 

invariant is a numerical multiple of a power of this one. 

2. tf0
22(ai— «2)

2(«3—on)2 is an invariant of the binary quartic. 
3 

3. a0
22(«i— a2)(ai—a-i) is not an invariant of the binary cubic. 

3 

4. If we multiplya0
2(7?-1) by the product of the squares of the differences 

of the roots of the binary p-ic / , we obtain an invariant (discriminant of 
/ ) . Also verify that pd = 2w. 

5. The sum of the coefficients of any seminvariant is zero. 
Hint: Use/= (x-{-y)p, whose roots are all equal. 

6. Every invariant of the binary cubic is a power of its discriminant. 

7. A function which satisfies the conditions in the theorem of § 35 
except that of symmetry in the roots is called an irrational invariant. If 
c*i, . . . , <*4 are the roots of a binary quartic/, and 

U= (a\ — a\)(a2—a3), V= {ot-i— a 4 ) ( a 3 — « i ) , W= ( a i ~ a 2 ) ( a 3 — C M ) , 

why are a0u, a0v, a^w irrational invariants of / ? They are the roots of 
z3— \2lz— 5 = 0, where 52 is the product of a0

6 by the product of the squares 
of the differences of the roots and hence is the discriminant of/. Hints: 
u-\-v+w = 0, and s = uv+uw-\-vw is a symmetric function of au • • . , a* 
in which each at occurs twice in every product of differences, so that a0

2^ 
is an invariant of degree 2. By the Example in §20, a0

2s = cl, where c 
is a constant. To determine c, take ai = l ,a 2 = — 1, «s = 2, «4= — 2, so that 
f=(x*-y*)(x*-4y*), 7 = 73/12, w = - 9 , v=l, w = 8, s=-73. Hence 
c— —12. As here, so always an irrational algebraic invariant is a root of an 
equation whose coefficients are rational invariants. 
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8. If ai, a2 are the roots of the binary quadratic form/, and a3, a4 the 
roots of / ' in § 11, the simultaneous invariant 

ac* -\-a'c — 2bb, = aa,\a3aA-haia2— h(ai+a2)(ctz-\-cti)\ = ia0(u—v)} 

if the product ff is identified with the quartic in Ex. 7. Hence a simul­
taneous invariant of the quadratic factors of a quartic is an irrational invar­
iant of the quartic. Why a priori is the invariant three-valued? 

9. The cross-ratios of the four roots of the quartic are —v/u, etc. These 
six are equal in sets of three if 1=0. For, if 5 = 0, 

/ X / \ o ~V ~U ~W 

vw=u(—v—w) = u2, uw=v(—u—w) = v2, — = — = . 
U W V 

The remaining three are the reciprocals of these and are equal. 

10. By Ex. 3, § 11, one of the cross-ratios is — 1 if ac' + . . . =0. Why 
does this agree with Ex. 8? 

11. The product of the squares of the differences of the roots of the 
cubic equation in Ex. 7 is known * to be 

-4(-12l)*-275* = a0«(u-vy(u-w)2(v-w)2. 

Also,* 52 = 256(/3~27/2). Hence the left member becomes 36- 44/2 . Thus 

3 3 . 4 2 / = ±aQZ(u~-v)(u — W)(v — W). 

Using / from § 31, and the special values in Ex. 7, show that the sign is 
plus. Verify that the cross-ratios equal —1, — 1 , 2, 2, \> §, if 7 = 0. 

36. Covariants in Terms of the Roots. Let K (ao, . .. ,ap;x,y) 
be a covariant of constant degree d (in the coefficients) and 
constant order co (in the variables) of the binary form/=ooxp + . . . 
Then 

K = a0
dy*K, 

where K is a polynomial in x/y and the roots «i, . . . , ap of 
/ = 0 . Under the transformation Tn in §28, let / become 
AoZp+ . . . , with the roots a'i, . . . , ap. Then 

x £ / i t 

y v 

Making use of the identities 

- = I ai J + a i , at = (on — ai) +a\, 

* Cf. Dickson, Elementary Theory of Equations, p. 33, p. 42, Ex. 7. 
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we see that K equals a polynomial P(ai) whose coefficients are 
rational integral functions of the differences of x/y} a\} . . . , av 

in pairs. Since 

K(A0) . . . ,AP-, £, r})=K(a0, . . . , ap; ^, y), ^o = ao, i? = y> 

we have M a'i> • • • , ot,'Py - j =K( ai , . . . , ap, - ) . 

The left member equals P(a'i) since 

a'i = (ai—ai)+a'i , - = ( a\) + a ' i . 

Hence 
P ( a i - » ) - P ( a i ) = 0 

for every n. Hence a\ does not occur in P(ai) , and K is a 
polynomial in the differences of x/y, ai , . . . , av. 

Let TF be the weight of K and hence of the coefficient of 
y03. Then K is of total degree W in the a's and of degree co 
in x/y. Thus 

/c = 2c<| product of co differences like — a r \ 

• {product of W — co differences like ar —«,}. 
Hence 

i£ = aod26:i|product of co differences like x—aTy\ 

• {product of W— co differences like ar—as\. 

Next, for x=— iy, y = £ , / becomes P = ;lo?p + . . . with 
a root — l/ar corresponding to each root ar of / . The function 
K for F is 

Aod2d\ product of co differences like £H—17 = — 
[ OCr —OLr J 

• I product of W — co differences like — >. 
{ OLT<XS J 

Using the value of AQ in § 35, we see that the factor 

i-lYW . . . of 
must be cancelled by the —ar and the aras in the denominators. 
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Thus each term of the sum involves every root exactly d times. 
The signs agree since 

dp = u+2(W-<a), 

as follows by counting the total number of as. 
Any covariant of degree d, order co and weight W of 

a0(x-aiy) . . . (x—apy) 

equals the product of aod by a sum of products of constants and 
co differences like x — ary and W — co differences like ar—aSj such 
that every root occurs in exactly d factors of each product; more­
over, the sum equals a symmetric function of the roots. Conversely, 
the product of aod by any such sum equals a rational integral 
covariant. 

EXERCISES 

1. f= dox*+3aiX2y +3a2xy2 +asy
3 has the covariant 

i£ = Go22(*-ai;y)2(a2-a3)2 . 
3 

Show that the coefficient of x2 in K equals — 18(a0a2—#i2). Why may we 
conclude that K= — 1SH, where H is the Hessian of/? 

2. The same binary cubic has the covariant 

a0
22(#—ctiy)(x—a2y)(a2—«3)(a3—<*i) = 9H. 

3 

3. Every rational integral covariant of the binary quadratic/is a prod­
uct of powers of /and its discriminant by a constant. 

37. Covariant with a Given Leader 5 . If the seminvariant 
S has the factor ao, and S = aoQ, and if Q is the leader of a 
covariant K of / , then, since ao is the leader of / , S is the leader 
of the covariant fK. Hence it remains to consider only a 
seminvariant S not divisible by ao. If S is of degree d and 
weight w, 

S = aod2Ci(product of w factors like ar—as), 

where each product is of degree at most d in each root, and 
of degree exactly d in at least one root (§ 34). If each product 
is of degree d in every root, S is an invariant (§ 35) and hence 
is the required covariant. In the contrary case, let «2, for 
example, enter to a degree less than d; we supply enough 
factors x—a^y to bring the degree in «2 up to d. Then aod 
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multiplied by the sum of the total products is a covariant 
with the leader S. For example, 

ao2^(a2—as)2, ao22(a2—a3)(<X3—ai) 
3 3 

are the leaders of the covariants in Exs. 1, 2, § 36, of the binary 
cubic. The present result should be compared with the 
theorem in § 25. 

We may now give a new proof of the lemma in § 25 that 
dp — 2w = 0 for any seminvariant S of degree d and weight 
w of the binary ^-ic. Whether S has the factor ao or not, 
the first term of the resulting covariant K is SV0, where 
u = dp — 2w. For, in each product in the above S, the roots 
«i, . . . , av occur 2w times in all. In K each root occurs d 
times. Hence we inserted dp — 2w factors x — ay in deriving K 
from S. 

38. Differential Operators Producing Covariants. Let the 

transformation 

T: X=aZ+pr}, y = y£+dri, A=a8-pyj*0 

replace/(x, y) by </>(£, rj). Then 
d±=df_ dx a/; dy=a$f + df 
3£ dx 3£ dy 3£ dx dy 

30 = ^ 3 x + Q / 3 y Q/+ 59/; 
dv dx di dy dn dx dy 

Solving, we get 

A 3 / 30 Rd4> Adf 3* Kd<t> 
dy dv di dx dv 3f 

or df=D<t>, d\f = Di(j), if we introduce the differential operators 

dy dx dv di dv 3? 

As usual, write d2d\f for d{d(di/)}. Since the result of 
operating with d on df is the same as operating with D on 
the equal function D<j> of £ and r?, we have d2f=D2<f>. Similarly, 

ZCrsCfdi'f = ZCrsITDx't (f +S = Co). 
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The right member is the result of operating on <f> with the 
operator obtained by substituting D for 3/377 and D\ for — 9 /9 £ 
in 

Ki)'(-Ji)' ('+s-* 
whose terms are partial derivatives of order co. Hence, if 
the form 

l(x, y) = 2crsx
rys (r+s = co) 

becomes X(£, 77) under the transformation T, our right mem­
ber is the result of operating on 0 with \(d/dv, — 9/9£). The 
left member is the result of operating on / with 

V dy a*/ \9y 9*/ 

#e«ce */ T replaces the forms f(x, y), l(x, y) by <j>(%, r/), X(£, rj), 
then 

is a consequence of the equations for T, if co is the order of l(x, y). 

Let / and / be covariants of indices m and n of one or more 
binary forms ft with the coefficients £1, £2, . . . . Under T 
let the transformed forms have the coefficients Ci, C2, . . . . 
Then 

/ (C ; f, v)=Amf(c; x, y), /(C; £, r7)=A-/(^; x, y). 

But 0(f, 77) =f(c; x, y), by the earlier notation. Hence 

</>(£, r7)=A—/(C; {, 77), X(£, i/)=A-»/(C; f, 77). 

Inserting these into the formula of the theorem, and mul­
tiplying by Aw+n , we get 

KCiS'-«)]^Ci«")-4-+"+,['('il'-5)]/<«v)-
The function in the right member is therefore a covariant of 
index co+m+n of the ft. We therefore have the theorem 
of Boole, one of the first known general theorems on covariants: 
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THEOREM. / / / and f are any covariants of a system of 
binary forms, we obtain a covariant (or invariant) of the system 
of forms by operating on f with the operator obtained from I by 
replacing x by d/dy and yby— d/d%, i-e>, %rys by_( — l ) s 3 r +8/dyrdxs. 

EXERCISES 

1. Taking l=f=ax2+2bxy+cy2, obtain the invariant 4(ac—b2) of / . 

2. If / = / is the binary quartic, the invariant is 2 • 4! / of § 31. 

3. Using the binary quartic and its Hessian, obtain the invariant / . 

4. Taking l=aoXp+. . . ,f=bQxp+. . . , obtain their simultaneous 
invariant 

J(-I);KW_<-

If also / = / , we have an invariant of/, which vanishes if p is odd. For 
p = 2 and p = 4, deduce the results in Exs. 1,2. 

5. A fundamental system of covariants of a quadratic and cubic 

Q = Ax2+2Bxy+Cy2, f=ax3+3bx2y+3cxy2+dy* 

is composed of 15 forms. We may take Q and its discriminant AC—B2; 
f, its discriminant and Hessian h, given by (5) and (2) of § 8, the Jacobian 
/ o f / a n d ^ : 

J=(a2d-3abc+2b;i)xz+3(abd+b2c-2ac2)x2y 

-\-3(2b2d-acd-bc2)xy2 + (3bcd-ad2-2c3)y3-i 

the Jacobian of / and Q: 

(Ab-Ba)x* + (2Ac-Bb-Ca)x2y + (Ad+Bc-2Cb)xy2 + (Bd-Cc)y*; 

the Jacobian of Q and //: 

(As-Br)x* + (At-Cr)xy + (Bt-Cs)y'; 

the result of operating on / with the operator obtained as in the theorem 
from l=Q: 

Li = (aC+cA-2bB)x + (bC+dA-2cB)y; 

the result of operating on Q with the operator obtained from Z*: 

Z,2= \aBC-b(2B2+AC)+3cAB-dA2}x 

+ \aC2-3bBC+c(AC+2B2)-dAB\y; 
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the result L3, of operating on / with Q and the result Z4 of operating on Q 
with Lz (so that L3 and L4 may be derived from Lx and Z,2 by replacing 
a, . . . , d by the corresponding coefficients of / ) ; the intermediate 
invariant At+Cr—2Bs of Q and h (§ 11); the resultant of Q and/ : 

a2C*-6abBC2+6acC(2B2-AC) +ad(6ABC-8B3) +9b2AC2 

-18bcABC+GbdA(2B2-AC)+9c2A2C-6cdBA2+d2A*; 

the resultant of L\ and Z4 ( = resultant of Z2 and Z3), obtained at once as a 
determinant of order 2. Salmon, Modern Higher Algebra, § 198, gives geo­
metrical interpretations. Hammond, Amer. Jour. Math., vol. 8, obtains the 
syzygies between the 15 covariants. 


