ir. The First Formula for Transforming Inclusions into Equalities.-We can now demonstrate an important formula by which an inclusion may be transformed into an equality, or vice versa:

$$
(a<b)=(a=a b) \quad \mid \quad(a<b)=(a+b=b)
$$

Demonstration:

I. $(a<b)<(a=a b), \quad(a<b)<(a+b=b)$.

For
(Comp.) $\quad(a<a)(a<b)<(a<a b)$,

$$
(a<b)(b<b)<(a+b<b)
$$

On the other hand, we have
(Simpl.)

$$
a b<a, \quad b<a+b,
$$

(Def. $=) \quad{ }^{\prime}(a<a b)(a b<a)=(a=a b)$,

$$
(a+b<b)(b<a+b)=(a+b=b)
$$

2. $\quad(a=a b)<(a<b), \quad(a+b=b)<(a<b)$.

For

$$
\begin{gathered}
(a=a b)(a b<b)<(a<b), \\
(a<a+b)(a+b=b)<(a<b) .
\end{gathered}
$$

Remark.-If we take the relation of equality as a primitive idea (one not defined) we shall be able to define the relation of inclusion by means of one of the two preceding formulas. ${ }^{\text { }}$ We shall then be able to demonstrate the principle of the syllogism. ${ }^{2}$

From the preceding formulas may be derived an interesting result:

$$
(a=b)=(a b=a+b) .
$$

For
I.

$$
\begin{aligned}
& \text { I. } \quad(a=b)=(a<b) \quad(b<a), \\
& \\
& \\
& \text { (Syll.) } \quad(a<b)=(a=a b), \quad(b<a)=(a+b=a), \\
& (a=a b)(a+b=a)<(a b=a+b) .
\end{aligned}
$$

[^0]2.
$$
(a b=a+b)<(a+b<a b)
$$
(Comp.)
\[

$$
\begin{gathered}
(a+b<a b)=(a<a b)(b<a b) \\
(a<a b)(a b<a)=(a=a b)=(a<b) \\
(b<a b)(a b<b)=(b=a b)=(b<a)
\end{gathered}
$$
\]

Hence

$$
(a b=a+b)<(a<b)(b<a)=(a=b)
$$

12. The Distributive Law.-The principles previously stated make it possible to demonstrate the converse distributive law, both of multiplication with respect to addition, and of addition with respect to multiplication,

$$
a c+b c<(a+b) c, \quad a b+c<(a+c)(b+c)
$$

Demonstration:

$$
\begin{aligned}
& (a<a+b)<[a c<(a+b) c] \\
& (b<a+b)<[b c<(a+b) c]
\end{aligned}
$$

whence, by composition,

$$
\begin{gathered}
{[a c<(a+b) c][b c<(a+b) c]<[a c+b c<(a+b) c]} \\
(a b<a)<(a b+c<a+c) \\
(a b<b)<(a b+c<b+c)
\end{gathered}
$$

2.

whence, by composition, $(a b+c<a+c)(a b+c<b+c)<[a b+c<(a+c)(b+c)]$.

But these principles are not sufficient to demonstrate the direct distributive laze

$$
(a+b) c<a c+b c, \quad(a+c)(b+c)<a b+c
$$

and we are obliged to postulate one of these formulas or some simpler one from which they can be derived. For greater convenience we shall postulate the formula (Ax. V). $\quad(a+b) c<a c+b c$.

This, combined with the converse formula, produces the equality

$$
(a+b) c=a c+b c
$$

which we shall call briefly the distributive laze.
From this may be directly deduced the formula

$$
(a+b)(c+d)=a c+b c+a d+b d
$$

[^0]: I See Huntington, op. cit., § I.
 2 This can be demonstrated as follows: By definition we have $(a<b)=(a=a b)$, and $(b<c)=(b=b c)$. If in the first equality we substitute for b its value derived from the second equality, then $a=a b c$. Substitute for a its equivalent $a b$, then $a b=a b c$. This equality is equivalent to the inclusion, $a b<c$. Conversely substitute a for $a b$; whence we have $a<c$. Q. E. D.

