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Demonstration.—First multiplying by x both members of 
the given equality [which is the first member of the entire 
secondary equality], we have 

x = ax, 

which, as we know, is equivalent to the inclusion 
x<C.a. 

Now multiplying both members by x\ we have* 

o = bx', 

which, as we know, is equivalent to the inclusion 

b<x. 

Summing up, we have 

(x = ax + bx) <C (b <^ x <^ a). 

Conversely, 

(b<dx<^ a) < (x = ax + bx). 

For 
(# <^ a) = (x = # #) , 

( J O ) = (£*'«= o). 

Adding these two equalities member to member [the second 
members of the two larger equalities], 

(x = ax) (o = bx) <C (* = ax + £#')• 

Therefore 

and thus the equivalence is proved. 

30. Sch rode r ' s Theorem. 1 —The equality 

ax + bx = o 

signifies that x lies between a and b. 

Demonstration: 

(ax + bx = o) — (0.* = o) (£#' = o), 

(ax «= o) = (x<Ca), 

( J* «<>) = ( £ < * ) . 

1 SCHRODER, Operationskreis des Logikkalkuls (1877), Theorem 20. 
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Hence 
(ax + bx === o) = (b <^ x <C a). 

Comparing this theorem with the formula of PORETSKY, we 
obtain at once the equality 

(ax + bx = o) = (x = ax + bx), 

which may be directly proved by reducing the formula of 
PORETSKY to an equality whose second member is o, thus: 

(x = ax + bx) •= [x(ax + b''x) + x (a x + £.#') = o] 

== (ax-\- bx' = o). 

If we consider the given equality as an equation in which 

^ is the unknown quantity, PORETSKY'S formula will be its 

solution. 

* From the double inclusion 

b <^x <^a' 

we conclude, by the principle of the syllogism, that 

b<a. 

This is a consequence of the given equality and is in­
dependent of the unknown quantity x. It is called the 
resultant of the elimination of x in the given equation. It is 
equivalent to the equality 

ab = o. 

Therefore we have the implication 

(ax + bx = o ) < (ab = o). 

Taking this consequence into consideration, the solution 
may be simplified, for 

(ab = o) = (b = ab). 
Therefore 

x = ax + bx = ax -\- a bx 

= a bx -f- a b' x + a bx == db + #'£'# 

= /£ + #'£'# == £ -f- dx. 

This form of the solution conforms most closely to common 
sense: since x contains b and is contained in a', it is natural 
that x should be equal to the sum of b and a part of a 
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(that is to say, the part common to a and x). The solution 
is generally indeterminate (between the limits a and d); it is 
determinate only when the limits are equal, 

a'= b, 
for then 

x = b-+- ax ~ b + bx =* b = a. 

Then the equation assumes the form 

(ax + ax == o) = (a = #) 

and is equivalent to the double inclusion 

(a <Cx<C a) = (x = #'). 

31. T h e Resultant of Elimination.—When a£ is not 
zero, the equation is impossible (always false), because it has 
a false consequence. It is for this reason that SCHRODER 
considers the resultant of the elimination as a condition of 
the equation. But we must not be misled by this equivocal 
word. The resultant of the elimination of x is not a cause of 
the equation, it is a consequence of it; it is not a sufficient but 
a necessary condition. 

The same conclusion may be reached by observing that 
ab is the inferior limit of the function ax + bx\ and that 
consequently the function can not vanish unless this limit is o. 

(ab <C ax + bx) (ax + bx = o) < (ab — o). 

We can express the resultant of elimination in other equiv­
alent forms; for instance, if we write the equation in the form 

(a 4- x) (b 4- x) = o, 

we observe that the resultant 

ab = o 

is obtained simply by dropping the unknown quantity (by 
suppressing the terms x and x). Again the equation may be 
written: 

a x + 0 x = 1 

and the resultant of elimination: 

d + b' = 1. 


