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(recall that z(ρ) is unique up to a multiple factor from (3.3.3) and hence propor-
tional to v) is given by mj(x, ξ) = 0 on ⌃ and the representation of p, in these
coordinates, contains the sum of m2

j . Then our expecting solution is assumed to
satisfy approximately the Hamilton system with hamiltonian p̃ obtained from p
removing the terms m2

j . We write down our Hamilton system supposing that mj

were unknowns. We look for a solution (x(s), ξ(s)) of the Hamilton system such
that ξ(s) = O(s−2), x′(s) = O(s−3) (x = (x0, x

′)) and mj(x(s), ξ(s)) = O(s−4).
To do so we repeat similar arguments in this section. We first transform thus
obtained system (mj are unknowns) to another system by the change of in-
dependent variable t = s−1 and suitable change of unknowns. The resulting
system is a coupled system of a system which has t = 0 as a singular point
of the first kind and a system which has t = 0 as a singular point of the sec-
ond kind. Here the singular point of the second kind comes from positive trace
(7.3.8). The main feature of the system is that all eigenvalues of the leading
term of the singular point of the second kind (the coefficient matrix of t−2) are
simple, pure imaginary and di↵erent from zero.

The resulting system looks like

(7.3.9)

8><
>:

�
t2

d

dt
− i⇤

�
u = −mtu + L1(t)v + Q1(t, u, v) + tR1(t, u, v) + tF1,

t
d

dt
v = −mv + Lu + L2(t)v + Q2(t, u, v) + tR2(t, u, v) + tF2

where Qj(t, u, v) and Rj(t, u, v) are C1 functions defined near (0, 0, 0) ∈ R ×
CN1 × CN2 such that (

|Qj(t, u, v)| ≤ B1j(|u|2 + |v|2),
|Rj(t, u, v)| ≤ B̃1j(|u| + |v|)

for (t, u, v) ∈ {|t| ≤ T} × {|u| ≤ CT} × {|v| ≤ CT} and L2(t) is a N2 × N2

square matrix and L1(t) and L (a constant matrix) are N1 × N2 and N2 × N1

matrices respectively which verifies

�Lj(t)�C([0,T ]), �tL′
j(t)�C([0,T ]) ≤ B.

Here ⇤ is a constant nonsingular real diagonal matrix

⇤ = diag(λ1, ..., λN1), λj ∈ R \ {0}.

Then we have

Theorem 7.3.1 If m ∈ R is sufficiently large then (7.3.9) has a solution (u, v)
such that u(0) = 0, v(0) = 0.

Chapter 8

Optimality of the Gevrey
index

8.1 Non solvability in C∞ and the Gevrey class

In this chapter we study the following model operator

(8.1.1) Pmod(x, D) = −D2
0 + 2x1D0Dn + D2

1 + x3
1D

2
n.

It is worthwhile to note that if we make the change of coordinates

yj = xj (0 ≤ j ≤ n − 1), yn = xn + x0x1

which preserves the initial plane x0 = const., the operator Pmod is written in
these coordinates as

Pmod = −D2
0 + (D1 + x0Dn)2 + (x1

√
1 + x1Dn)2 = −D2

0 + A2 + B2.

Here we have A∗ = A and B∗ = B while [D0, A] ∕= 0 and [A, B] ∕= 0.
Let us denote by p(x, ξ) the symbol of Pmod(x, D) then it is clear that

the double characteristic manifold near the double characteristic point ρ̄ =
(0, (0, ..., 0, 1)) ∈ R2(n+1) is given by

⌃ = {(x, ξ) ∈ R2(n+1) | ξ0 = 0, x1 = 0, ξ1 = 0}

and the localization of p at ρ ∈ ⌃ is given by p⇢(x, ξ) = −ξ2
0 + 2x1ξ0 + ξ2

1 . This
is just (2) in Theorem 2.3.1 with k = l = 1 where ξ1 and x1 is exchanged. Since
(x1, ξ1) �→ (ξ1,−x1) is a symplectic change of the coordinates system then we
see

Ker F 2
p (ρ) ∩ Im F 2

p (ρ) ∕= {0}, ρ ∈ ⌃.

The main feature of p is that the Hamilton flow Hp lands tangentially on ⌃.
Indeed the integral curve of Hp

ξ1 = −x2
0

4
, xn =

x5
0

8
, ξ0 = 0, ξ1 =

x3
0

8
, xj , ξj = constants, |x0| > 0
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parametrized by x0 lands on ⌃ tangentially as ±x0 ↓ 0.
We are now concerned with the Cauchy problem for Pmod.

Definition 8.1.1 We say that the Cauchy problem for Pmod is locally solvable
in γ(s) at the origin if for any Φ = (u0, u1) ∈ (γ(s)(Rn))2, there exists a neigh-
borhood UΦ of the origin such that the Cauchy problem

⇢
Pu = 0 in UΦ,

Dj
0u(0, x′) = uj(x′), j = 0, 1, x ∈ UΦ ∩ {x0 = 0}

has a solution u(x) ∈ C∞(UΦ).

We prove the next result following [7], modifying the argument there about the
existence of zeros with ”negative imaginary part” of some Stokes multiplier.

Theorem 8.1.1 If s > 5 then the Cauchy problem for Pmod is not locally solv-
able in γ(s). In particular the Cauchy problem for Pmod is not C∞ solvable.

Our strategy to prove Theorem 8.1.1 is to find a family of exact solutions U to
PmodU = 0 and apply some duality arguments.

8.2 Construction of solutions

We look for a solution to PmodU = 0 of the form

U(x) = exp(iρ5xn +
i

2
ζρx0)w(x1ρ

2), ζ ∈ C, ρ > 0.

It is clear that if w verifies

w′′(x) = (x3 + ζx − ζ2ρ−2/4)w(x)

then PmodU = 0. Taking this into account we study the following ordinary
di↵erential equation

(8.2.1) w′′(x) = (x3 + ζx + �)w(x)

where ζ, � are complex numbers and � will be thought of as small in the fi-
nal arguments. We briefly recap, for this special situation, the general theory
of subdominant solutions of the equation (8.2.1), according to the exposition
for instance in the book of Sibuya [51]. Theorem 6.1 in [51] states that the
di↵erential equation (8.2.1) has a solution

w(x; ζ, �) = Y(x; ζ, �)

such that

(i) Y(x; ζ, �) is an entire function of (x, ζ, �),
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(ii) Y(x; ζ, �) admits an asymptotic representation

Y(x; ζ, �) ∼ x−3/4
⇣
1 +

∞X
N=1

BNx−N/2
⌘

exp {−E(x; ζ)}

uniformly on each compact set in the (ζ, �) space as x goes to infinity in
any closed subsector of the open sector

| arg x| <
3π

5
moreover

E(x; ζ) =
2
5
x5/2 + ζx1/2

and BN are polynomials in (ζ, �).

We note that if we set ω = exp [i
2π

5
] and

Yk(x; ζ, �) = Y(ω−kx; ω−2kζ, ω−3k�)

where k = 0, 1, 2, 3, 4 then all the five functions Yk(x; ζ, �) solve (8.2.1). In
particular Y0(x; ζ, �) = Y(x; ζ, �). Let us denote

Y = x−3/4
⇣
1 +

∞X
N=1

BNx−N/2
⌘

exp {−E(x; ζ)}

then we have immediately

(i) Yk(x; ζ, �) is an entire function of (x, ζ, �),

(ii) Y(x; ζ, �) ∼ Y (ω−kx; ω−2kζ, ω−3k�) uniformly on each compact set in the
(ζ, �) space as x goes to infinity in any closed subsector of the open sector

| arg x − 2k

5
π| <

3π

5
.

Let Sk denote the open sector defined by | arg x − 2kπ/5| < π/5. We say that
a solution of (8.2.1) is subdominant in the sector Sk if it tends to 0 as x tends
to infinity along any direction in the sector Sk. Analogously a solution is called
dominant in the sector Sk if this solution tends to ∞ as x tends to infinity along
any direction in the sector Sk. Since

(8.2.2) Re x5/2 > 0 for x ∈ S0

and Re x5/2 < 0 for x ∈ S−1 = S4 and for x ∈ S1 the solution Y0(x; ζ, �) is
subdominant in S0 and dominant in S4 and S1. Similarly Yk(x; ζ, �) is subdom-
inant in Sk and dominant in Sk−1 and Sk+1. From (8.2.2) we conclude that
Yk+1 and Yk+2 are linearly independent. Therefore Yk is a linear combination
of those two Yk+1 and Yk+2

Yk(x; ζ, �) = Ck(ζ, �)Yk+1(x; ζ, �) + C̃k(ζ, �)Yk+2(x; ζ, �).

In the above relation the coefficients Ck, C̃k are called the Stokes multipliers
for Yk(x; ζ, �).
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Proposition 8.2.1 There exists a zero of C0(ζ, 0) with negative imaginary part.

We first summarize in the following statement some of the known and useful
facts about the Stokes multipliers for our particular equation (8.2.1). Proofs
can be found in Chapter 5 of [51].

Proposition 8.2.2 The following results hold.

(i) C0(0, 0) = 1 + ω,

(ii) C̃k(ζ, �) = −ω, for all k, � and ζ,

(iii) Ck(ζ, �) = C0(ω−2kζ, ω−3k�), for all k, �, ζ and C0(ζ, �) is an entire
function of (ζ, �),

(vi) ∂⇣C0(ζ, �)
∣∣
(⇣,✏)=(0,0)

∕= 0.

We now prove key lemmas to prove Proposition 8.2.1.

Lemma 8.2.1 Let us denote ck(ζ) = Ck(ζ, 0). Then we have

ck(ζ) + ω2ck+2(ζ)ck+3(ζ) − ω3 = 0 mod 5.

Or otherwise stated

c(ζ) + ω2c(ωζ)c(ω4ζ) − ω3 = 0, ∀ζ ∈ C

where c(ζ) = c0(ζ) = C0(ζ, 0).

Proof: For the proof, see Section 5, (27.5) in [51]. □
The next lemma is found in [52].

Lemma 8.2.2 We have

C0(ζ, �) = ω̄C0(ω̄ζ̄, ω�̄).

In particular we have c(ζ) = ω̄c(ω̄ζ̄).

Proof: Let us write a = (ζ, �) and ā = (ζ̄, �̄). Since w(x) = Y0(x̄; ā) verifies the
equation

w′′(x) = (x3 + ζx + �)w(x)

and hence w(x) = CY0(x; a) with some constant C. Checking the asymptotic
behavior of both sides as x → +∞, | arg x| < π/5 we conclude C = 1 so that
w(x) = Y0(x; a) that is

Y0(x̄; ā) = Y0(x; a).

From this we see

Y4(x; a) = Y0(ω̄x̄; ω̄2ζ̄, ω2�̄) = Y0(ω−1x̄; ω−2ζ̄, ω−3�̄) = Y1(x̄; ζ̄, �̄) = Y1(x̄; ā).
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Similarly we have Y1(x; a) = Y4(x̄; ā). Thus from Y4(x; a) = C4(a)Y0(x; a) −
ωY1(x; a) it follows that

Y1(x̄; ā) = C4(a)Y0(x̄; ā) − ω̄Y4(x̄; ā),
Y4(x̄; ā) = C4(ā)Y0(x̄; ā) − ωY1(x̄; ā).

Multiply the first identity by ω we get

Y4(x̄; ā) = ωC4(a)Y0(x̄; ā) − ωY1(x̄; ā)

which proves
C4(ζ̄, �̄) = ωC4(ζ, �).

This proves the assertion. □

Lemma 8.2.3 The Stokes multiplier C0(ζ, 0) vanishes in at least one ζ0(∕= 0).

Proof: Suppose that c(ζ) ∕= 0 for all ζ ∈ C. Then from Lemma 8.2.1 it follows
that c(ζ) ∕= ω3 for all ζ ∈ C. Since c(ζ) is an entire function by Picard’s
Little Theorem implies that c(ζ) would be constant because c(ζ) avoids two
distinct values 0 and ω3. But this contradicts (vi) of Proposition 8.2.2. Since
C0(0, 0) = 1 + ω from Proposition 8.2.2 we see that ζ0 ∕= 0. □

Lemma 8.2.4 For real ζ and � we have C0(ζ, �) ∕= 0. In particular c(ζ) ∕= 0
for real ζ.

Proof: Suppose that C0(ζ, �) = 0 for some real ζ and �. From Lemma 8.2.2 it
follows that C0(ω̄ζ̄, ω�̄) = C0(ω̄ζ, ω�) = 0 which contradicts Lemma 8.2.1. □

Lemma 8.2.5 The closed sector 3π/5 ≤ arg ζ ≤ π is zero free set of c(ζ).

Proof: Let us recall that Y0(x; ζ, 0) verifies

Y ′′
0 (x; ζ, 0) = (x3 + ζx)Y0(x; ζ, 0)

which is subdominant in | arg x| < π/5. Let us put

u(x) = Y0(α(x + 1);−3α2, 0)

where −π/5 < arg α < 0 then we have

(8.2.3) u′′(x) = (α5x3 + 3α5x2 − 2α5)u(x) = α5(x3 + 3x2 − 2)u(x).

Note that

Y0(α(x + 1);−3α2, 0) = c(−3α2)Y1(α(x + 1);−3α2, 0)

−ωY2(α(x + 1);−3α2, 0).



136 CHAPTER 8. OPTIMALITY OF THE GEVREY INDEX

Proposition 8.2.1 There exists a zero of C0(ζ, 0) with negative imaginary part.

We first summarize in the following statement some of the known and useful
facts about the Stokes multipliers for our particular equation (8.2.1). Proofs
can be found in Chapter 5 of [51].

Proposition 8.2.2 The following results hold.

(i) C0(0, 0) = 1 + ω,

(ii) C̃k(ζ, �) = −ω, for all k, � and ζ,

(iii) Ck(ζ, �) = C0(ω−2kζ, ω−3k�), for all k, �, ζ and C0(ζ, �) is an entire
function of (ζ, �),

(vi) ∂⇣C0(ζ, �)
∣∣
(⇣,✏)=(0,0)

∕= 0.

We now prove key lemmas to prove Proposition 8.2.1.

Lemma 8.2.1 Let us denote ck(ζ) = Ck(ζ, 0). Then we have

ck(ζ) + ω2ck+2(ζ)ck+3(ζ) − ω3 = 0 mod 5.

Or otherwise stated

c(ζ) + ω2c(ωζ)c(ω4ζ) − ω3 = 0, ∀ζ ∈ C

where c(ζ) = c0(ζ) = C0(ζ, 0).

Proof: For the proof, see Section 5, (27.5) in [51]. □
The next lemma is found in [52].

Lemma 8.2.2 We have

C0(ζ, �) = ω̄C0(ω̄ζ̄, ω�̄).

In particular we have c(ζ) = ω̄c(ω̄ζ̄).
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Suppose that c(−3α2) = 0 so that

Y0(α(x + 1);−3α2, 0) = −ωY2(α(x + 1);−3α2, 0)

= −ωY0(ω−2α(x + 1);−3ω−4α2, 0).

Since Re (ω−2αx)5/2 = Re (ei⇡/5|x|α)5/2 > 0 for x < 0 it is clear from the
asymptotic behavior that Y0(α(x + 1);−3α2, 0) is exponentially decaying in R
as |x| → ∞ and in particular u(x) ∈ S(R). We multiply ū(x) on (8.2.3) then
integration by parts gives

−
Z

R
|u′(x)|2dx = α5

Z
R
(x3 + 3x2 − 2)|u(x)|2dx.

Since Im α5 ∕= 0, taking the imaginary part we getZ
R
(x3 + 3x2 − 2)|u(x)|2dx = 0

hence u′(x) = 0 so that u(x) = 0. This is a contradiction. So we conclude that

c(−3α2) ∕= 0 if − π

5
< arg α < 0

which proves that c(ζ) ∕= 0 for 3π/5 < arg ζ < π. From Lemma 8.2.4 we see
c(ζ) ∕= 0 if arg ζ = π. We finally check that c(ζ) ∕= 0 with arg ζ = 3π/5. Indeed
if c(ζ) = 0 with arg ζ = 3π/5 then c(ω̄ζ̄) = 0 by Lemma 8.2.2 but since ω̄ζ̄ ∈ R
which contradicts Lemma 8.2.4 again and hence the assertion. □
Proof of Proposition 8.2.1: From Lemma 8.2.3 there exists ζ ∕= 0 with c(ζ) = 0.
From Lemma 8.2.5 we see −π < arg ζ < 3π/5. If 0 ≤ arg ζ < 3π/5 then
−π < arg ω̄ζ̄ < −2π/5 which proves the assertion because c(ω̄ζ̄) = 0. □

Let us now consider the equation

C0(ζ,−1
4
ζ2�) = 0.

Let ζ0 be a zero of c(ζ) = C0(ζ, 0) with negative imaginary part. Let µ be the
multiplicity of the root ζ0. Since C0(ζ, 0) is holomorphic µ is finite and by the
Weierstrass preparation theorem we can write

C0(ζ,−ζ2�/4) = γ(ζ, �)((ζ − ζ0)µ +
µX

j=1

aj(�)(ζ − ζ0)µ−j)

where γ(ζ0, 0) ∕= 0, aj(0) = 0 and aj(�) is holomorphic at � = 0. Then each root
ζ(�) of C0(ζ,−ζ2�/4) = 0 admits the Puiseux expansion

ζ(�) = ζ0 +
∞X

j=0

ζj(�1/p)j = ζ̃(�1/p)
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with some positive integer p and a holomorphic ζ̃(z) near z = 0. In what follows
we consider the equation

(8.2.4) w′′(x) =
⇣
x3 + ζx − 1

4
ζ2�p

⌘
w(x)

so that the equation C0(ζ,−ζ2�p/4) = 0 has a solution ζ(�p) = ζ̃(�) where ζ̃(�)
is holomorphic in a neighborhood of � = 0 and

ζ̃(0) = ζ0, Im ζ0 < 0.

With η(�) = −ζ̃(�)2�p/4 we have

(8.2.5) Y0(x; ζ̃(�), η(�)) = −ωY2(x; ζ̃(�), η(�)), ∀x ∈ C

where |�| ≪ 1. We now examine the behavior of Y0(x; ζ̃(�), η(�)) as R ∋ x →
±∞. Recall

Y0(x; ζ̃, η) = x−3/4(1 + R(x, ζ̃, η))e−( 2
5 x5/2+⇣̃x1/2) in | arg x| < 3π/5

and hence as R ∋ x → +∞ the function Y0(x; ζ̃, η) decays as exp (−2x5/2/5).
On the other hand from (8.2.5) we have

Y0(x; ζ̃(�), η(�)) = −ωY0(ω−2x; ω−4ζ̃(�), ω−6η(�))

and for negative x < 0 since ω−2x = e⇡i/5|x| and

(ω−2x)5/2 = i|x|5/2, ω−4ζ̃(ω−2x)1/2 = iζ̃|x|1/2

it follows that Y0(x; ζ̃, η) decays or grows as exp (Im ζ̃|x|1/2) as R ∋ x → −∞.
This is one of the main reasons that we need to find a zero with negative imag-
inary part (a non real root is not enough). We conclude that Y0(x; ζ̃(�), η(�)) ∈
S(R) and in particular is bounded uniformly in x ∈ R and |�| ≪ 1;

|Y0(x; ζ̃(�), η(�))| ≤ B, x ∈ R, |�| ≪ 1.

8.3 Proof of non solvability

Take T > 0 small and let us set

U⇢(x) = exp
⇥
−iρ5xn +

i

2
ζ̃(ρ−2/p)ρ(T − x0)

⇤
(8.3.1)

×Y(x1ρ
2; ζ̃(ρ−2/p), η(ρ−2/p))

where ρ > 0. It is clear that PmodU⇢ = 0. Let us consider the following Cauchy
problem

(8.3.2)

8><
>:

Pmodu = 0,

u(0, x′) = 0,

D0u(0, x′) = φ̄(x1)ψ̄(x′′)θ̄(xn)

where x′′ = (x2, ..., xn−1) and φ ∈ C∞
0 (R), ψ ∈ C∞

0 (Rn−2) and θ ∈ C∞
0 (R). We

now prove
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Z

R
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Z
R
(x3 + 3x2 − 2)|u(x)|2dx.
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R
(x3 + 3x2 − 2)|u(x)|2dx = 0
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5
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Proposition 8.3.1 Assume that θ ∈ C∞
0 (R) is an even function such that

θ ∕∈ γ
(5)
0 (R) and

R
ψ(x′′)dx′′ ∕= 0. Then unless φ(k)(0), k = 0, 1, 2 satisfy some

special relations the Cauchy problem (8.3.2) has no C∞ solution in any neigh-
borhood of the origin.

Before going into the details of the proof we remark that we can assume that
solutions u to (8.3.2) have compact supports with respect to x′. To examine
this we recall the Holmgren uniqueness theorem (see, for example [39], Theorem
4.2). Let us set

Dδ = {x ∈ Rn+1 | |x′|2 + |x0| < δ}

then we have

Proposition 8.3.2 There exists δ > 0 such that if u(x) ∈ C2(Dδ) verifies

⇢
Pmodu = 0 in Dδ,

Dj
0u(0, x′) = 0, j = 0, 1, x′ ∈ Dδ ∩ {x0 = 0}

then u(x) vanishes identically in Dδ.

Proof of Proposition 8.3.1: Assume that (8.3.2) has a C∞ solution in a neigh-
borhood of the origin. Applying Proposition 8.3.2 we conclude that we can
assume

u(x) = 0 for |x0| ≤ T, |x′| ≥ r

with some small T > 0 and r > 0. Note that
Z T

0

(PmodU⇢, u)dx0 =
Z T

0

(U⇢, Pmodu)dx0 + i(D0U⇢(T ), u(T ))

+i(U⇢(T ), D0u(T )) − i(U⇢(0), D0u(0)) − i(2x1DnU⇢(T ), u(T ))

because u(0) = 0. From this we have

(D0U⇢(T ), u(T )) + (U⇢(T ), D0u(T ))

−(2x1DnU⇢(T ), u(T )) = (U⇢(0), D0u(0)).(8.3.3)

Recalling that Y(ρ2x1; ζ̃, η) is bounded uniformly in ρ and x1 we see that the
left-hand side of (8.3.3) is O(ρ5). On the other hand the right-hand side is

Z
Rn

e−i⇢5xn+i⇣̃⇢T/2Y(ρ2x1; ζ̃, η)φ(x1)ψ(x′′)θ(xn)dx′

= ei⇣̃⇢T/2θ̂(ρ5)
⇣ Z

Rn−2
ψ(x′′)dx′′

⌘
ρ−2

Z
Y(x1; ζ̃, η)φ(ρ−2x1)dx1

where θ̂ is the Fourier transform of θ. We note that for large ρ one has

��ei⇣̃⇢T/2
�� ≥ ec⇢T
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with some c > 0 because ζ̃(ρ−2/p) → ζ0 as ρ → ∞ and Im ζ0 < 0. Thus we
conclude that

(8.3.4) ρ−7ec⇢T |θ̂(ρ5)|
���
Z

Y(x1; ζ̃, η)φ(ρ−2x1)dx1

��� = O(1).

Since θ ∕∈ γ
(5)
0 (R) and even it follows that for any N ∈ N and c > 0

ec⇢ρ−N |θ̂(ρ5)|

is not bounded as ρ → ∞. Indeed if ec⇢ρ−N |θ̂(ρ5)| is bounded then we have

|θ̂(ρ)| ≤ CρN/5e−c⇢1/5 ≤ C ′e−c′⇢1/5

with some c′ > 0 and hence θ ∈ γ
(5)
0 (R). Let us write

Z
Y(x1; ζ̃, η)φ(ρ−2x1)dx1 =

2X
k=0

ρ−2k

k!
φ(k)(0)

Z
Y(x1; ζ̃, η)xk

1dx1 + O(ρ−6).

Then to complete the proof, noting thatZ
Y(x1; ζ̃, η)xk

1dx1 →
Z

Y(x1; ζ0, 0)xk
1dx1

as ρ → ∞, it suffices to show

Lemma 8.3.1 At least one ofZ
Y(x1; ζ0, 0)xk

1dx1, k = 0, 1, 2

is different from 0.

Proof: Let us denote by w(ξ) the Fourier transform of Y(x; ζ0, 0)

w(ξ) =
Z

e−ix⇠Y(x; ζ0, 0)dx.

Then since Y(x; ζ0, 0) verifies Y ′′ = (x3 + ζ0x)Y and Y(x; ζ0, 0) ∈ S(R) then
w(ξ) satisfies

(8.3.5) w′′′(ξ) − ζ0w
′(ξ) + iξ2w(ξ) = 0.

Noting that

w(k)(0) =
Z

Y(x; ζ0, 0)xkdx

the proof follows from the uniqueness of solution to the initial value problem
for the ordinary di↵erential equation (8.3.5). □

It is now clear that, choosing φ(k)(0), k = 0, 1, 2 suitably, (8.3.4) does not
hold. Thus the proof is completed. □
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