Cells in Affine Weyl Groups ## George Lusztig* #### **Table of Contents** | 1. | The basis C_w of the Hecke algebra | 256 | |-----|--|-----| | 2. | The function a | 258 | | 3. | Positivity | 259 | | 4. | Left cells and two-sided cells | 260 | | 5. | Cells and the function a | 261 | | 6. | The case of a finite Weyl group | 265 | | 7. | An upper bound for $a(w)$ for w in an affine Weyl group | 268 | | 8. | The subset $W_{(\nu)}$ of an affine Weyl group | 272 | | 9. | Construction of <i>n</i> -tempered representations | 273 | | 10. | Left cells and dihedral subgroups | 280 | | 11. | Left cells in the affine Weyl groups A_2 , B_2 , G_2 | 281 | Let W be an affine Weyl group and let H be the corresponding Hecke algebra, as defined by Iwahori and Matsumoto [IM]. This paper arose from an attempt to find a procedure which associates a representation of H to an irreducible representation of W. Such a procedure is known for finite Weyl groups [L₂, L₃] and we generalize it to the case of affine Weyl groups. Since the representations of W are relatively well understood, it may be hoped that this will help us understand better the representations of H. The main tool we use is a function $a: W \rightarrow N$ which is constant on two-sided cells and is an analogue of the function on a finite Weyl group which essentially measures the Gelfand-Kirillov dimension of $U(g)/I_{vv}$, where U(g) is the corresponding enveloping algebra and I_w is a primitive ideal corresponding to the Weyl group element w. The function a is constructed in a purely combinatorial way in terms of multiplication of elements in the C_w -basis ([KL₁]) of the Hecke algebra. To establish its properties we need, however, some positivity properties which follow from deep results on perverse sheaves [BBD]. Received March 24, 1984. ^{*)} Guggenheim Fellow. Supported in part by the National Science Foundation. In another direction, we describe explicitly the left cells and two-sided cells of affine Weyl groups of type \tilde{A}_2 , \tilde{B}_2 , \tilde{G}_2 . ## § 1. The basis C_w of the Hecke algebra **1.1.** Let $q^{1/2}$ be an indeterminate and let $\mathcal{A} = \mathbb{Z}[q^{1/2}, q^{-1/2}]$ be the ring of Laurent polynomials in $q^{1/2}$. We shall set $\mathcal{A}^+ = \mathbb{Z}[q^{1/2}]$. Let W be a Coxeter group and let S be the corresponding set of simple reflections. We shall denote by H the Hecke algebra (over \mathscr{A}) corresponding to W. As an \mathscr{A} -module, H is free with basis T_w , ($w \in W$). The multiplication is defined by $$T_w T_{w'} = T_{ww'}$$, if $l(ww') = l(w) + l(w')$ $(T_s + 1)(T_s - q) = 0$, if $s \in S$; here l(w) is the length of w. It will be convenient to set $$\widetilde{T}_w = q^{-l(w)/2}T_w$$. We then have (1.1.1) $$\begin{cases} \tilde{T}_{w}\tilde{T}_{w'} = \tilde{T}_{ww'}, & \text{if } l(ww') = l(w) + l(w') \\ \tilde{T}_{s}^{2} = 1 + (q^{1/2} - q^{-1/2})\tilde{T}_{s}, & \text{if } s \in S. \end{cases}$$ **1.2.** Let \leq be the standard partial order on W. In $[KL_1]$, Kazhdan and the author showed that for any $w \in W$, there is a unique element $C_w \in H$ such that $$\begin{split} C_w &= \sum_{y \leq w} (-1)^{l(w) - l(y)} q^{(l(w) - l(y))/2} P_{y, w}(q^{-1}) T_y \\ &= \sum_{y \leq w} (-1)^{l(w) - l(y)} q^{(l(w) + l(y))/2} P_{y, w}(q) T_{y^{-1}}^{-1}, \end{split}$$ where $P_{y,w}(q)$ is a polynomial of degree $\leq \frac{1}{2}(l(w)-l(y)-1)$ if y < w and $P_{w,w}(q)=1$. Note that $$(1.2.1) C_w \in \widetilde{T}_w + q^{1/2} \sum_{y \leq w} \mathscr{A}^+ \cdot \widetilde{T}_y$$ from which by induction on l(w), it follows that $$\tilde{T}_w \in C_w + q^{1/2} \sum_{y < w} \mathcal{A}^+ \cdot C_y.$$ In particular, the elements C_w form a basis (called the C-basis) of H as an \mathscr{A} -module. 1.3. Following [KL₂] we define polynomials $Q_{y,w}(q)$ for $y \le w$ by the identities (1.3.1) $$\sum_{y \le z \le w} (-1)^{l(z) - l(y)} Q_{y,z}(q) P_{z,w}(q) = \begin{cases} 1 & \text{if } y = w \\ 0 & \text{if } y < w. \end{cases}$$ It is clear that $Q_{y,w}(q)$ is a polynomial of degree $\leq \frac{1}{2}(l(w)-l(y)-1)$ if y < w and $Q_{w,w}(q) = 1$. For any $y \in W$, we define (1.3.2) $$D_{y} = \sum_{\substack{w \ y \le w}} Q_{y,w}(q^{-1})q^{(l(w)-l(y))/2} \tilde{T}_{w};$$ this is an element in the set \hat{H} of formal (possibly infinite) \mathscr{A} -linear combinations of the elements \tilde{T}_w , $(w \in W)$. We have $$(1.3.3) D_y \in \widetilde{T}_y + q^{1/2} \sum_{\substack{w \ y < w}} \mathscr{A}^+ \cdot \widetilde{T}_w$$ hence (1.3.4) $$\widetilde{T}_y \in D_y + q^{1/2} \sum_{\substack{w \ y < w}} \mathscr{A}^+ \cdot D_w.$$ (Both sums are, in general, infinite sums). Note that $H \subset \hat{H}$ in an obvious way and that the left H-module structure on H extends naturally to a left H-module structure on \hat{H} . For example, we have $$\tilde{T}_s(\sum_{w}\alpha_w\tilde{T}_w) = \sum_{\substack{w\\sw>w\\sw< w}}\alpha_{sw}\tilde{T}_w + \sum_{\substack{w\\sw< w}}(\alpha_{sw} + (q^{1/2} - q^{-1/2})\alpha_w)\tilde{T}_w$$ $(\alpha_w \in \mathcal{A}, s \in S)$, and the sums are infinite, in general). Similarly, \hat{H} is in a natural way a right H-module; the left and right H-module structures on \hat{H} commute with each other: $(h_1\hat{h})h_2 = h_1(\hat{h}h_2)$ for $h_1 \in H$, $\hat{h} \in \hat{H}$, $h_2 \in H$. **1.4.** Let $\tau: \hat{H} \to \mathscr{A}$ be the \mathscr{A} -linear map defined by $\tau(\sum_{w} \alpha_{w} \tilde{T}_{w}) = \alpha_{e}$ where e is the neutral element of W. It is easy to check that (1.4.1) $$\tau(\tilde{T}_x \cdot \tilde{T}_y) = \begin{cases} 1, & \text{if } x = y^{-1} \\ 0, & \text{if } x \neq y^{-1}. \end{cases}$$ It follows that (1.4.2) $$\tau(h_1\hat{h}) = \tau(\hat{h}h_1) \quad \text{for all } h_1 \in H, \ \hat{h} \in \hat{H}$$ and (1.4.3) $$\tau(C_x D_y) = \tau(D_y C_x) = \begin{cases} 1, & \text{if } x = y^{-1} \\ 0, & \text{if } x \neq y^{-1}. \end{cases}$$ #### \S 2. The function a **2.1.** Given $w \in W$, consider the set $$(2.1.2) \quad \mathcal{S}_{w} = \{ i \in \mathbb{N} \mid q^{i/2} \tau(\widetilde{T}_{x} \widetilde{T}_{y} D_{w}) \in \mathcal{A}^{+} \quad \text{for all } x, y \in W \}$$ $$= \{ i \in \mathbb{N} \mid q^{i/2} \tau(C_{x} C_{y} D_{w}) \in \mathcal{A}^{+} \quad \text{for all } x, y \in W \}.$$ (The last equality follows immediately from (1.2.1), (1.2.2.). If \mathscr{S}_w is non-empty, we denote by a(w) the smallest number in \mathscr{S}_w . If \mathscr{S}_w is empty, we set $a(w) = \infty$. We have thus defined a function $$a: W \longrightarrow \mathbf{N} \cup \{\infty\}.$$ An equivalent definition is the following one. We consider the coefficient with which C_{w-1} appears in the product $\tilde{T}_x \tilde{T}_y$ (expressed in the C-basis of H). We consider the order of the pole at 0 of this coefficient (in the parameter $q^{1/2}$). When x, y vary, the order of this pole may be bounded above and then a(w) is the largest such order, or it may be unbounded and then $a(w) = \infty$. We have **Proposition 2.2.** $$a(w) = a(w^{-1})$$ *Proof.* Consider the antiautomorphism of the algebra H defined by $T_w \rightarrow T_{w^{-1}}$ for all w. Applying it to the equality $\tilde{T}_x \tilde{T}_y = \sum_w \alpha_w C_w$, $(\alpha_w \in \mathscr{A})$, we find $\tilde{T}_{y^{-1}} \tilde{T}_{x^{-1}} = \sum_w \alpha_w C_{w^{-1}}$. From this, the proposition follows immediately. We have **Proposition 2.3.** a(w) = 0 if and only if w = e. *Proof.* First we show that $Q_{e,w}=1$ for all $w \in W$. In view of the definition (1.3.1) this is equivalent to the identity $$\sum_{y \le w} (-1)^{l(y)} P_{y, w} = 0 \quad \text{for all } w \ne e,$$ which follows from the fact that $P_{y,w} = P_{sy,w}$ where s is any element of S such that sw < w. See [KL₁, (2.3. g)]. It follows that $$D_e = \sum_w q^{l(w)/2} \tilde{T}_w$$. For any $s \in S$, we have $\tilde{T}_s D_e = q^{1/2} D_e$. By induction on l(x) it follows that $\tilde{T}_x D_e = q^{l(x)/2} D_e$, $(x \in W)$, and therefore $$\tau(\tilde{T}_x\tilde{T}_yD_e) = q^{(l(x)+l(y))/2}\tau(D_e) = q^{(l(x)+l(y))/2} \in \mathcal{A}^+$$ for all $x, y \in W$. It follows that a(e) = 0. Assume now that $w \neq e$ and let $s \in S$ be such that sw < w. Then $$\tilde{T}_{s}\tilde{T}_{w} = \tilde{T}_{sw} + (q^{1/2} - q^{-1/2})\tilde{T}_{w},$$ and by (1.2.2) this is of the form $(q^{1/2}-q^{-1/2})C_w+\mathscr{A}$ -linear combination of elements C_w , w' < w. As $\tau(C_w, D_{w-1}) = 0$ for w' < w, we have $$\tau(\widetilde{T}_{s}\widetilde{T}_{w}D_{w^{-1}})\!=\!\tau((q^{1/2}\!-\!q^{-1/2})C_{w}D_{w^{-1}})\!=\!q^{1/2}\!-\!q^{-1/2}$$ so that $0 \in \mathcal{S}_{w^{-1}}$. Thus, $a(w^{-1}) \ge 1$, and the proposition is proved. The last part of the previous proof can be generalized as follows. **Proposition 2.4.** Let J be a subset of S which generates a finite subgroup of W and let w_J be the longest element in this subgroup. Let w, w', $w'' \in W$ be such that $w = w'w_Jw''$, $l(w) = l(w') + l(w_J) + l(w'')$. Then $a(w) > l(w_J)$. *Proof.* Note that $\tilde{T}_{w_J} \cdot \tilde{T}_{w_J} = (q^{-l(w_J)/2} + \text{higher powers of } q^{1/2})\tilde{T}_{w_J} + \mathcal{A}$ -linear combination of elements \tilde{T}_v , $y < w_J$. It follows that $$\widetilde{T}_{w'w_J}\widetilde{T}_{w_Jw''}=\widetilde{T}_w\widetilde{T}_{w_J}\widetilde{T}_{w_J}\widetilde{T}_{w''}$$ $$=(q^{-l(w_J)/2}+\text{higher powers of }q^{1/2})\widetilde{T}_w+\mathscr{A}-\text{linear combination of elements }\widetilde{T}_z,z< w$$ $$=(q^{-l(w_J)/2}+\text{higher powers of }q^{1/2})C_w+\mathscr{A}-\text{linear combination of elements }C_z,z< w,\text{ (cf. (1.2.2))}.$$ As $\tau(C_z D_{w^{-1}}) = 0$ for z < w, and $\tau(C_w D_{w^{-1}}) = 1$, we have $\tau(\tilde{T}_{w'w_J} \tilde{T}_{w_J w''} D_{w^{-1}}) = q^{-l(w_J)/2} + \text{higher powers of } q^{1/2}$. This shows that $a(w^{-1}) \ge l(w_J)$. The proposition follows. ## §
3. Positivity - **3.1.** The Coxeter group (W, S) is said to be *crystallographic* if for any $s \neq s'$ in S, the product ss' has order 2, 3, 4, 6 or ∞ . We shall need the following result. - (3.1.1) Assume that (W, S) is crystallographic and let $x, y \in W$. Then $C_x \cdot C_y = \sum_{z \in W} \alpha_{x,y,z} C_z$ where, for any $z \in W$, $\alpha_{x,y,z} \in \mathscr{A}$ is of the form $\sum_{i \in \mathbb{Z}} c_i (-1)^i q^{i/2}$ with $c_i \in \mathbb{N}$. - **3.2.** Let $\Phi: H \to H$ be the ring homomorphism defined by $\Phi(q^{1/2}) = -q^{1/2}$, $\Phi(T_x) = (-q)^{l(x)} T_{x-1}^{-1}$, $(x \in W)$. Then $\Phi^2 = 1$ and $C_x = \Phi(C_x')$ where $C_x' = q^{-l(x)/2} \sum_{y \le x} P_{y,x}(q) \cdot T_y$. Hence (3.1.1) is equivalent to the following statement. (3.2.1) If (W, S) is crystallographic, then for any $x, y \in W$ we have $C'_x C'_y = \sum_{z \in W} \beta_{x,y,z} C'_z$ where $\beta_{x,y,z} \in \mathcal{A}$ has ≥ 0 coefficients for all $z \in W$. In the case where (W, S) is a (finite) Weyl group, this statement is proved in [S, 2.12]. The ingredients of the proof are: - (a) interpreting $P_{y,w}$ in terms of local intersection cohomology of a Schubert variety corresponding to w, cf. $[KL_2]$. - (b) interpreting multiplication in the Hecke algebra in terms of operations with complexes of sheaves (inverse image, tensor product, direct image). - (c) applying the powerful decomposition theorem in the theory of perverse sheaves, due to Beilinson-Bernstein-Deligne-Gabber [BBD]. In the general case, the assumption that W is crystallographic, means that it arises from a Kac-Moody Lie algebra (or group); to each $w \in W$ one can again associate a "Schubert variety". (See [KL₂, § 5], [L₄, 11] for the case of affine Weyl groups and Tits [T] in the general case; see also Kac-Peterson [KP].) The proof of (3.2.1) can then be carried out essentially as in the finite case. For the proof of (a) it is simpler to use instead of [KL₂] the arguments in [L₅, Ch. 1]. This avoids using the dual Schubert varieties (of finite codimension). ### § 4. Left cells and two-sided cells **4.1.** We shall review some definitions and results from $[KL_1]$. Given $y, w \in W$, we say that y < w if the following conditions are satisfied: y < w, l(w) - l(y) is odd and $P_{y,w}(q) = \mu(y,w)q^{(l(w)-l(y)-1)/2} + \text{lower powers}$ of q, where $\mu(y, w)$ is a non-zero integer. Given $y, w \in W$, we say that y, w are joined (y-w) if we have $y \prec w$ or $w \prec y$; we then set $\tilde{\mu}(y, w) = \mu(y, w)$ if $y \prec w$ and $\tilde{\mu}(y, w) = \mu(w, y)$ if $w \prec y$. For any $x \in W$, we set $\mathcal{L}(x) = \{s \in S \mid sx < x\}$, $\mathcal{R}(x) = \{s \in S \mid xs < x\}$. **4.2.** Given $x, x' \in W$, we say that $x \leq x'$ if there exists a sequence of elements of $W: x = x_0, x_1, \cdots, x_n$ such that for each $i, 1 \leq i \leq n$, we have $x_{i-1} - x_i, \mathcal{L}(x_{i-1}) \not\subset \mathcal{L}(x_i)$. We say that $x \leq x'$ if there exists a sequence $x = x_0, x_1, \cdots, x_n = x'$ of elements of W such that for each $i, 1 \leq i \leq n$, we have either $x_{i-1} \leq x_i$ or $x_{i-1}^{-1} \leq x_i^{-1}$. Let $x \in X$ be the equivalence relation associated to the preorder $x \in X$ thus $x \in X'$ means that $x \in X'$, $x' \leq x$. The corresponding equivalence classes are called the left cells of $x \in X'$. A right cell of $x \in X'$ is a set of form $x \in X'$ where $x \in X'$ is a left cell. Let $x \in X'$ be the equivalence relation associated to the preorder $x \in X'$ thus $x \in X'$ means that $x \leq x'$, $x' \leq x$. The corresponding equivalence classes are called the two-sided cells of W. **4.3.** For any $x \in W$ and $s \in S$, we have (cf. [KL₁, (2.3a), (2.3b)]): (4.3.1) $$C_s C_x = \begin{cases} -(q^{1/2} + q^{-1/2})C_x, & \text{if } s \in \mathcal{L}(x) \\ \sum\limits_{\substack{y=x \\ y \neq y}} \tilde{\mu}(y, x)C_y, & \text{if } s \notin \mathcal{L}(x) \end{cases}$$ and (4.3.2) $$C_{x}C_{s} = \begin{cases} -(q^{1/2} + q^{-1/2})C_{x}, & \text{if } s \in \mathcal{R}(x) \\ \sum_{\substack{y=x \ y s < y}} \tilde{\mu}(y, x)C_{y}, & \text{if } s \notin \mathcal{R}(x). \end{cases}$$ It follows that for any $x \in W$ we have $$(4.3.3) H \cdot C_x \subset \sum_{y \leq x} \mathscr{A} \cdot C_y$$ $$(4.3.4) C_x \cdot H \subset \sum_{\substack{y-1 \leq x-1}} \mathscr{A} \cdot C_y$$ $$(4.3.5) H \cdot C_x \cdot H \subset \sum_{\substack{y \le x \\ I,R}} \mathscr{A} \cdot C_y.$$ **4.4.** We shall need the following property, see [KL₁, 2.4(i)]: (4.4.1) If $$x \leq y$$, then $\mathcal{R}(x) \supset \mathcal{R}(y)$. Hence, if $x \sim y$ then $\mathcal{R}(x) = \mathcal{R}(y)$. **Lemma 4.5.** Let $x, y \in W$. If $C_x D_y \neq 0$, then $y^{-1} \leq x$. If $D_y C_x \neq 0$, then $y \leq x^{-1}$. *Proof.* Assume first that $C_xD_y\neq 0$. Then C_xD_y can be written as a (possibly infinite) sum $\sum_z \alpha_z D_z$, $\alpha_z \in \mathscr{A}$, with $\alpha_z\neq 0$ for some z. For such z, we have $\tau(C_{z-1}C_xD_y)=\alpha_z\neq 0$. Let us expand $C_{z-1}C_x$ in the C-basis of H. The coefficient of C_{y-1} in this expansion is equal to α_z hence it is non-zero. Using now (4.3.3), it follows that $y^{-1}\leq x$. The proof of the second assertion of the lemma is entirely similar. #### \S 5. Cells and the function a **5.1.** Given $w \in W$ such that $a(w) < \infty$, and two elements $x, y \in W$, we define the integer $c_{x,y,w}$ to be the constant term (=coefficient of q°) of $q^{a(w)/2}\tau(\tilde{T}_x\tilde{T}_yD_w)\in \mathscr{A}^+$. **Lemma 5.2.** Assume that $a(w) < \infty$. - $c_{x,y,w}$ is equal to the constant term of $q^{a(w)/2}\tau(C_xC_yD_w) \in \mathcal{A}^+$. - (b) There exist $x', y' \in W$ such that $c_{x',y',w} \neq 0$. (c) If $c_{x,y,w} \neq 0$, then $w \leq x^{-1}$ and $w^{-1} \leq y$. - (d) If W is crystallographic, then for any x, y we have $(-1)^{a(w)}c_{x,y,w}$ >0. *Proof.* We have $C_x = \sum_{x' \le x} \alpha_{x'} \tilde{T}_{x'}$, $C_y = \sum_{y' \le y} \beta_{y'} \tilde{T}_{y'}$ where $\alpha_x = \beta_y$ =1, $\alpha_{x'} \in q^{1/2} \mathcal{A}^+$, (x' < x), $\beta_{y'} \in q^{1/2} \mathcal{A}^+$, (y' < y). Hence $$\begin{split} q^{a(w)/1}\tau(C_xC_yD_w) &= \sum_{\substack{x' \leq x \\ y' \leq y}} \alpha_{x'}\beta_{y'}q^{a(w)/2}\tau(\tilde{T}_x'\tilde{T}_yD_w) \\ &= q^{a(w)/2}\tau(\tilde{T}_x\tilde{T}_yD_w) + \text{ an element of } q^{1/2}\mathscr{A}^+ \end{split}$$ and (a) follows. (b) is clear from the definition of a(w). Assume that $c_{x,y,w} \neq 0$. Then $\tau(C_x C_y D_w) \neq 0$ and, by (1.4.2), we have also $\tau(C_v D_w C_x) \neq 0$. In particular, $C_v D_w \neq 0$ and $D_w C_x \neq 0$. Hence (c) follows from Lemma 4.5. Let $\pi_{x,y,w} \in \mathscr{A}$ be the coefficient of C_{w-1} in $C_x \cdot C_y$ (expressed in the C-basis of H). By (a), $c_{x,y,w}$ is the coefficient of $q^{-a(w)/2}$ in $\pi_{x,y,w}$. Hence, (d) is a special case of (3.1.1). **Lemma 5.3.** Assume that W is crystallographic. Let $x, y \in W$. - (a) Let $z, z' \in W$ be such that z-z' and let $s \in S$ be such that $s \in S$ $\mathcal{R}(z') - \mathcal{R}(z)$. If $i \ge 0$ is an integer such that $q^{i/2} \tau(C_x C_y D_z) \in \mathcal{A}$ has nonzero constant term, then there exists $x' \in W$ such that $q^{i/2}\tau(C_x, C_y, D_z) \in \mathcal{A}$ has non-zero constant term. Moreover, we have $a(z') \ge a(z)$. - (b) Let $z \in W$ be such that $a(z) < \infty$. Assume that $c_{x,y,z} \neq 0$. $\mathcal{R}(y) = \mathcal{L}(z)$ and $\mathcal{L}(x) = \mathcal{R}(z)$. *Proof.* Let z, z', s, i be as in (a). We have $\tau(C_x C_y D_z) = \tau(C_y D_z C_x)$ $\neq 0$ hence $D_z C_x \neq 0$ so that $z \leq x^{-1}$, (Lemma 4.5). By (4.4.1), $z \leq x^{-1}$ implies $\mathcal{R}(z) \supset \mathcal{R}(x^{-1})$. Since $s \notin \mathcal{R}(z)$, it follows that $s \notin \mathcal{R}(x^{-1})$, hence sx > x. Write $C_x C_y = \sum_{n} \alpha_n C_n$, $\alpha_n \in \mathcal{A}$. Using (4.3.1), we get $$C_s C_x C_y = \alpha_{z-1} C_s C_{z-1} + \sum_{w \neq z^{-1}} \alpha_w C_s C_w = \sum_{w'} \beta_{w'} C_{w'}, \quad (\beta_{w'} \in A),$$ where $$\beta_{z'-1} = \alpha_{z-1} \tilde{\mu}(z'^{-1}, z^{-1}) + \delta$$ $$\delta = \sum_{\substack{w \neq z^{-1} \\ sw > w \\ z''-1-w}} \alpha_w \cdot \tilde{\mu}(z'^{-1}, w) - \alpha_{z'-1}(q^{1/2} + q^{-1/2}).$$ Let a_i, b_i, d_i be the coefficient of $q^{-i/2}$ in $\alpha_{z^{-1}}, \beta_{z'^{-1}}, \delta$, respectively. Then $b_i = \tilde{\mu} a_i + d_i$ where $\tilde{\mu} = \tilde{\mu} (z'^{-1}, z^{-1}) = \tilde{\mu} (z', z)$. From (3.1.1) it follows that $(-1)^i a_i \geq 0$, $(-1)^i d_i \geq 0$, $\tilde{\mu} \geq 0$. Our assumptions are that $a_i \neq 0$, $\tilde{\mu} \neq 0$. It follows that $(-1)^i a_i > 0$, $\tilde{\mu} > 0$, $(-1)^i b_i \geq \tilde{\mu} (-1)^i a_i > 0$ so that $b_i \neq 0$. Thus, the coefficient of $q^{-i/2}$ in $\tau(C_s C_x C_y D_{z'}) \in \mathscr{A}$ is non-zero. By (4.3.1) we have $$\tau(C_s C_x C_y D_{z'}) = \sum_{\substack{x'-x\\ xx' < x'}} \tilde{\mu}(x', x) \tau(C_{x'} C_y D_{z'})$$ with $\tilde{\mu}(x',x)\neq 0$ for all x' in the sum. It follows that there is at least one x' in the sum such that the coefficient of $q^{-i/2}$ in $\tau(C_x,C_yD_z)$ is non-zero. Hence the first assertion of (a) is proved. We now show that we have an inclusion $$\mathscr{S}_z \supset \mathscr{S}_{z'}$$ (see (2.1.2)). If this were not true we could find $j \in \mathcal{S}_{z'}$ such that $j \notin \mathcal{S}_{z}$. Since $j \notin \mathcal{S}_{z}$, there exists $x_1, y_1 \in W$ such that $q^{j/2}\tau(\tilde{T}_{x_1}\tilde{T}_{y_1}D_z) \notin \mathcal{A}^+$; hence there exists j' > 0 such that $q^{(j+j')/2}\tau(\tilde{T}_{x_1}\tilde{T}_{y_1}D_z)$ has non-zero constant term. By the first assertion of (a) it follows that $q^{(j+j')/2}\tau(\tilde{T}_{x_2}\tilde{T}_{y_1}D_{z'})$ has non-zero constant term for some $x_2 \in W$, so that
$q^{j/2}\tau(\tilde{T}_{x_2}\tilde{T}_{y_1}D_{z'}) \notin \mathcal{A}^+$. Thus $j \notin \mathcal{S}_{z'}$, a contradiction. From $\mathscr{S}_z \supset \mathscr{S}_{z'}$ and the definition of the function a, it follows that $a(z') \geq a(z)$. We now prove (b). With the assumption of (b), we have $z \leq x^{-1}$ and $z^{-1} \leq y$. Using (4.4.1), it follows that $\mathcal{R}(z) \supset \mathcal{R}(x^{-1}) = \mathcal{L}(x)$, $\mathcal{L}(z) = \mathcal{R}(z^{-1}) \supset \mathcal{R}(y)$. Assume that there exists $t \in S$ such that $t \in \mathcal{L}(z)$, $t \notin \mathcal{R}(y)$. Write again $C_x C_y = \sum_w \alpha_w C_w$, $(\alpha_w \in \mathcal{A})$. From this we have $$\begin{split} \sum_{\substack{y'-y\\y't < y'}} C_x C_{y'} \tilde{\mu}(y', y) &= C_x C_y C_t = \alpha_{z-1} C_{z-1} C_t + \sum_{w \neq z-1} \alpha_w C_w C_t \\ &= \sum_{w'} \beta_{w'} C_{w'}, \quad (\beta_w \in \mathscr{A}) \end{split}$$ where $$\beta_{z-1} = -(q^{1/2} + q^{-1/2})\alpha_{z-1} + \delta,$$ $$\delta = \sum_{\substack{w' \neq z-1 \\ w' \neq z > w'}} \tilde{\mu}(z^{-1}, w')\alpha_{w'}.$$ Let m_i , n_i , p_i be the coefficient of $q^{-i/2}$ in $\beta_{z^{-1}}$, $\alpha_{z^{-1}}$, δ , respectively. Then $m_i = -n_{i-1} - n_{i+1} + p_i$. We now take i = a(z) + 1. Then $n_{i+1} = 0$, by the definition of a(z) and $n_{i-1} \neq 0$ since $c_{x,y,z} \neq 0$. Moreover, by (3.1.1), we have $(-1)^{i-1}n_{i-1} \geq 0$, $(-1)^i p_i \geq 0$. It follows that $(-1)^{i-1}n_{i-1} > 0$ and $(-1)^i m_i = (-1)^i p_i + (-1)^{i-1}n_{i-1} \geq (-1)^{i-1}n_{i-1} > 0$. In particular, we have $m_i \neq 0$. Thus $$q^{a(z)/2} \sum_{\substack{y'-y\\y'^t \leq y'}} \tilde{\mu}(y',y) \tau(C_x C_{y'} D_{z^{-1}}) \notin \mathscr{A}^+.$$ Hence for some y' in the last sum we have $$q^{a(z)/2}\tau(C_xC_{y'}D_{z^{-1}})\notin \mathscr{A}^+.$$ This contradicts the definition of a(z). Thus we have proved that $\mathcal{L}(z) - \mathcal{R}(z)$ is empty, so that $\mathcal{L}(z) = \mathcal{R}(y)$. From the proof of 2.2, we see that $c_{x,y,z} = c_{y-1,x-1,z-1}$. Hence we must also have $\mathcal{L}(z^{-1}) = \mathcal{R}(x^{-1})$, and therefore $\mathcal{R}(z) = \mathcal{L}(x)$. The lemma is proved. We can now prove: **Theorem 5.4.** Assume that (W, S) is crystallographic. Let $z, z' \in W$ be such that $z' \leq z$. Then $a(z') \geq a(z)$. In particular, the function a is constant on the two-sided cells of W. *Proof.* To show that $a(z') \ge a(z)$ we may assume that either or $$z'-z$$ and $\mathscr{R}(z') \not\subset \mathscr{R}(z)$ $z'-z$ and $\mathscr{L}(z') \not\subset \mathscr{L}(z)$. In the first case, we have $a(z') \ge a(z)$ by Lemma 5.3(a). In the second case, Lemma 5.3(a) is applicable to z'^{-1} , z^{-1} . (We have $z'^{-1} - z^{-1}$ and $\Re(z'^{-1}) \not\subset \Re(z^{-1})$.) It follows that $a(z'^{-1}) \ge a(z^{-1})$, hence, by Proposition 2.2, we have $a(z') \ge a(z)$. The theorem follows. **Corollary 5.5.** Assume that (W, S) is crystallographic. Let $z, z' \in W$ be such that z'-z, $\mathcal{R}(z') \not\subset \mathcal{R}(z)$ and $\mathcal{L}(z') \not\subset \mathcal{L}(z)$. Assume that $a(z) < \infty$. Then a(z') > a(z). In particular, z and z' are not in the same two-sided cell. *Proof.* From 5.4 it follows that $a(z') \ge a(z)$. Assume now that a(z') = a(z). Let $x, y \in W$ be such that $c_{x,y,z} \ne 0$. Then the coefficient of $q^{-a(z)/2}$ in $\tau(C_x C_y D_z)$ is non-zero. By 5.3(a), we can find $x' \in W$ such that the coefficient of $q^{-a(z)/2}$ in $\tau(C_x C_y D_{z'})$ is non-zero. Since a(z) = a(z'), we have $c_{x',y,z'} \ne 0$. Using now 5.3(b) it follows that $\mathcal{R}(y) = \mathcal{L}(z')$ and also that $\mathcal{R}(y) = \mathcal{L}(z)$. Thus, we have $\mathcal{L}(z') = \mathcal{L}(z)$, a contradiction. The corollary is proved. This result was proved in $[L_2, 4]$ in the special case where W is a finite Weyl group, using the known connection between ≤ 1 and the order relation on the primitive ideals in an enveloping algebra. The present proof is quite different and applies in more general circumstances. ### §16. The case of finite Weyl groups **Theorem 6.1.** Assume that (W, S) is a finite Weyl group. For any $x, y, z \in W$ we have $$c_{x,y,z} = c_{y,z,x} = c_{z,x,y}$$ *Proof.* We set $c=c_{x,\,y,\,z}$. Assume first that $c\neq 0$. Then $q^{a(z)/2}\tau(\tilde{T}_x\tilde{T}_yD_z)\in \mathscr{A}^+$ has constant term c. For any $x'\in W,\ x'>x$, we have $|q^{a(z)/2}\tau(\tilde{T}_x\tilde{T}_yD_z)\in \mathscr{A}^+$. Since $$D_x = \tilde{T}_x + \sum_{\substack{x' \ x' > x}} \alpha_{x'} \tilde{T}_{x'}, \quad (\alpha_{x'} \in q^{1/2} \mathscr{A}^+)$$ it follows that $q^{a(z)/2}\tau(D_x\widetilde{T}_yD_z)\in \mathscr{A}^+$ has constant term c, hence that $q^{a(z)/2}(\widetilde{T}_yD_zD_x)\in \mathscr{A}^+$ has constant term c. (Since W is finite, we have $H=\hat{H}$, hence the products $D_x\widetilde{T}_yD_z$, $\widetilde{T}_yD_zD_x$ are defined.) We now substitute $$D_z = \tilde{T}_z + \sum_{\substack{z' \ z' > z}} \beta_{z'} \tilde{T}_{z'}, \quad (\beta_{z'} \in q^{1/2} \mathscr{A}^+).$$ Note that for z' > z, we have $$q^{a(z)/2}\tau(\tilde{T}_{v}\tilde{T}_{z'}D_{x})\in\mathcal{A}^{+}$$ since $a(z) \ge a(x)$ (by 5.2(c) and 5.4). It follows that $$q^{\alpha(z)/2}\tau(\tilde{T}_{y}(\textstyle\sum_{z'>z}\beta_{z'}\tilde{T}_{z'})D_{x})\in q^{1/2}\mathcal{A}^{+}$$ so that $q^{a(z)/2}\tau(\tilde{T}_yD_zD_x)\in \mathscr{A}^+$ has the same constant term as $$q^{\alpha(z)/2}\tau(\tilde{T}_y\tilde{T}_zD_x)\in\mathcal{A}^+.$$ Hence the constant term of $q^{a(z)/2}\tau(\tilde{T}_y\tilde{T}_zD_x)\in \mathscr{A}^+$ is c. By the definition of a(x), this implies $a(z)\leq a(x)$. Combining with $a(z)\geq a(x)$, we get a(z)=a(x), hence $q^{a(x)/2}\tau(\tilde{T}_y\tilde{T}_zD_x)\in \mathscr{A}^+$ has constant term c. Thus, $c_{y,z,x}=c$, as required. The same argument applied to y,z,x instead of x,y,z shows that $c_{z,x,y}=c$. Thus, if one of the three numbers $c_{x,y,z}$, $c_{y,z,x}$, $c_{z,x,y}$ is non-zero, then these three numbers are equal. If all three numbers are zero, they are again equal. The theorem is proved. **Remark.** Although the conclusion of the theorem may be true also for infinite W, I don't see how to carry out the proof. If W is an affine Weyl group of type \tilde{A}_1 or \tilde{A}_2 , then the elements $\hat{D}_x \in \hat{H}$ are "square integrable" in the following sense: the coefficient of \tilde{T}_u in D_x tends to zero for $l(u) \rightarrow \infty$ in the topology of formal power series in $q^{1/2}$. It follows that the products $D_x \tilde{T}_y D_z$, $\tilde{T}_y D_z D_x$ are defined (they are infinite sums of \tilde{T}_u with coefficients formal power series in $q^{1/2}$) and the proof can still be carried out. However, if W is an affine Weyl group of type \tilde{B}_2 , there exist elements $D_x \in \hat{H}$ which are not "square integrable". **Corollary 6.3.** Assume that (W, S) is a finite Weyl group. - Then $x = y^{-1}, y = z^{-1},$ (a) Let $x, y, z \in W$ be such that $c_{x,y,z} \neq 0$. - (b) If $z' \leq z$ and a(z') = a(z), then $z' \sim z$. (c) If $z' \leq z$ and $z' \sim z$, then $z' \sim z$. - (d) For any $y \in W$, there exists $x \in W$ such that $c_{x,y,y-1} \neq 0$. - (e) If y belongs to a standard parabolic subgroup W' of W then a(y)computed with respect to W is equal to a(y) computed with respect to W'. - (f) For any $y \in W$, we have a(y) < l(y). - *Proof.* (a) We have seen in 5.2(c) that $c_{x,y,z} \neq 0$ implies $z \leq x^{-1}$, $z^{-1} \leq_L y$. By 6.1, it also implies $c_{y,z,x} \neq 0$ (hence $x \leq_L y^{-1}, x^{-1} \leq_L z$) and $c_{z,x,y} \neq 0$ (hence $y \leq_L z^{-1}, y^{-1} \leq_L x$). Thus, we have $z \sim_L x^{-1}, x \sim_L y^{-1}, y \sim_L z^{-1}$. - (b) We must only show that from z'-z, $\mathcal{L}(z')\not\subset\mathcal{L}(z)$, a(z')=a(z)it follows that $z' \sim z$. Let $x, y \in W$ be such that $c_{x,y,z-1} \neq 0$. Applying 5.3(a) to z^{-1} , z'^{-1} , x, y and i = a(z) we see that there exists $x' \in W$ such that $q^{a(z)/2}\tau(C_{x'}C_yD_{z'-1}) \in \mathcal{A}$ has non-zero constant term. Since a(z) = a(z'), by assumption, it follows that $c_{x',y,z'-1}\neq 0$. From $c_{x,y,z-1}\neq 0$, $c_{x',y,z'-1}\neq 0$ and (a) it follows that $v \geq z$, $v \geq z'$, hence $z \geq z'$, as required. - (c) follows immediately from (b) and 5.4. - (d) Given $y \in W$, we can find $x, z \in W$ such that $c_{z,x,y} \neq 0$, see 5.2(b). By 6.1, we then have $c_{x,y,z} \neq 0$. We have $y \sim z^{-1}$, hence there exists a sequence $z^{-1} = y_0, y_1, \dots, y_n = y$ such that for each $j, 1 \le j \le n$, we have $y_j - y_{j-1}$, $\mathcal{L}(y_j) \not\subset \mathcal{L}(y_{j-1})$. We show that there exists a sequence x_0, x_1, \cdots, x_n in W such that $c_{x_j, v, v_j^{-1}} \neq 0$ for $0 \leq j \leq n$. We can take $x_0 = x$. Assume that for some $j \geq 1$, we have found x_{j-1} such that $c_{x_{j-1}, v, v_{j-1}} \neq 0$. We apply 5.3(a) with z, z' replaced by y_{j-1}^{-1}, y_j^{-1} and with $i = a(y) = a(y_{j-1}^{-1})$. It follows that there exists $x' \in W$ such that $q^{a(y)/2}\tau(C_x/C_yD_{y_j^{-1}})$ $\in \mathscr{A}$ has non-zero constant term. Since $a(y) = a(y_j^{-1})$, it follows that $c_{x', y, v_j^{-1}} \neq 0$, hence we may take $x_j = x'$. Thus, the required sequence x_0, x_1, \cdots, x_n is constructed. We have $c_{x_n, y, y^{-1}} \neq 0$ and (d) is proved. (e) By (d), we can find $x \in W$ such that $c_{x,y,y-1} \neq 0$ (with $c_{x,y,y-1}$ defined in terms of W). Then we have also $c_{y,y-1,x} \neq 0$. Hence, if α is the coefficient of C_{x-1} in the product $C_y C_{y-1}$ (expressed in the C-basis of E) then $e^{a(x)/2} \alpha \in \mathcal{A}$ has non-zero constant term. (We shall write e) (respectively e) for the e-function computed in terms of E0 (respectively E1).) Note that $C_v C_{v-1}$ belongs to the subalgebra H' of H spanned by the
\widetilde{T}_u ($u \in W'$) or, equivalently, by the C_u , ($u \in W'$). (For $u \in W'$, C_u defined in terms of W' is the same as that defined in terms of W.) It follows that $x \in W'$ and a'(x) is defined. Since $q^{a(x)/2}\alpha$ has non-zero constant term, we have $a(x) \leq a'(x)$. The reverse inequality $a'(x) \leq a(x)$ is obvious, hence a(x) = a'(x). From this it follows that $q^{a'(x)/2}\alpha$ has non-zero constant term, hence $c_{v,v-1,x}$ (computed in terms of W') is non-zero. By (a) applied to W' it follows that y^{-1} , x^{-1} are in the same left cell of W' (hence also in the same left cell of W). From 5.4, we see then that a'(y) = a'(x), a(y) = a(x), so that a(y) = a'(y). (f) Let again $x \in W$ be such that $c_{x,y,y^{-1}} \neq 0$. If β is the coefficient of C_y in the product $C_x C_y$ (expressed in the C-basis of H), then $q^{a(y)/2}\beta$ has non-zero constant term. From (4.3.2), we see by induction on $l(y_1)$ that for any $x_1, y_2 \in W$, we have $C_{x_1} \cdot C_{y_2} = \sum_z \gamma_z C_z$ where $\gamma_z \in \mathscr{A}$ satisfy $q^{l(y_1)/2}\gamma_z \in \mathscr{A}^+$. In particular, we have $q^{l(y_2)/2}\beta \in \mathscr{A}^+$, hence $l(y) \geq a(y)$, as required. The following result relates (for finite Weyl groups) the function a(w) to the function a_E defined in $[L_5, 4.1]$ for any irreducible representation E of W over Q. For such E, we shall denote E(q) the corresponding representation of $H \otimes Q(q^{1/2})$. **Proposition 6.4.** Let \mathscr{C} be a two-sided cell in a finite Weyl group W. Let a be the constant value of the function $w \rightarrow a(w)$ on \mathscr{C} . Let E be an irreducible representation of W appearing in the left W-module carried by \mathscr{C} . Then $a_E \leq a$ and, for at least one such E, we have $a_E = a$. *Proof.* For any $x \in W$, the trace $\operatorname{Tr}(\widetilde{T}_x, E(q))$ can be expressed as a Q-linear combination of elements $\tau(\widetilde{T}_xC_zD_{z'-1})$ with $z, z' \in \mathscr{C}$, (see [L₃, 1.3]). From the definition of a, it follows that $q^{a/2}\tau(\widetilde{T}_xC_zD_{z'}) \in \mathscr{A}^+$ hence $q^{a/2}\operatorname{Tr}(\tilde{T}_x, E(q)) \in Q[q^{1/2}]$. It follows that $$q^a \sum_x \operatorname{Tr}(\widetilde{T}_x, E(q))^2 \in Q[q^{1/2}],$$ hence, by the definition of a_E , we have $a_E \leq a$. To prove the second assertion, it is enough to show that for some E appearing in $\mathscr C$ and some $x \in W$, $q^{a/2}\operatorname{Tr}(\widetilde T_x, E(q)) \in Q[q^{1/2}]$ has non-zero constant term. This would follow from the following statement: there exists $x \in W$ such that $q^{a/2}\operatorname{Tr}(\widetilde T_x, [\mathscr C]) \in Q[q^{1/2}]$ has non-zero constant term, where $[\mathscr C]$ is the left H-module carried by $\mathscr C$. Since $$C_x = \widetilde{T}_x + \sum_{x \in \mathcal{X}} \alpha_{x'} \widetilde{T}_{x'} \quad (\alpha_{x'} \in q^{1/2} \mathscr{A}^+),$$ and $q^{a/2}\operatorname{Tr}(\tilde{T}_{x'}, [\mathscr{C}]) \in Q[q^{1/2}]$ for x' < x, we are reduced to proving that $q^{a/2}\operatorname{Tr}(C_x, [\mathscr{C}]) \in Q[q^{1/2}]$ has non-zero constant term for some $x \in W$. This is proved as follows. Fix $y \in \mathscr{C}$ and choose $x \in W$ such that $c_{x,y,y^{-1}} \neq 0$ (see 6.3(d)). We have $C_x C_z = \sum_{z' \in \mathscr{C}} \alpha_{z,z'} C_{z'}$ ($z \in \mathscr{C}$), where $\alpha_{z,z'} \in \mathscr{A}$. Let n_z be the constant term of $q^{a/2}\alpha_{z,z}$ ($z \in \mathscr{C}$). Then $\mathrm{Tr}(C_x, [\mathscr{C}]) = \sum_{z \in \mathscr{D}} \alpha_{z,z}$ and it is enough to show that $\sum_{z \in \mathscr{C}} n_z \neq 0$. By (3.3.1), we have $(-1)^a n_z \geq 0$ for all $z \in \mathscr{C}$. Since $c_{x,y,y^{-1}} \neq 0$, we have $n_y \neq 0$, hence, $(-1)^a n_y > 0$. It follows that $$(-1)^a \sum_{z \in \mathscr{C}} n_z > 0.$$ The proposition is proved. **6.5.** Remark. It is known (see $[L_5, 5.27]$) that a_E is in fact constant when E runs through the irreducible W-modules appearing in \mathscr{C} . However, this can be proved at present only through case by case checking. ## § 7. An upper bound for a(w) for w in an affine Weyl group 7.1. In this section, (W, S) denotes an irreducible affine Weyl group. Let ν be the number of positive roots in the corresponding root system. We shall prove: **Theorem 7.2.** For any $x, y, z \in W$, we have $\tilde{T}_x \tilde{T}_y = \sum_{z \in W} m_{x,y,z} \tilde{T}_{z-1}$ where $m_{x,y,z}$ is a polynomial in $\xi = (q^{1/2} - q^{-1/2})$ with integral, ≥ 0 coefficients, of degree $\leq \nu$. Before giving the proof, we note: **Corollary 7.3.** For any $z \in W$, we have $a(z) \le \nu$. *Proof.* From 7.2, we see that $q^{\nu/2}m_{x,\,y,\,z} \in \mathscr{A}^+$ for all $x,\,y,\,z$. On the other hand, $\widetilde{T}_{z^{-1}} \in \sum_{l} \mathscr{A}^+C_u$, (see (1.2.2)). It follows that $$q^{\nu/2} \tilde{T}_x \tilde{T}_y \in \sum_{u \in W} \mathscr{A}^+ \cdot C_u$$ and the corollary follows. For the proof of the theorem we shall need the following. **Lemma 7.4.** For any $x, y, z \in W$, $m_{x,y,z}$ is a polynomial in $\xi = (q^{1/2} - q^{-1/2})$ with integral ≥ 0 coefficients, of degree $\leq \min(l(x), l(y), l(z))$ in ξ . *Proof.* From (1.1.1) we see immediately, by induction on l(x) that $m_{x,y,z}$ is a polynomial with integral ≥ 0 coefficients of degree $\leq l(x)$ in ξ . Similarly, by induction on l(y) we see that $m_{x,y,z}$ has degree $\leq l(y)$ in ξ . We have $m_{x,y,z} = \tau(\tilde{T}_x \tilde{T}_y \tilde{T}_z) = \tau(\tilde{T}_y \tilde{T}_z \tilde{T}_x) = m_{y,z,x}$. By what we have proved so far, we have then $\deg(m_{y,z,x}) \leq l(z)$ hence $\deg(m_{x,y,z}) \leq l(z)$. The lemma is proved. The affine Weyl group (W, S) can be obtained as follows (cf. 7.5. $[L_1, 1.1]$). Let E be an affine euclidean space with a given set of hyperplanes \mathcal{F} . Let Ω be the group of affine motions in E generated by the orthogonal reflections in the various hyperplanes P in \mathcal{F} , regarded as acting on the right on E. We assume that Ω is an infinite discrete subgroup of the group of all affine motions of E acting irreducibly on the space of translations of E and leaving stable the set \mathcal{F} . Let X be the set of alcoves (=connected components of the set $E - \bigcup_{P \in \mathcal{F}} P$). Then Ω acts simply transitively on X. Let S_1 be the set of Ω -orbits in the set of codimension 1 facets of alcoves. Each $s \in S_1$ defines an involution $A \rightarrow sA$ of X, where, for an alcove A, sA is the alcove $\neq A$ which has with A a common face of type s. The maps $A \rightarrow sA$ generate a group of permutations of X. This group, together with its subset S_1 is a Coxeter group (an affine Weyl group). We shall assume that (W, S) is this particular Coxeter group, (thus $S = S_1$). We regard W as acting on the left on X. (It acts simply transitively and commutes with the action of Ω on X.) A special point in E is a O-dimensional facet v of an alcove such that the number of hyperplanes $P \in \mathcal{F}$ passing through v is maximum possible (it is equal to v). For such v, we denote by W_v the subgroup of W which is the stabilizer of the set of alcoves containing v in their closure. Then W_v is a standard parabolic subgroup of W generated by |S|-1 elements of S. We denote by W_v the longest element of W_v ; we have $l(w_v)=v$. We choose for each special point, a connected component C_v^+ of the set $E - \bigcup_{\substack{P \in \mathcal{F} \\ P \ni v}} P$ in such a way that for any two special points v, v' in E, $C_{v'}^+$ is a translate of C_v^+ . Let A_v^+ be the unique alcove contained in C_v^+ and having v in its closure, and let $A_v^- = w_v A_v^+$. To any alcove A we associate a subset $\mathcal{L}(A) \subset S$, as follows. Let $s \in S$ and let P be the hyperplane in \mathcal{F} supporting the common face of type s of A and sA. We say that $s \in \mathcal{L}(A)$ if A is in that half space determined by P which meets C_n^+ for any special point v. **7.6.** Following $[L_1, 1.6]$ we consider the free \mathscr{A} -module \mathscr{M} with basis corresponding to the alcoves in X. It can be regarded as a left H-module: $$T_s A = \begin{cases} sA, & \text{if } s \in S - \mathcal{L}(A) \\ q(sA) + (q-1)A, & \text{if } s \in \mathcal{L}(A). \end{cases}$$ Let $\delta: X \to \mathbb{Z}$ be a length function on X in the sense of $[L_1, 2.11]$; we have $\delta(A) = \delta(sA) + 1$, if $s \in \mathcal{L}(A)$ and $\delta(A) = \delta(sA) - 1$, if $s \in S - \mathcal{L}(A)$. It follows that if we set $\tilde{A} = q^{-\delta(A)/2}A$, then (7.6.1) $$\widetilde{T}_{s}\widetilde{A} = \begin{cases} \widetilde{sA}, & \text{if } s \in S - \mathcal{L}(A) \\ \widetilde{sA} + (q^{1/2} - q^{-1/2})\widetilde{A}, & \text{if } s \in \mathcal{L}(A). \end{cases}$$ From this it follows by induction on l(w) that $$\tilde{T}_{w}\tilde{A} = \sum_{B} M_{w,A,B}\tilde{B}$$, (finite sum) where $M_{w,A,B}$ are polynomials in $\xi = (q^{1/2} - q^{-1/2})$ with integral, ≥ 0 coefficients. Lemma 7.7. $\deg_{\xi} M_{w,A,B} \leq \nu$. *Proof.* Given w, A, we choose a special point v in the closure of A. We can uniquely write $w=w'\cdot w_1$ where $w_1\in W_v\in w'$ has minimal length in $w'W_v$ and $l(w)=l(w')+l(w_1)$. We have $A=w_2(A_v^-)$ for some $w_2\in W_v$ and $\widetilde{A}=\widetilde{T}_{w,s}\widetilde{A}_v^-$. We have $$\tilde{T}_{w_1} \tilde{A} = \tilde{T}_{w_1} \tilde{T}_{w_2} \tilde{A}_v^- = \sum_{w_3 \in W_v} m_{w_1, w_2, w_3^{-1}} \tilde{T}_{w_3} \tilde{A}_v^- = \sum_{w_3 \in W_v} m_{w_1, w_2, w_3^{-1}} \widetilde{W_3(A_v^-)}$$ and $m_{w_1, w_2, w_3^{-1}}$ has degree at most $l(w_3)$ in ξ , (see 7.4). For a fixed w_3 , let $C = w_3(A_v^-)$, and let $s_k \cdots s_2 s_1$ be a reduced expression for w', $(s_i \in S)$. It is clear from (7.6.1)
that $$\tilde{T}_{w'}\tilde{C} = \sum_{I} (q^{1/2} - q^{-1/2})^{p_I} \tilde{C}_{I}$$ where I ranges over all subsets $i_1 < i_2 < \cdots < i_{n_I}$ of $\{1, 2, \cdots, k\}$ such that $$s_{i_t} \cdots \hat{s}_{i_{t-1}} \cdots \hat{s}_{i_2} \cdots \hat{s}_{i_1} \cdots s_{i}(C) < \hat{s}_{i_t} \cdots \hat{s}_{i_{t-1}} \cdots \hat{s}_{i_1} \cdots s_{i}(C)$$ for $t=1, \dots, p_I$, and $C_I = s_k \dots \hat{s}_{i_p} \dots \hat{s}_{i_1} \dots s_i(C)$, $p=p_I$. According to $[L_1, 4.3]$ we have $p_I = |I| \le \nu - l(w_3)$. Hence $$\begin{split} \tilde{T}_{w}\tilde{A} &= \tilde{T}_{w'}\tilde{T}_{w_{1}}\tilde{A} = \sum_{w_{3} \in W_{v}} m_{w_{1}, w_{2}, w_{3}^{-1}} \tilde{T}_{w'}(\widetilde{w_{3}A_{v}^{-}}) \\ &= \sum_{w_{3}} m_{w_{1}, w_{2}, w_{3}^{-1}} \xi^{p_{I}} \tilde{C}_{I} \end{split}$$ with $\deg_{\xi}(m_{w_1, w_2, w_3^{-1}}\xi^{p_I}) \leq \deg(m_{w_1, w_2, w_3^{-1}}) + p_I \leq l(w_3) + \nu - l(w_3) = \nu$. The lemma is proved. **Lemma 7.8.** Given $y \in W$, there exists an alcove A such that $\widetilde{T}_y \widetilde{A} = \widetilde{yA}$. *Proof.* Let v be a special point in E. Write $y = y' \cdot y_1$ with $y_1 \in W_v$ and y' of minimal length in $y'W_v$. Let $A = (y_1^{-1}W_v)A_v^{-1}$. Then $y_1A = A_v^{+1}$, $\delta(y_1A) = \delta(A) + l(y_1)$ and $\delta(y'A_v^{+1}) = \delta(A_v^{+1}) + l(y')$ ([L₁, 3.6]) hence A has the required property. **7.9 Proof of Theorem 7.2.** Given $x, y \in W$, we select A as in Lemma 7.8. Then $$\begin{split} \widetilde{T}_{x}\widetilde{T}_{y}\widetilde{A} &= \widetilde{T}_{x}\widetilde{y}\widetilde{A} = \sum_{B \in X} M_{x,y,A,B}\widetilde{B} = \sum_{z \in W} m_{x,y,z-1}\widetilde{T}_{z}\widetilde{A} \\ &= \sum_{z,B} m_{x,y,z-1}M_{z,A,B}\widetilde{B} \end{split}$$ hence $$\sum_{z \in W} m_{x,y,z-1} M_{z,A,B} = M_{x,y,A,B}$$ for any $B \in X$. By Lemma 7.7, $M_{x,y,A,B} \in \mathbb{Z}[\xi]$ has degree $\leq \nu$. Since $m_{x,y,z-1} \cdot M_{z,A,B} \in \mathbb{Z}[\xi]$ have ≥ 0 coefficients it follows that $m_{x,y,z-1} \cdot M_{z,A,B}$ has degree $\leq \nu$ in the variable ξ , for any z, B. We take B = zA; then $M_{z,A,B}$ is $\neq 0$ (its value for $\xi = 0$ is equal to 1). It follows that $m_{x,y,z-1}$ has degree $\leq \nu$ in ξ for any $z \in W$. This completes the proof. For future reference we state **Corollary 7.10.** For any $x, y, z \in W$, the elements $q^{\nu/2}\tau(\tilde{T}_x\tilde{T}_y\tilde{T}_z)$, $q^{\nu/2}\tau(\tilde{T}_x\tilde{T}_yD_z)$ are in \mathscr{A}^+ and have the same constant term. *Proof.* The fact that they are in \mathcal{A}^+ is just a reformulation of Theorem 7.2 and Corollary 7.3. Let us write $$D_z = \widetilde{T}_z + \sum_{\substack{z' \\ z' > z}} \alpha_{z'} \widetilde{T}_{z'} \in \widehat{H}, \quad (\alpha_{z'} \in q^{1/2} \mathscr{A}^+).$$ It remains to prove that $$q^{\nu/2} \sum_{\substack{z' \\ z' > z}} \alpha_{z'} \tau(\widetilde{T}_x \widetilde{T}_y \widetilde{T}_{z'}) \in q^{1/2} \mathcal{A}^+.$$ (Note that all but finite terms in the sum are zero.) But this follows from $\alpha_{z'} \in q^{1/2} \mathscr{A}^+$ and from $q^{\nu/2} \tau(\tilde{T}_x \tilde{T}_y \tilde{T}_{z'}) \in \mathscr{A}^+$. The corollary is proved. ## § 8. The subset $W_{(\nu)}$ of an affine Weyl group - **8.1.** In this section, we preserve the notations from the previous section. Let $W_{(\nu)} = \{w \in W \mid a(w) = \nu\}$. Consider an element w in our affine Weyl group with the following property: there exists a special point $v \in E$ and a decomposition $w = w'w_vw''$ of w such that $l(w) = l(w') + l(w_v) + l(w'')$. (Recall that w_v is the longest element in W_v .) By 2.4, we have $a(w) \ge \nu$, and by 7.3, we have $a(w) \le \nu$. Hence $w \in W_{(\nu)}$. - **8.2.** This argument shows that almost all elements of W are in $W_{(v)}$. (More precisely, let B be a large ball in E with center v (a fixed special point) and let $B_{(v)}$ be the set of points of B which belong to an alcove wA_v^- ($w \in W_{(v)}$). Then $\operatorname{vol}(B_{(v)})/\operatorname{vol}(B)$ tends to 1 when the radius of B tends to ∞ .) **Proposition 8.3.** (a) If $$x, y, z \in W_{(\nu)}$$ then $c_{x,y,z} = c_{y,z,x} = c_{z,x,y}$. (b) If $x, y \in W$, $z \in W_{(\nu)}$ and $c_{x,y,z} \neq 0$, then $x \in W_{(\nu)}$ and $y \in W_{(\nu)}$. - *Proof.* (a) By 7.10, $c_{x,y,z}$ is equal to the constant term of $q^{\nu/2}\tau(\tilde{T}_x\tilde{T}_y\tilde{T}_z)$. It is therefore sufficient to check that $q^{\nu/2}\tau(\tilde{T}_x\tilde{T}_y\tilde{T}_z)$ is invariant under cyclic permutations of x, y, z. This follows from (1.4.2). - (b) Our assumptions and 7.10 imply that $q^{\nu/2}\tau(\tilde{T}_x\tilde{T}_y\tilde{T}_z)$ has non-zero constant term. If follows that $q^{\nu/2}\tau(\tilde{T}_y\tilde{T}_z\tilde{T}_x)$ has non-zero constant term. Using again 7.10, it follows that $q^{\nu/2}\tau(\tilde{T}_y\tilde{T}_zD_x)$ has non-zero constant term, hence $a(x) \ge \nu$. On the other hand, $a(x) \le \nu$ by 7.3. Thus $a(x) = \nu$. The proof of the equality $a(y) = \nu$ is similar. - Corollary 8.4. (a) Let $x, y, z \in W_{(\nu)}$ be such that $c_{x,y,z} \neq 0$. Then $x \underset{L}{\sim} y^{-1}, y \underset{L}{\sim} z^{-1}, z \underset{L}{\sim} x^{-1}$. - (b) If $z, z' \in W_{(\nu)}$ and $z' \leq z$, then $z' \sim z$. - (c) For any $y \in W_{(v)}$ there exists $x \in W_{(v)}$ such that $c_{x,y,y-1} \neq 0$. - (d) For any $y \in W_{(\nu)}$, we have $l(y) \ge \nu$. *Proof.* The proof is the same as that of 6.3, once 8.3 is known. Corollary 8.5. Let v be a special point in E. The set $$\Gamma_{v} = \{ w \in W | l(w) = l(ww_{v}) + l(w_{v}) \}$$ is a left cell in W. *Proof.* The function $w \mapsto \mathcal{R}(w)$ from W to the set of subsets of S is constant on left cells, cf. (4.4.1). The set Γ_v is one particular fibre of this function, hence it is a union of left cells. Note also that by the discussion in 8.1, we have $\Gamma_v \subset W_{(v)}$. We shall prove by induction on l(w) that $w \sim w_v$ for any $w \in \Gamma_v$. The induction starts with the case $l(w) = \nu$; in this case the result is clear since $w = w_v$. Assume now that $l(w) \geq \nu + 1$. We can find $s \in S$ such that w = sw', $w' \in \Gamma_v$, l(w) = l(w') + 1. We have clearly $w \leq w'$. As $w, w' \in \Gamma_v$ $\subset W_{(\nu)}$, we may apply 8.4(b) and conclude that $w \sim w'$. By the induction hypothesis, we have $w' \sim w_v$. It follows that $w \sim w_v$. Thus, we have proved that $w \sim w_v$ for all $w \in \Gamma_v$, hence that Γ_v is exactly one left cell. ### \S 9. Construction of *n*-tempered representations **9.1.** In this section, (W, S) denotes again an irreducible affine Weyl group. Given a commutative ring R, and an integer $i \ge 0$ we define E_R^i to be the free R-module with basis (e_w) , $w \in W_{(i)} = \{w \in W | \mathbf{a}(w) = i\}$. Similarly, we define $E_R^{\ge i}$ to be the free R-module with basis (e_w) , $w \in W_{(i)} \cup W_{(i+1)} \cup \cdots$. If $\phi \colon \mathscr{A} \to R$ is a ring homomorphism, we denote by H_{ϕ} the R-algebra obtained from H by extension of scalars, via ϕ . The elements \tilde{T}_w give rise to elements of H_{ϕ} denoted in the same way: \tilde{T}_w . The rule $$\widetilde{T}_{s}e_{w} = \begin{cases} -e_{w}, & \text{if } sw < w \\ \phi(q^{1/2})e_{w} + \sum\limits_{\substack{y=w \\ sy < y}} \widetilde{\mu}(y, w)e_{y}, & \text{if } sw > w \end{cases} (s \in S, w \in W, a(w) \ge i)$$ makes $E_R^{\geq i}$ into a left H_{ϕ} -module. (For each y in the sum, we have automatically $a(y) \ge i$, (see 5.4).) Similarly, if $\psi \colon \mathscr{A} \to R$ is a ring homomorphism, the rule $$e_{w}\widetilde{T}_{s} = \begin{cases} -e_{w}, & \text{if } ws < w \\ \psi(q^{1/2})e_{w} + \sum\limits_{\substack{y=w \\ y \le y}} \widetilde{\mu}(y, w)e_{y}, & \text{if } ws > w \end{cases} \quad (s \in S, w \in W, \boldsymbol{a}(w) \ge i)$$ makes $E_R^{\geq i}$ into a right H_{ψ} -module. The left H_{ϕ} -module structure on $E_R^{\geq i}$ doesn't commute, in general, with the right H_{ψ} -module structure. Since $E_R^{\geq i+1}$ is a left H_{ϕ} -submodule of $E_R^{\geq i}$ and a right H_{ψ} -module, we may regard $E_R^i = E_R^{\geq i}/E_R^{\geq i+1}$ in a natural way both as a left H_{ϕ} -module and a right H_{ψ} -module. **Theorem 9.2.** The left H_{ϕ} -module structure on E_R^i commutes with the right H_{ψ} -module structure on E_R^i . *Proof.* It is enough to prove the following statement. Let $w \in W_{(i)}$, $s, s' \in S$, and consider the basis element e_w of $E_R^{\geq i}$. Then $$(9.2.1) (\tilde{T}_{s}e_{n})\tilde{T}_{s'} - \tilde{T}_{s}(e_{n}\tilde{T}_{s'})$$ is in $E_R^{\geq i+1}$. (Here \tilde{T}_s is in H_{ϕ} and $\tilde{T}_{s'}$ is in H_{ψ} .) A simple computation (compare $[L_2, 2]$) shows that (9.2.1) is zero unless $s \notin \mathcal{L}(w)$ and $s' \notin \mathcal{R}(w)$ in which case it is an R-linear combination of elements $e_{w'}$ ($w' \in W$) such that w'-w, $s \in \mathcal{L}(w')$, $s' \in \mathcal{R}(w')$. By 5.5, (which is applicable since $a(w) \leq \nu < \infty$) all these elements w' satisfy $a(w') \geq i+1$. Hence (9.2.1) is in $E_R^{\geq i+1}$ and the theorem is proved. - **9.3.** From now on, we assume that $\psi \colon \mathscr{A} \to R$ is the ring homomorphism such that $\psi(q^{1/2}) = 1$; in this case, H_{ψ} is the group algebra R[W] of W over R; its basis \tilde{T}_w becomes the standard basis of the group a lgebra. If $i \geq 0$, then E_R^i is a right R[W]-module. Let V be a right R[W]-module. We associate to V and $i \geq 0$ the R-module $\hat{V}_R^i = (E_R^i \otimes V)_W$ (= space of W-coinvariants on $E_R^i \otimes V$); here W acts on $E_R^i \otimes V$ by $(\varepsilon \otimes v)w = (\varepsilon w) \otimes (vw)$. With these definitions, we have - **Lemma 9.4.** Assume that R is noetherian and that V is finitely generated as an
R-module. Then \hat{V}_R^i is finitely generated as an R-module. *Proof.* Let T be the group of translations in W. Then \hat{V}_R^i is a quotient of the space $(E_R^i \underset{R}{\otimes} V)_T$ of T-coinvariants, which is a quotient of $(E_R^{\geq i} \underset{R}{\otimes} V)_T$. Thus it is enough to show that $E_R^{\geq i} \underset{R}{\otimes} V$ is finitely generated as an R[T]-module. This is an R[T]-submodule of $E_R^{\geq 0} \otimes_R V$. Since R[T] is a noetherian ring it is enough to show that $E_R^{\geq 0} \otimes_R V$ is a finitely generated R[T]-module. This is clear, since $E_R^{\geq 0}$ is a free R[T]-module of finite rank (equal to the index of T in W). - 9.5. Assume now that $\phi \colon \mathscr{A} \to R$ is a ring homomorphism. Then, as we have seen in 9.1, E_R^i is a left H_{ϕ} -module. It follows that, if V is a right R[W]-module, then $E_R^i \otimes V$ is a left H_{ϕ} -module: $h(\varepsilon \otimes v) = (h\varepsilon) \otimes v$, $(h \in H_{\phi}, \varepsilon \in E_R^i, v \in V)$. By 9.2 this left H_{ϕ} -module structure commutes with the right R[W]-module structure, hence the space \hat{V}_R^i of W-coinvariant s inherits a left H_{ϕ} -module structure. - **9.6.** In 9.6–9.7 we shall assume that R is the quotient field of a discrete valuation ring \mathcal{O} and that $\phi: \mathcal{A} \to R$ is a ring homomorphism such that $\phi(q^{1/2}) \in \mathcal{O}$. - (9.6.1) A left H_{ϕ} -module M is said to be n-tempered, $(n \in \mathbb{N})$, if it is finite dimensional as an R-vector space and if there exists an \mathcal{O} -lattice \mathcal{L} in M such that $\phi(q^{n/2})\widetilde{T}_w$ maps \mathcal{L} into itself for any $w \in W$. (Here, an \mathcal{O} -lattice means a finitely generated \mathcal{O} -submodule of M which generates M as an R-vector space.) Let ω be a translation in $T \subset W$ such that $l(x\omega) = l(x) + l(\omega)$ for all $x \in W_v$ (for a fixed special point $v \in E$). It is known that for any integer $j \geq 0$, we have $l(\omega^j) = jl(\omega)$. It follows that $\widetilde{T}_{\omega^j} = (\widetilde{T}_{\omega})^j$ for all $j \geq 0$. If M is an n-tempered H_{ϕ} -module and λ is an eigenvalue of $\widetilde{T}_{\omega} : M \to M$ (in an extension of R) then λ is integral over \emptyset . (This justifies the name "tempered"; in the usual definition of tempered representations (over \mathbb{C}) one assumes that λ has always absolute value ≤ 1 .) To prove this, we observe that $\phi(q^{n/2})\widetilde{T}_{\omega}^j$ preserves the lattice \mathscr{L} for all $j \geq 0$. Hence $\phi(q^{n/2})\lambda^j$ is integral over \emptyset for all $j \geq 0$; hence λ is integral over \emptyset . **Theorem 9.7.** Let V_0 be a right $\mathcal{O}[W]$ -module which is free of finite rank as an \mathcal{O} -module and let $V = V_0 \otimes R$ be the corresponding right R[W]-module. Then for any $n \geq 0$, the left H_{ϕ} -module \hat{V}_R^n (see 9.5) is n-tempered. *Proof.* By 9.4, the \mathscr{O} -module $(\hat{V}_0)^i_{\sigma} = (E^i_{\sigma} \otimes V_0)_w$ is finitely generated and the R-module $\hat{V}^i_R = (E^i_R \otimes V)_w$ is finitely generated. It is clear that $(\hat{V}_0)^i_{\sigma} \otimes R = \hat{V}^i_R$ as an R-module. Hence the image of $(\hat{V}_0)^i_{\sigma}$ in \hat{V}^i_R is an \mathscr{O} -lattice \mathscr{L} , which is generated (as an \mathscr{O} -module) by the images of the elements $e_w \otimes v \in E_0^i \otimes V_0$. For any $y \in W$, and any $w \in W_{(i)}$, we have $$q^{n/2} \tilde{T}_y C_w \in \sum_{\substack{w' \\ a(w') = n}} \mathcal{A}^+ \cdot C_w + \sum_{\substack{w' \\ a(w') > n}} \mathcal{A} \cdot C_{w'}$$ (identity in H), by the definition of the a-function. Hence, we have $$\phi(q^{n/2})\tilde{T}_y e_w \in \sum_{\substack{w'\\ \boldsymbol{\alpha}(w') = n}} \mathcal{O} \cdot e_{w'} + \sum_{\substack{w'\\ \boldsymbol{\alpha}(w') > n}} Re_{w'}$$ (identity in $E_R^{\geq n}$) and, therefore, $$\phi(q^{n/2})\widetilde{T}_y e_w \in \sum_{\substack{w' \\ a(w') = n}} \mathcal{O} \cdot e_w,$$ (identity in E_R^n). This shows that \mathcal{L} is stable under $\phi(q^{n/2})\tilde{T}_y$ for all $y \in W$. The theorem is proved. - **9.8.** Remark. The same proof shows that in the case where the set $W_{(n)}$ is finite, the H_{ϕ} -module E_R^n itself is *n*-tempered. - **9.9.** In 9.9–9.11 we shall assume that R is an algebraically closed field of characteristic zero and $\phi: \mathscr{A} \to R$ is a ring homomorphism such that $\phi(q^{1/2})$ is not a root of 1 in R. Let V be an irreducible right R[W]-module. The sequence of canonical surjective maps $$E_R^{\geq 0} \longrightarrow E_R^{\geq 0}/E_R^{\geq \nu} \longrightarrow E_R^{\geq 0}/E_R^{\geq \nu-1} \longrightarrow \cdots \longrightarrow E_R^{\geq 0}/E_R^{\geq 1} \longrightarrow E_R^{\geq 0}/E_R^{\geq 0} = 0$$ gives rise to a sequence of surjective maps $$(9.9.1) \qquad (E_R^{\geq 0} \otimes V)_w \longrightarrow ((E_R^{\geq 0}/E_R^{\geq v}) \otimes V)_w \\ \longrightarrow \cdots \longrightarrow ((E_R^{\geq 0}/E_R^{\geq 1}) \otimes V)_w \longrightarrow ((E_R^{\geq 0}/E_R^{\geq 0}) \otimes V)_w = 0$$ (W-coinvariants are taken with respect to the right R[W]-module structure.) Each of the R-modules in this sequence is a left R[W]-module since $E_R^{\geq i}$ is a left R[W]-module (replacing temporarily ϕ by the homomorphism ψ as in 9.3. The first R[W]-module in the sequence (9.9.1) is irreducible, since V is irreducible and $E_R^{\geq 0}$ is the two-sided regular representation of W. The last R[W]-module in (9.9.1) is zero. Since all maps in (9.9.1) are surjective maps of left R[W]-modules, it follows that there is a unique integer n, $0 \leq n \leq \nu$ such that the map α_i in the natural exact sequence $$((E_R^{\geq i}/E_R^{\geq i+1}) \otimes V)_w \longrightarrow ((E_R^{\geq 0}/E_R^{\geq i+1}) \underset{R}{\otimes} V)_w \xrightarrow{\alpha_i} (E_R^{\geq 0}/E_R^{\geq i}) \underset{R}{\otimes} V)_w \longrightarrow 0$$ is an isomorphism $(\neq 0)$ for $i \geq n+1$ and is zero for $i \leq n$. It follows for this n, the natural map $$\hat{V}_{R}^{n} = ((E_{R}^{\geq n}/E_{R}^{\geq n+1}) \underset{R}{\otimes} V)_{W} \longrightarrow ((E_{R}^{\geq 0}/E_{R}^{\geq n+1}) \underset{R}{\otimes} V)_{W}$$ is surjective and $((E_R^{\geq 0}/E_R^{\geq n+1}) \underset{R}{\otimes} V)_w \approx (E_R^{\geq 0} \underset{R}{\otimes} V)_w$. Thus, we have associated to V an integer $n \geq 0$ such that \hat{V}_R^n is non-zero (indeed $\dim_R \hat{V}_R^n \geq \dim_R V$). We shall denote this \hat{V}_R^n simply as \hat{V} . It is a left H_ϕ -module (see 9.5). The integer n just defined will be denoted a_V . #### 9.10. We shall now state a number of conjectures. **Conjecture A.** If V is an irreducible right R[W]-module, then the left H_{ϕ} -module \hat{V} (see 9.9) has a unique irreducible quotient \tilde{V} . All other composition factors of \hat{V} are of form \tilde{V}' where V' are irreducible R[W]-modules such that a_v , a_v . The correspondence $V \rightarrow \tilde{V}$ is a bijection between the set of isomorphism classes of irreducible right R[W]-modules and the set of isomorphism classes of irreducible left a_v -modules. **Conjecture B.** For any x, y, z in the affine Weyl group W, we have $c_{x,y,z} = c_{y,z,x} = c_{z,x,y}$ (see 6.1). This would imply that all statements 6.3(a) to (f) hold for affine Weyl groups. It would also imply the following statement. (9.10.1) W is a union of finitely many left cells (hence of finitely many two-sided cells). We now show how (9.10.1) can be deduced from the statement 6.3(b) for the affine Weyl group W. For each right cell Γ contained in $W_{(i)}$, the R-subspace E_R^r of E_R^i spanned by the $e_w(w \in \Gamma)$ is a right R[W]-submodule of E_R^i ; this follows from the assumption 6.3(b). Hence E_R^i is direct sum of its right R[W]-submodules E_R^r for the various right cells Γ in $W_{(i)}$. If T is the group of translations in W, then R[T] is a noetherian ring, hence E_R^i is a finitely generated right R[T]-module (as a subquotient of $E_R^{>0}$), hence also finitely generated right R[W]-module. It follows that there can be only finitely many summands E_R^r in E_R^i . Hence $W_{(i)}$ is a union of finitely many right cells. Hence $W = \bigcup_{0 \le i \le \nu} W_{(i)}$ is a union of finitely many right cells and (9.10.1) follows. This proof shows also that (assuming Conjecture B), for any irreducible right R[W]-module V, the corresponding H_{δ} -module \hat{V} has a canonical direct sum decomposition (as an R-vector space): $\hat{V} = \bigoplus_{\Gamma} \hat{V}^{\Gamma}$ where Γ runs through the right cells in $W_{(..)}$, $(n=a_v)$, and $$\hat{V}^{\Gamma} = (E_R^{\Gamma} \otimes V)_W.$$ **Conjecture C.** If V is as above, then the union of all right cells $\Gamma \subset W_{(n)}$ such that $\hat{V}^{\Gamma} \neq 0$ (see (9.10.2)) is contained in a single two-sided cell $C = \mathcal{C}_{V}$. Now let G be a simple (adjoint) algebraic group over R which has Hom (T, R^*) as a maximal torus and whose Weyl group is isomorphic to W/T (the action of the Weyl group of G on the maximal torus being that induced by the action of W/T on T by conjugation.) Using Springer's correspondence between Weyl group representations and unipotent classes, S. Kato [Kt] has attached to each irreducible R[W]-module V a conjugacy class in G. (All classes in G arise from some V.) Let g_v be an element in this class and let u_v be the unipotent part of g_v . (For example, when V is a generic representation or the sign representation of W than $u_v = 1$; if V is the unit representation of W, then u_v is a regular unipotent element in G.) **Conjecture D.** Given two irreducible right R[W]-modules V, V', the following two conditions are
equivalent: (a) the two-sided \mathcal{C}_{V} , $\mathcal{C}_{V'}$ of W (see Conjecture C) satisfy $\mathcal{C}_{V} \leq_{\mathcal{C}_{V'}} \mathcal{C}_{V'}$, (b) $u_{V'}$ is contained in the closure of the conjugacy class of $u_{V'}$ in G. Hence there is a canonical one-to-one correspondence $\mathcal{C}_{V} \leftrightarrow u_{V'}$ between the set of two-sided cells in $W_{(i)}$ and the set of unipotent classes in G. If \mathcal{C} is a two-sided cell in $W_{(i)}$ and u is a corresponding unipotent element in G, then i is equal to the dimension of the variety \mathcal{B}_{u} of Borel subgroups of G containing u. **Conjecture E.** Let g be an element of G and let ρ be an irreducible representation of the finite group $A(g) = Z_G(g)/Z_G^0(g)$ which appears in the permutation representation of A(g) on the top homology of the variety \mathcal{B}_g of Borel subgroups in G containing g. Let $V_{g,\rho}$ be the irreducible R[W]-module associated in [Kt, 4.1] to (g, ρ) . Then $\dim \hat{V}_{g,\rho}$ is equal to the sum $$\sum_{i} \dim (H_{2i}(\mathscr{B}_g) \otimes \rho)^{A(g)}$$ (space of A(g)-invariants). More precisely, the R[W]-module obtained from $\hat{V}_{g,\rho}$ by letting $q^{1/2} \rightarrow 1$ is equal (in the Grothendieck group of R[W]-modules to the R[W]-module $\bigoplus (H_{2i}(\mathcal{B}_g) \otimes \rho)^{A(g)}$, (see [Kt, 3.2]). Let T^{++} be the semigroup of translations ω in $T \subset W$ satisfying the equality $l(x\omega) = l(x) + l(\omega)$ for all $x \in W_V$ (for a fixed special point v). With the notations in Conjecture E, we consider a complete flag of subspaces in $\hat{V}_{g,\rho}$ stable under the commutative semigroup of transformations $\tilde{T}_{\omega}(\omega \in T^{++})$. Given any (one dimensional) subquotient of this flag, there is a unique homomorphism $\alpha \colon T \to R^*$, such that \tilde{T}_{ω} acts on the subquotient as scalar multiplication by $\alpha(\omega)$ for all $\omega \in T^{++}$. Let s_{α} be the corresponding element of the maximal torus of G, (see Conjecture D). The following conjecture relates s_{α} to the Jordan decomposition $g = g_s \cdot g_u$ of g in G. (Here g_s is the semisimple part of g and g_u is the unipotent part.) Let $\chi \colon \mathrm{SL}(2,\mathbf{R}) \to Z_G^0(g_s)$ be a homomorphism such that $g_u = \chi \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. **Conjecture F.** The elements s_{α} and $g_{s} \cdot \chi \begin{pmatrix} \phi(q^{1/2}) & 0 \\ 0 & \phi(q^{-1/2}) \end{pmatrix}$ are conjugate in G. #### § 10. Left cells and dihedral subgroups - 10.1. In this section we shall give some methods which allow in certain cases to show that two elements in a Coxeter group are in the same left cell, or to construct new left cells from a given one. This method, which was inspired by Vogan's use of the "generalized τ -invariant" in [V], has been used in [KL₁, § 5] to describe the left cells of the symmetric groups. We shall generally omit proofs since they are similar to those in [KL₁, § 4]. - 10.2. Given the Coxeter group (W, S), we fix a subset $S' \subset S$ consisting of two elements s, t such that st has order $m < \infty$ and we denote by W' the subgroup generated by s, t. Each coset W'w can be decomposed into four parts: one consists of the unique element x of minimal length, one consists of the unique element y of maximal length, one consists of the (m-1) elements sx, tsx, stsx, \cdots and one consists of the (m-1) elements tx, tstx, \cdots . The last two subsets are called strings. We shall regard them as sequences (as above) rather than subsets. - 10.3. We shall extend the definition of the function $\tilde{\mu}(y, w)$ (see § 4): in the case where two elements $y, w \in W$ do not satisfy y-w, we set $\tilde{\mu}(y, w) = 0$. - **10.4.** We assume that we are given two strings x_1, x_2, \dots, x_{m-1} and y_1, y_2, \dots, y_{m-1} (with respect to S'). We set $$a_{ij} = \begin{cases} \tilde{\mu}(x_i, y_j), & \text{if } S' \cap \mathcal{L}(x_i) = S' \cap \mathcal{L}(y_j) \\ 0, & \text{otherwise.} \end{cases}$$ The integers a_{ij} satisfy a number of identities. - (10.4.1) Assume first that m=3. Then: $a_{11}=a_{22}$ and $a_{12}=a_{21}$. - (10.4.2) Assume next that m=4. Then: $a_{11}=a_{33}$, $a_{13}=a_{31}$, $a_{22}=a_{11}+a_{13}$, $a_{12}=a_{21}=a_{23}=a_{32}$. - (10.4.3) Finally, assume that m=6. Then: $a_{11}=a_{55}$, $a_{13}=a_{31}=a_{35}=a_{53}$, $a_{15}=a_{51}$, $a_{22}=a_{44}=a_{11}+a_{13}$, $a_{33}=a_{11}+a_{13}+a_{15}$, $a_{24}=a_{42}=a_{13}+a_{15}$, $a_{12}=a_{21}=a_{45}=a_{54}$, $a_{14}=a_{41}=a_{25}=a_{52}$, $a_{23}=a_{32}=a_{34}=a_{43}=a_{12}+a_{14}$. (In the case m=3, this is proved in [KL₁, § 4]. In the other cases, the proof is similar. An analogous result holds for arbitrary m.) - **10.5.** Note that $\{x_1, \dots, x_{m-1}\}$ is contained in a left cell Γ . (Indeed, $x_{i-1}-x_i$ and $\mathcal{L}(x_{i-1})\not\subset \mathcal{L}(x_i)\not\subset \mathcal{L}(x_{i-1})$, hence $x_{i-1} \sim x_i$ for $i=2,3,\cdots,m-1$.) Similarly, $\{y_1, \dots, y_{m-1}\}$ is contained in a left cell Γ' . In certain cases it is possible to show using (10.4.1), (10.4.2) or (10.4.3) that $\Gamma = \Gamma'$. Assume for example that we know that for some i_0, j_0 we have $x_{i_0} = s_1 y_{j_0}$, $s_1 \in \mathcal{L}(x_{i_0}) \mathcal{L}(y_{j_0})$. Then $a_{i_0,j_0} = 1$ and $x_{i_0} \leq y_{j_0}$. Using then (10.4.1), (10.4.2) or (10.4.3) we can deduce that several other $a_{i,j}$ are $\neq 0$. (In the cases m=4 or 6, one gets stronger conclusions if one assumes that (W,S) is crystallographic since then $a_{i,j} \geq 0$ and therefore $a_{i,j} \neq 0$, $a_{i'j'} \neq 0$ imply $a_{i,j} + a_{i'j'} \neq 0$.) It may happen that for one of these i,j for which $a_{i,j} \neq 0$ was have $\mathcal{L}(y_j) \not\subset \mathcal{L}(x_i)$; we then have $y_j \leq x_i$ and it follows that $\Gamma = \Gamma'$. - 10.6. The identities (10.4.1), (10.4.2), (10.4.3) can also be used in a different way. Let Γ be a subset in W such that for any $w \in \Gamma$, $\mathcal{R}(w) \cap S'$ consists of a single element; an equivalent assumption is that for any $w \in \Gamma$, the element w^{-1} is contained in a string $\sigma_{w^{-1}}$ (with respect to S'). We then define $\Gamma^* = (\bigcup_{w \in \Gamma} (\sigma_{w^{-1}})^{-1}) \Gamma$. In the case m=4 or 6, we define \tilde{I} as follows. For each $w \in \Gamma$, there is a well defined number i, $1 \le i \le m-1$ such that w^{-1} is the i^{th} element of the string $\sigma_{w^{-1}}$; we define \tilde{w} to be the element such that \tilde{w}^{-1} is the $(m-i)^{\text{th}}$ element of the string $\sigma_{w^{-1}}$. Then \tilde{I} is the set of all \tilde{w} , where w runs through Γ . **Proposition 10.7.** Assume that m=3 or that (W, S) is crystallographic, and let Γ , Γ^* be as above. If Γ is a union of left cells, then so is Γ^* . More precisely, if Γ is left cell, then Γ^* is a union of at most (m-2) left cells and, if m=4 or 6, then $\tilde{\Gamma}$ is a left cell. In the case m=3, this is proved in [KL₁, 4.3]. The proof in the other cases is similar. It is based on (10.4.2), (10.4.3). The hypothesis that (W, S) is crystallographic is used in the same way as in 10.5. # § 11. Left cells in the affine Weyl groups $\widetilde{A}_{2},\ \widetilde{B}_{2},\ \widetilde{G}_{2}$ - **11.1.** In this section, (W, S) is an affine Weyl group of type \widetilde{A}_2 , \widetilde{B}_2 or \widetilde{G}_2 . We denote the elements of S by s_1 , s_2 , s_3 . In the case \widetilde{B}_2 , we assume $(s_1s_3)^4 = (s_2s_3)^4 = (s_1s_2)^2 = 1$. In the case \widetilde{G}_2 , we assume that $(s_1s_3)^3 = (s_2s_3)^6 = (s_1s_2)^2 = 1$. For any subset J of $\{1, 2, 3\}$ we denote by W^J the set of all $w \in W$ such that R(w) consists of the s_1 , $(j \in J)$. - 11.2. We shall define a partition of W into finitely many subsets, as follows. $$Type \ \ \widetilde{A}_2 \colon \ A_{13} = W^{13}, \ A_{12} = W^{12}, \ A_{23} = W^{23}, \ A_2 = A_{13}S_2, \ A_3 = A_{12}S_3, \\ A_1 = A_{23}S_1, \ B_1 = W^1 - A_1, \ B_2 = W^2 - A_2, \ B_3 = W^3 - A_3, \\ C_{\phi} = W^{\phi}.$$ $$Type \ \ \widetilde{B}_2 \colon \ A_{13} = W^{13}, \ A_{12} = A_{13}S_2, \ A_1 = A_3S_1, \ A_{23} = W^{23}, \ A'_{12} = A_{23}S_1, \\ A'_3 = A'_{12}S_3, \ A_2 = A'_3S_2, \ B_{12} = W^{12} - (A_{12} \cup A'_{12}), \ B_3 = B_{12}S_3, \\ B_1 = B_3S_1, \ B_2 = B_3S_2, \ C_1 = W^1 - (A_1 \cup B_1), \ C_2 = W^2 - (A_2 \cup B_2), \\ C_3 = W^3 - (A_3 \cup A'_3 \cup B_3), \ D_{\phi} = W^{\phi}.$$ $$Type \ \ \widetilde{G}_2 \colon \ A_{23} = W^{23}, \ A_{12} = A_{23}S_1, \ A'_{13} = A_{12}S_3, \ A'_{12} = A_{13}S_2, \ A'_3 = A'_{12}S_3, \ A'_2 = A'_3S_2, \\ A''_3 = A'_2S_3, \ A_1 = A''_3S_1, \ A''_{12} = A'_{13}S_2, \ A'_3 = A''_{12}S_3, \ A'_2 = A'_3S_2, \\ A''_3 = A'_2S_3, \ A_1 = A''_3S_1. \\ B_{13} = W^{13} - (A_{13} \cup A'_{13}), \ B_{12} = B_{13}S_2, \ B_3 = B_{12}S_3, \ B_2 = B_3S_2, \\ B'_3 = B_2S_3, \ B_1 = B_3S_1. \\ C_{12} = W^{12} - (A_{12} \cup A'_{12} \cup A''_{12} \cup B_{12}), \ C_3 = C_{12}S_3, \ C_2 = C_3S_2, \\ C'_3 = C_2S_3, \ C_1 = C'_3S_1, \ C'_2 = C'_3S_2. \\ D_1 = W^1 - (A_1 \cup B_1 \cup C_1), \ D_2 = W^2 - (A_2 \cup A'_2 \cup B_2 \cup C_2 \cup C'_2), \\ D_3 = W^3 - (A_3 \cup A'_3 \cup A''_3 \cup A''_3 \cup B_3 \cup B'_3 \cup C_3 \cup C'_3), \ E_4 = W^{\phi}.$$ Each of the subsets in the partition is contained in some W^J , (with J indicated as a subscript.) **Theorem 11.3.** The partition of W just described coincides with the partition of W into left cells. (I have announced this result in a lecture at the Santa Cruz conference on finite groups in 1979. The proof was based on the techniques of strings in Section 10. However, in the case of \tilde{G}_2 , there was a gap in the proof which I can now overcome, using results on the
a-function.) We shall sketch a proof. We start with the case of \tilde{G}_2 . By 8.5, A_{23} is a left cell. Using 10.7 with $\Gamma = A_{23}$, $S' = \{s_1, s_3\}$ we see that A_{12} is a left cell. Using 10.7 with $\Gamma = A_{12}$, $S' = \{s_2, s_3\}$, we see that $A_{13} \cup A'_{12} \cup A_3 \cup A_2$ is a union of at most 4 left cells. Since $w \rightarrow \mathcal{R}(w)$ is constant on left cells, each of $A_{12} \cup A'_{12}$, A_{13} , A_3 , A_2 is a union of left cells. Moreover, by 10.7 with $\Gamma = A_3$, $S' = \{s_1, s_3\}$, A'_{12} is a union of left cells. This forces each of A_{12} , A'_{12} , A_{13} , A_3 , A_2 to be a left cell. The set A'_{13} is contained in a left cell. (The proof is the same as that of 8.5 using the fact that $A'_{13} \subset W_{(\nu)}, \nu = 6$). The set B_{13} is also contained in a left cell. (This is proved easily by the technique of strings in 10.5). However, the sets A'_{13} , B_{13} cannot be contained in the same left cell. Indeed, by 8.1 the **a**-function is equal to 6 on A'_{13} . On the other hand we cannot have $a(s_1s_3)=6$ since this would imply $l(s_1s_3)\geq 6$ (see 8.4(d)), a contradiction. Since $s_1s_3 \in B_{13}$ and the **a**-function is constant on left cells, it follows that A'_{13} , B_{13} are contained in distinct left cells. Since W^{13} is a union of left cells and A_{13} is a left cell, the difference $W^{13}-A_{13}=A'_{13}\cup B_{13}$ is a union of left cells. It follows that each of A'_{13} , B_{13} is a left cell. Using 10.7 with $\Gamma = A'_{13}$, $S' = \{s_2, s_3\}$ we see that $A''_{12} \cup A'_3 \cup A'_2 \cup A''_3$ is a union of at most 4 left cells. It follows that each of A''_{12} , $A'_3 \cup A''_3$, A'_2 is a union of left cells. Moreover, by 10.7 with $\Gamma = A''_{12}$, $S' = \{s_1, s_3\}$ the set A'_3 is a union of left cells. It follows that each of A''_{12} , A'_3 , A''_3 , A''_2 is a left cell. Using 10.7 with $\Gamma = A_3''$, $S' = \{s_1, s_3\}$, we see that A_1 is a left cell. Using 10.7 with $\Gamma = B_{13}$, $S' = \{s_2, s_3\}$, we see that $B_{12} \cup B_3 \cup B_2 \cup B_3'$ is a union of at most 4 left cells. It follows that each of B_{12} , $B_3 \cup B_3'$, B_2 is a union of left cells. Using 10.7 with $\Gamma = B_{12}$, $S' = \{s_1, s_3\}$, we see that $B_{12} \cup B_3$ is a union of left cells. It follows that each of B_{12} , B_3 , B_3' , B_2 is a left cell. Using 10.7 with $\Gamma = B_3'$, $S' = \{s_1, s_3\}$ we see that B_1 is a left cell. Using the technique of strings in 10.5 one can show easily that C_{12} is contained in a left cell. Since W^{12} is a union of left cells and A_{12} , A'_{12} , A''_{12} , B_{12} are left cells it follows that C_{12} is a union of left cells, hence it is a left cell. Using 10.7 with $\Gamma = C_{12}$, $S' = \{s_1, s_3\}$ we see that C_3 is a left cell. Using 10.7 with $\Gamma = C_{12}$, $S' = \{s_2, s_3\}$ we see that $C_3 \cup C_2 \cup C'_3 \cup C'_2$ is a union of at most 4 left cells, hence $C_2 \cup C'_3 \cup C'_2$ is a union of at most 3 left cells. 10.7 shows also that $C'_2 = \tilde{C}_{12}$ is a left cell. Hence C'_3 , C_2 and C'_2 are left cells. Using now 10.7 with $\Gamma = C_3'$, $S' = \{s_1, s_3\}$, we see that C_1 is a left cell. Since W^1 , W^2 , W^3 are unions of left cells, so must be D_1 , D_2 , D_3 . Using strings, we see easily that each of D_1 , D_2 , D_3 is contained in a left cell hence each of them is a left cell. The set D_{ϕ} is clearly a left cell. This completes the proof of the Theorem in case \tilde{G}_2 . We now consider the case of \widetilde{B}_2 . By 8.5, A_{13} is a left cell. Using 10.7 with $\Gamma = A_{13}$, $S' = \{s_2, s_3\}$, we see that $A_{12} \cup A_3$ is a union of at most 2 left cells. Since $w \to \mathcal{R}(w)$ is constant on left cells, it follows that both A_{12} , A_3 are left cells. Using 10.7 with $\Gamma = A_{12}$, $S' = \{s_1, s_3\}$ we see that $A_3 \cup A_1$ is a left cell. Hence A_1 is a left cell. Since s_1 , s_2 play a symmetric role, it follows automatically that A_{23} , A'_{12} , A'_3 , A_2 are left cells. Since W^{12} is a union of left cells, we see that B_{12} is a union of left cells. Using the technique of strings 10.5, we see easily that B_{12} is contained in a left cell. Hence B_{12} is a left cell. Using 10.7 with $\Gamma = B_{12}$, $S' = \{s_1, s_3\}$, we see that $B_3 \cup B_1$ is a union of at most 2 left cells. It follows that both B_3 , B_1 must be left cells. Since s_1 , s_2 play a symmetric role, the fact that B_1 is a left cell implies that B_2 is a left cell. The sets C_1 , C_2 , C_3 are left cells by the argument used for D_1 , D_2 , D_3 in case \tilde{G}_2 . The set D_{ϕ} is clearly a left cell. Finally, we consider the case \tilde{A}_2 . By 8.5, A_{13} is a left cell. Using 10.7 with $\Gamma = A_{13}$, $S' = \{s_1, s_2\}$, we see that A_2 is a left cell. By symmetry, A_{23} , A_{12} , A_3 , A_1 are also left cells. The sets B_1 , B_2 , B_3 are left cells by the argument used for D_1 , D_2 , D_3 in case \tilde{G}_2 . The set C_{ϕ} is clearly a left cell. This completes the proof. - 11.4. Remark. I understand that recently J. Y. Shi (a student of R. W. Carter at Warwick University) has described explicitly the left cells of the affine Weyl group of type \tilde{A}_n . - 11.5. We now consider the union of all left cells in W whose name contains a fixed capital letter; we denote this union by that capital letter. (For example, for type \tilde{G}_2 , we have $C = C_{12} \cup C_3 \cup C_2 \cup C_3' \cup C_2' \cup C_1$.) Thus we have a partition into pieces: $$W=A\cup B\cup C$$ (for type \widetilde{A}_2), $W=A\cup B\cup C\cup D$ (for type \widetilde{B}_2), $W=A\cup B\cup C\cup D\cup E$ (for type \widetilde{G}_2). **Proposition 11.6.** The pieces in this partition of W are just the two-sided cells of W. We can check directly that each piece in our partition is stable under $w \rightarrow w^{-1}$ and that any left cell in a piece meets the image under $w \rightarrow w^{-1}$ of any left cell in the same piece. It follows that each piece is contained in a two-sided cell of W. The piece denoted A has the property that the a-function on it has the constant value ν ($\nu = 3, 4, 6$ for \tilde{A}_2 , \tilde{B}_2 , \tilde{G}_2), (see 8.1); all other pieces contain elements of length $<\nu$ hence the value of the **a**-function on them must be $<\nu$, (see 8.4(d)). It follows that A is a two-sided cell. The piece denoted C (respectively, D, E) for \widetilde{A}_2 (respectively, \widetilde{B}_2 , \widetilde{G}_2) is clearly a two-sided cell. The piece denoted B (respectively, C, D) for \widetilde{A}_2 (respectively, \widetilde{B}_2 , \widetilde{G}_2) is a two-sided cell by $[L_6, 3.8]$. It follows that the piece B (for type \widetilde{B}_2) is a two-sided cell and that the union $B \cup C$ (for type \widetilde{G}_2) is a union of two-sided cells. It remains to show that $B \cup C$ (for type \widetilde{G}_2) cannot be a single two-sided cell. This is shown as follows. Let $x=s_1s_3 \in B$, $y=s_1s_2s_3s_2s_1 \in C$ (for type \widetilde{G}_2). It is easy to compute $P_{x,y}=1+q$. Ir follows that x-y. We have $\mathcal{L}(x) \not\subset \mathcal{L}(y)$, $\mathcal{R}(x) \not\subset \mathcal{R}(y)$. Using now 5.5, it follows that x, y belong to distinct two-sided cells. This completes the proof. 11.7. We shall describe the left cells and two-sided cells for W of type \widetilde{A}_2 , \widetilde{B}_2 , \widetilde{C}_2 in three figures. We represent the elements of W by alcoves in E, (see 7.5): we choose a special point $v \in E$ and we attach to $w \in W$, the alcove $w \cdot A_v \subset E$. Then a left cell (or a two-sided cell) will be represented by a subset of E: the union of all closed alcoves corresponding to the elements in that cell. A two-sided cell is represented by the union of all closed alcoves of the same colour. If we remove from this union all facets of codimension ≥ 2 , the remaining set will have finitely many connected components; the closures of these components will be the subsets of E corresponding to the various left cells. #### References - [BBD] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérisque, vol. 100. - [IM] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rnig of p-adic Chevalley groups, Inst. Haute Études Sci. Publ. Math., 25 (1965), 237–280. - [KP] V. G. Kac and D. H. Peterson, Infinite flag varieties and conjugacy theorems, Proc. Natl. Acad. Sci., 80 (1983), 1778-1782. - [Kt] S. Kato, A realization of irreducible representations of affine Weyl groups, Proc. Kon. Nederl. Akad., A 86 (2) (1983), 193-201. - [KL₁] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165–184. - [KL₂] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Proc. Symp. Pure Math., vol. 36 185-203, Amer. Math. Soc. 1980. - [L₁] G. Lusztig, Hecke algebras and Jantzen's generic decomposition patterns, Adv. in Math., 37 (1980), 121-164. - [L₂] —, On a theorem of Benson and Curtis, J. Algebra, 71 (1981), 490–498. - [L₃] —, Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent. Math., **64** (1981), 490–498. - [L₄] —, Singularities, character formulas and a q-analog of weight multiplicities, Astérisque, vol. 101–102 (1983), 208–229. - [L₅] —, Characters of reductive groups over a finite field, Ann. of Math. Studies, **107** Princeton University Press, 1984. - [L₆] —, Some examples of square integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc., 277 (1983), 623-653. - [S] T. A. Springer, Quelques
applications de la cohomologie d'intersection, Sém. Bourbaki, 589, Fév. 1982. - [T] J. Tits, Résumé du cours, Annuaire du Collège de France 1981-1982. - [V] D. Vogan, A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann., 242 (1979), 209-224. Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A. Fig. 1. \tilde{A}_2 Fig. 2. \tilde{B}_2 Fig. 3. \tilde{G}_2