Chapter 5

Noneffectively hyperbolic Cauchy problem II

$5.1 C^{\infty}$ well-posedness

We continue to assume that $\Sigma=\{(x, \xi) \mid p(x, \xi)=0, d p(x, \xi)=0\}$ is a C^{∞} manifold and (4.1.1) is verified. In this chapter we study the case

$$
\begin{equation*}
\operatorname{Ker} F_{p}^{2}(\rho) \cap \operatorname{Im} F_{p}^{2}(\rho) \neq\{0\} \tag{5.1.1}
\end{equation*}
$$

As we have seen in Theorem 3.5.1 the following two assertions are equivalent
(i) $\quad H_{S}^{3} p(\rho)=0, \rho \in \Sigma$,
(ii) p admits an elementary decomposition at every $\rho \in \Sigma$
where S is any smooth function verifying (3.4.1) and (3.4.2). As we shall prove in Chapter 7, the condition (ii) is still equivalent to
(5.1.2) there is no null bicharacteristic of p having a limit point in Σ.

In this chapter we discuss the C^{∞} well-posedness of the Cauchy problem assuming (5.1.2) (equivalently assuming (i) in Theorem 3.5.1) under the strict Ivrii-Petkov-Hörmander condition.

Theorem 5.1.1 Assume (4.1.1), (5.1.1), (5.1.2) and the subprincipal symbol $P_{\text {sub }}$ verifies the strict Ivrii-Petkov-Hörmander condition on Σ. Then the Cauchy problem for P is C^{∞} well posed.

Let fix any $\rho \in \Sigma$. Thanks to Proposition 3.5.1 near ρ we have an elementary decomposition of $p=-\xi_{0}^{2}+\sum_{j=1}^{r} \phi_{j}^{2}$ such that

$$
p=-\left(\xi_{0}+\lambda\right)\left(\xi_{0}-\lambda\right)+Q
$$

where $\lambda=\phi_{1}+O\left(\sum_{j=1}^{r} \phi_{j}^{2}\right)$. The main difference from the case that we have studied in the previous chapter is that we have no control of ϕ_{1}^{2} by Q, that is the best we can expect is the inequality

$$
C Q \geq \sum_{j=2}^{r} \phi_{j}^{2}+\phi_{1}^{4}\left|\xi^{\prime}\right|^{-2} .
$$

Another serious difficulty is that it seems to be hard to get a local (not microlocal) elementary decomposition. To overcome this difficulty we follow [31], [24] in the next section.

5.2 Parametrix with finite propagation speed of wave front sets

Recall that we are working with operators of the form

$$
\begin{equation*}
P(x, D)=-D_{0}^{2}+A_{1}\left(x, D^{\prime}\right) D_{0}+A_{2}\left(x, D^{\prime}\right) \tag{5.2.1}
\end{equation*}
$$

where $A_{j}\left(x, \xi^{\prime}\right) \in S\left(\left\langle\xi^{\prime}\right\rangle^{j}, g_{0}\right)$. Let $I=(-\tau, \tau)$ be an open interval containing the origin and we denote by $C^{k}\left(I, H^{p}\right)$ the set of all k-times continuously differentiable functions from I to $H^{p}=H^{p}\left(\mathbb{R}^{n}\right)$ and denote by $C^{k}\left(I, H^{p}\right)^{+}$the set of all $f \in C^{k}\left(I, H^{p}\right)$ vanishing in $x_{0}<0$. We put $H^{\infty}=\cap_{k} H^{k}$ and $H^{-\infty}=\cup_{k} H^{k}$.

Definition 5.2.1 Let T be a linear operator from $C^{0}\left(I, H^{-\infty}\right)^{+}$to $C^{1}\left(I, H^{\infty}\right)^{+}$. We say that $T \in \mathcal{R}$ if there is a positive constant $\delta(T)$ such that

$$
\left\|D_{0}^{k} T f(t, \cdot)\right\|_{(q)}^{2} \leq c_{p q} \int^{t}\|f(\tau, \cdot)\|_{(p)}^{2} d \tau, \quad \forall t \leq \delta(T)
$$

for $k=0,1$ and for any $p, q \in \mathbb{R}$ and $f \in C^{0}\left(I, H^{p}\right)^{+}$.
Definition 5.2.2 $([31])$ Let $\left(0, \hat{x}^{\prime}, \hat{\xi}^{\prime}\right)=\left(0, \rho^{\prime}\right)$. We say that G is a parametrix of P at $\left(0, \rho^{\prime}\right)$ with finite propagation speed of wave front sets with loss of β derivatives if G satisfies the following conditions
(i) for any $h=h\left(x^{\prime}, D^{\prime}\right) \in S\left(1, g_{0}\right)$ supported near ρ^{\prime} we have $P G h-h \in \mathcal{R}$,
(ii) we have

$$
\left\|D_{0}^{j} G f(t, \cdot)\right\|_{(p)}^{2} \leq c_{p} \int^{t}\|f(\tau, \cdot)\|_{(p+j+\beta)}^{2} d \tau, \quad j=0,1
$$

for any $p \in \mathbb{R}$ and for any $f \in C^{0}\left(I, H^{p+1+\beta}\right)^{+}$,
(iii) for any $h_{1}\left(x^{\prime}, D^{\prime}\right) \in S\left(1, g_{0}\right)$ which is supported near ρ^{\prime} and for any $h_{2}\left(x^{\prime}, D^{\prime}\right) \in S\left(1, g_{0}\right)$ with $\operatorname{supp} h_{2} \subset \subset \mathbb{R}^{2 n} \backslash\left(\operatorname{supp} h_{1}\right)$, one has

$$
D_{0}^{j} h_{2} G h_{1} \in \mathcal{R}, \quad j=0,1 .
$$

Let \tilde{P} be another operator of the form (5.2.1) then we say

$$
P \equiv \tilde{P} \quad \text { near } \quad\left(0, \rho^{\prime}\right)
$$

if one can write

$$
P-\tilde{P}=\sum_{j=0}^{2} B_{j}\left(x, D^{\prime}\right) D_{0}^{2-j}
$$

with $B_{j} \in S\left(\left\langle\xi^{\prime}\right\rangle^{j}, g_{0}\right)$ which are in $S^{-\infty}=\cap_{k} S\left(\left\langle\xi^{\prime}\right\rangle^{k}, g_{0}\right)$ near ρ^{\prime} uniformly in x_{0} when $\left|x_{0}\right|$ is small.

In what follows, to simplify notations, we abbreviate a parametrix with finite propagation speed of wave front sets as just "parametrix". The next lemma is clear from the definition.

Lemma 5.2.1 Let $\tilde{P} \equiv P$ near $\left(0, \rho^{\prime}\right)$ and let \tilde{G} be a parametrix of \tilde{P} at $\left(0, \rho^{\prime}\right)$ with loss of β derivatives. Then \tilde{G} is a parametrix of P at $\left(0, \rho^{\prime}\right)$ with loss of β derivatives.

Let $T\left(x, D^{\prime}\right) \in S\left(1, g_{0}\right)$ be elliptic near $\left(0, \rho^{\prime}\right)$ uniformly in x_{0} with small $\left|x_{0}\right|$. Then

Proposition 5.2.1 Let P, \tilde{P} be operators of the form (5.2.1). Assume that $P T \equiv T \tilde{P}$ near $\left(0, \rho^{\prime}\right)$. If \tilde{P} has a parametrix at $\left(0, \rho^{\prime}\right)$ with loss of β derivatives then so does P.

Let χ be a local homogeneous canonical transformation from a neighborhood of $\left(\hat{y}_{0}, \hat{y}^{\prime}, \hat{\eta}_{0}, \hat{\eta}^{\prime}\right)$ to a neighborhood of $\left(\hat{x}_{0}, \hat{x}^{\prime}, \hat{\xi}_{0}, \hat{\xi}^{\prime}\right)$ such that $y_{0}=x_{0}$. Since χ preserves y_{0} coordinate, the generating function of this canonical transformation has the form

$$
x_{0} \eta_{0}+H\left(x, \eta^{\prime}\right)
$$

We work with a Fourier integral operator F associated with χ which is represented as

$$
F u(x)=\int e^{-i y^{\prime} \eta^{\prime}+i H\left(x, \eta^{\prime}\right)} a\left(x, \eta^{\prime}\right) u\left(x_{0}, y^{\prime}\right) d y^{\prime} d \eta^{\prime}
$$

(in a convenient y^{\prime} coordinates) and elliptic near $(\hat{x}, \hat{\xi}, \hat{y}, \hat{\eta})$, where x_{0} is regarded as a parameter. We assume that F is bounded from $H^{k}\left(\mathbb{R}_{y^{\prime}}^{n}\right)$ to $H^{k}\left(\mathbb{R}_{x^{\prime}}^{n}\right)$ for any $k \in \mathbb{R}$ uniformly in x_{0} with small $\left|x_{0}\right|$ (see [10], [17], Theorem 25.3.11 in [19]).

Proposition 5.2.2 Let χ, F be as above and $P(x, D), \tilde{P}(y, D)$ be operators of the form (5.2.1). Assume that

$$
P F \equiv F \tilde{P} \quad \text { near } \quad\left(0, \hat{y}^{\prime}, \hat{\eta}^{\prime}\right)
$$

If \tilde{P} has a parametrix at $\left(0, \hat{y}^{\prime}, \hat{\eta}^{\prime}\right)$ with loss of β derivatives then so does P at $\left(0, \hat{x}^{\prime}, \hat{\xi}^{\prime}\right)$ with loss of β derivatives.

Proposition 5.2.3 ([31]) Let P be an operator of the form (5.2.1). Assume that P has a parametrix at $\left(0,0, \xi^{\prime}\right)$ with loss of $\beta\left(\xi^{\prime}\right)$ derivatives for every ξ^{\prime} with $\left|\xi^{\prime}\right|=1$. Then the Cauchy problem for P is locally solvable near $(0,0)$ in C^{∞}. More precisely there is an open neighborhood $J \times \omega$ of $(0,0)$ such that for every $f \in C^{0}\left(I, H^{p+\nu}\right)^{+}(p+\nu \geq 0)$ there exists $u \in \cap_{j=0}^{1} C^{j}\left(J, H^{p-j}\right)^{+}$ satisfying

$$
P u=f \quad \text { in } \quad J \times \omega
$$

where $\nu=\sup _{\left|\xi^{\prime}\right|=1} \beta\left(\xi^{\prime}\right)$.
In the following sections, assuming that P satisfies the strict Ivrii-PetkovHörmander condition on Σ, we prove the existence of parametrix of P at every $\left(0,0, \xi^{\prime}\right)$ with $\left|\xi^{\prime}\right|=1$, hence we can conclude the C^{∞} well-posedness.

5.3 Preliminaries

Let fix $\rho \in \Sigma$ and we work near ρ. Thanks to Proposition 3.5.1 p admits an elementary decomposition verifying the conditions stated there. We extend these ϕ_{j} (given in Proposition 3.5.1) outside a neighborhood of ρ so that they belong to $S\left(\left\langle\xi^{\prime}\right\rangle, g_{0}\right)$ and zero outside another neighborhood of ρ. Using such extended ϕ_{j} we define λ by the same formula in Proposition 3.5.1

$$
\lambda=\phi_{1}+L\left(\phi^{\prime}\right) \phi_{1}+\gamma \phi_{1}^{3}\left\langle\xi^{\prime}\right\rangle^{-2}
$$

where the coefficients of L are extended outside a neighborhood of ρ. Choosing a neighborhood enough small we may assume that

$$
\begin{equation*}
\lambda=w \phi_{1} \tag{5.3.1}
\end{equation*}
$$

where $c_{1} \leq w\left(x, \xi^{\prime}\right) \leq c_{2}, w \in S\left(1, g_{0}\right)$ with some $c_{i}>0$. Let us write

$$
p=-\left(\xi_{0}+\lambda\right)\left(\xi_{0}-\lambda\right)+Q
$$

Recall

$$
Q=\sum_{j=2}^{r} \phi_{j}^{2}+a(\phi) \phi_{1}^{4}\left\langle\xi^{\prime}\right\rangle^{-2}+b\left(\phi^{\prime}\right) L\left(\phi^{\prime}\right) \phi_{1}^{2} \geq c\left(\left|\phi^{\prime}\right|^{2}+\phi_{1}^{4}\left\langle\xi^{\prime}\right\rangle^{-2}\right)
$$

with some $c>0$ where $\phi^{\prime}=\left(\phi_{2}, \ldots, \phi_{r}\right)$. Take $0 \leq \chi_{i}\left(x^{\prime}, \xi^{\prime}\right) \leq 1$, homogeneous of degree 0 in $\xi^{\prime}\left(\left|\xi^{\prime}\right| \geq 1\right)$, which are 1 in conic neighborhoods of $\rho^{\prime}, \rho=\left(0, \rho^{\prime}\right)$ and supported in another small conic neighborhoods of ρ^{\prime} such that $\chi_{2}=1$ on the support of χ_{1}. We can assume that Proposition 3.5.1 holds in a neighborhood of the support of χ_{2}. We now define $f\left(x, \xi^{\prime}\right)$ solving

$$
\begin{equation*}
\left\{\xi_{0}-\lambda, f\right\}=0, \quad f\left(0, x^{\prime}, \xi^{\prime}\right)=\left(1-\chi_{1}\left(x^{\prime}, \xi^{\prime}\right)\right)\left\langle\xi^{\prime}\right\rangle \tag{5.3.2}
\end{equation*}
$$

Note that $f\left(x, \xi^{\prime}\right)=\left\langle\xi^{\prime}\right\rangle$ outside some neighborhood of ρ^{\prime} because $\lambda=0$ and $\chi_{1}=0$ outside some neighborhood of ρ^{\prime}.

Lemma 5.3.1 Let $f\left(x, \xi^{\prime}\right)$ be as above. Taking $M>0$ large and $\tau>0$ small we have a decomposition

$$
p=-\left(\xi_{0}+\lambda\right)\left(\xi_{0}-\lambda\right)+\hat{Q}
$$

in $\left|x_{0}\right|<\tau$ with $\hat{Q}=Q+M^{2} f\left(x, \xi^{\prime}\right)^{2}$ such that

$$
\left|\left\{\xi_{0}-\lambda, \hat{Q}\right\}\right| \leq C \hat{Q}, \quad\left|\left\{\xi_{0}+\lambda, \xi_{0}-\lambda\right\}\right| \leq C(\sqrt{\hat{Q}}+|\lambda|)
$$

Proof: By a compactness argument there are $c>0$ and $\tau>0$ such that we have

$$
f\left(x, \xi^{\prime}\right) \geq c\left|\xi^{\prime}\right|
$$

outside the support of χ_{2} if $\left|x_{0}\right| \leq \tau$. Let us consider

$$
\left|\left\{\xi_{0}-\lambda, \hat{Q}\right\}\right|
$$

which is bounded by $C Q$ on the support of χ_{2} by Proposition 3.5.1 and by $C M^{2} f^{2}$ outside the support of χ_{2}, thus bounded by $C \hat{Q}$. Noting that $\left\{\xi_{0}+\lambda, \xi_{0}-\right.$ $\lambda\}=2\left\{\lambda, \xi_{0}-\lambda\right\}$ and $\left\{\phi_{j}, \xi_{0}-\lambda\right\}$ is a linear combination of $\phi_{j}, j=1, \ldots, r$ and $\lambda=\phi_{1}+L\left(\phi^{\prime}\right) \phi_{1}+\gamma \phi_{1}^{3}\left\langle\xi^{\prime}\right\rangle^{-2}$ on the support of χ_{2} repeating the same arguments we conclude that

$$
\left|\left\{\xi_{0}+\lambda, \xi_{0}-\lambda\right\}\right| \leq C(\sqrt{\hat{Q}}+|\lambda|)
$$

which is the second assertion.
Let f_{1} be defined as (5.3.2) with $\tilde{\chi}_{1}$ of which support is smaller than that of χ_{1} and consider

$$
\tilde{P}=p^{w}+P_{1}+M_{1} f_{1}\left(x, \xi^{\prime}\right)+P_{0}, \quad p=-\left(\xi_{0}+\lambda\right)\left(\xi_{0}-\lambda\right)+\hat{Q}
$$

which coincides with the original P near ρ. In what follows to simplify notations we denote this operator by P, \hat{Q} by Q and $P_{1}+M_{1} f_{1}$ by P_{1} again:

$$
\tilde{P} \text { by } P, \quad \hat{Q} \text { by } Q, \quad P_{1}+M_{1} f_{1} \text { by } P_{1} .
$$

We sometimes denote

$$
\phi_{r+1}\left(x, \xi^{\prime}\right)=M f\left(x, \xi^{\prime}\right)
$$

Here we make a general remark. Let $a\left(x, \xi^{\prime}\right) \in S\left(\left\langle\xi^{\prime}\right\rangle, g_{0}\right)$ be an extended symbol of some symbol which vanishes near ρ on Σ. Then repeating the same arguments as in the proof of Lemma 5.3.1 one can write a as

$$
a\left(x, \xi^{\prime}\right)=\sum_{j=1}^{r+1} c_{j} \phi_{j}\left(x, \xi^{\prime}\right)
$$

with some $c_{j} \in S\left(1, g_{0}\right)$.

5.4 Microlocal energy estimates

We study $P=\left(p+P_{\text {sub }}\right)^{w}+R$ with $R \in S\left(1, g_{0}\right)$ where p is the symbol defined in the previous section. Recall that P coincides with the original P near ρ. We assume that the original P satisfies the strict Ivrii-Petkov-Hörmander condition. In this section we follow the arguments in [24] (also see [6]). We start with

Proposition 5.4.1 There exists $a \in S\left(1, g_{0}\right)$ such that we can write

$$
P=-\tilde{M} \tilde{\Lambda}+Q+\hat{P}_{1}+B \tilde{\Lambda}+\hat{P}_{0}
$$

where $\tilde{\Lambda}=\left(\xi_{0}-\lambda-a\right)^{w}, \tilde{M}=\left(\xi_{0}+\lambda+a\right)^{w}$ and $B, \hat{P}_{0} \in S\left(1, g_{0}\right)$ moreover we have

$$
\begin{aligned}
& \operatorname{Im} \hat{P}_{1}=\sum_{j=2}^{r+1} c_{j} \phi_{j}, \quad c_{j} \in S\left(1, g_{0}\right) \\
& \operatorname{Tr}^{+} Q_{\rho}+\operatorname{Re} \hat{P}_{1}(\rho) \geq c\left\langle\xi^{\prime}\right\rangle, \quad \rho \in \Sigma, \quad \hat{P}_{1} \in S\left(\left\langle\xi^{\prime}\right\rangle, g_{0}\right)
\end{aligned}
$$

with some $c>0$.
Proof: As before let us write $P_{\text {sub }}=P_{s}+b\left(\xi_{0}-\lambda\right)$. Then since λ vanishes on Σ we have

$$
\left.P_{\text {sub }}\right|_{\Sigma}=\left.P_{s}\right|_{\left\{\phi_{1}=0, \ldots, \phi_{r}=0\right\}} .
$$

Since the strict Ivrii-Petkov-Hörmander condition is verified then we conclude that

$$
\operatorname{Im} P_{s}=0
$$

on Σ near ρ. We note that

$$
\begin{aligned}
p^{w} & =-\left(\xi_{0}+\lambda\right)^{w}\left(\xi_{0}-\lambda\right)^{w}+Q^{w}-\frac{i}{2}\left\{\xi_{0}+\lambda, \xi_{0}-\lambda\right\}+R \\
& =-M \Lambda+Q^{w}-\frac{i}{2}\left\{\xi_{0}+\lambda, \xi_{0}-\lambda\right\}+R, \quad R \in S\left(1, g_{0}\right)
\end{aligned}
$$

with $\Lambda=\left(\xi_{0}-\lambda\right)^{w}, M=\left(\xi_{0}+\lambda\right)^{w}$. Since $\left\{\xi_{0}+\lambda, \xi_{0}-\lambda\right\}$ and $\operatorname{Im} P_{s}$ are linear combinations of $\phi_{j}, j=1, \ldots, r$ near ρ then, as we remarked as before, we can write

$$
\begin{equation*}
\operatorname{Im} \hat{P}_{1}=\operatorname{Im} P_{s}-\frac{1}{2}\left\{\xi_{0}+\lambda, \xi_{0}-\lambda\right\}=\sum_{j=1}^{r+1} c_{j} \phi_{j} \tag{5.4.1}
\end{equation*}
$$

with some real $c_{j} \in S\left(1, g_{0}\right)$. Recalling

$$
w \phi_{1}=\frac{1}{2}\left(\left(\xi_{0}+\lambda\right)-\left(\xi_{0}-\lambda\right)\right)
$$

one can write

$$
-M \Lambda+\left(i c_{1} \phi_{1}\right)^{w}=-\left(\xi_{0}+\lambda+i w^{-1} c_{1} / 2\right)^{w}\left(\xi_{0}-\lambda-i w^{-1} c_{1} / 2\right)^{w}+r
$$

with some $r \in S\left(1, g_{0}\right)$. Since it is clear $B \Lambda=B\left(\xi_{0}-\lambda-i w^{-1} c_{1} / 2\right)^{w}+r^{\prime}$, $r^{\prime} \in S\left(1, g_{0}\right)$ we get the assertion on $\operatorname{Im} \hat{P}_{1}$.

Lemma 4.5.1 and the strict Ivrii-Petkov-Hörmander condition shows that

$$
\operatorname{Tr}^{+} Q_{\rho}+\operatorname{Re} P_{s}(\rho)>0
$$

on Σ near the reference point, say in V. Outside V we have $f_{1}\left(x, \xi^{\prime}\right) \geq c\left\langle\xi^{\prime}\right\rangle$ with some $c>0$ and hence the second assertion.

From Proposition 5.4 .1 we can write

$$
P=-\tilde{M} \tilde{\Lambda}+B \tilde{\Lambda}+\tilde{Q}
$$

where

$$
\left\{\begin{array}{l}
\tilde{M}=\xi_{0}+\lambda+a=\xi_{0}-\tilde{m} \\
\tilde{\Lambda}=\xi_{0}-\lambda-a=\xi_{0}-\tilde{\lambda} \\
\tilde{Q}=Q+\hat{P}_{1}+\hat{P}_{0}
\end{array}\right.
$$

Recall that Proposition 4.3.2 gives

$$
\begin{array}{r}
2 \operatorname{Im}\left(P_{\theta} u, \tilde{\Lambda}_{\theta} u\right) \geq \frac{d}{d x_{0}}\left(\left\|\tilde{\Lambda}_{\theta} u\right\|^{2}+((\operatorname{Re} \tilde{Q}) u, u)+\theta^{2}\|u\|^{2}\right) \\
+\theta\left\|\tilde{\Lambda}_{\theta} u\right\|^{2}+2 \theta \operatorname{Re}(\tilde{Q} u, u)+2\left((\operatorname{Im} B) \tilde{\Lambda}_{\theta} u, \tilde{\Lambda}_{\theta} u\right) \tag{5.4.2}\\
+2\left((\operatorname{Im} \tilde{m}) \tilde{\Lambda}_{\theta} u, \tilde{\Lambda}_{\theta} u\right)+2 \operatorname{Re}\left(\tilde{\Lambda}_{\theta} u,(\operatorname{lm} \tilde{Q}) u\right) \\
+\operatorname{Im}\left(\left[D_{0}-\operatorname{Re} \tilde{\lambda}, \operatorname{Re} \tilde{Q}\right] u, u\right)+2 \operatorname{Re}((\operatorname{Re} \tilde{Q}) u,(\operatorname{Im} \tilde{\lambda}) u) \\
+\theta^{3}\|u\|^{2}+2 \theta^{2}((\operatorname{Im} \tilde{\lambda}) u, u) .
\end{array}
$$

Since $\operatorname{Im} \tilde{m}, \operatorname{Im} \tilde{\lambda} \in S\left(1, g_{0}\right)$ then it is clear that

$$
\begin{equation*}
\left|\left((\operatorname{lm} \tilde{m}) \tilde{\Lambda}_{\theta} u, \tilde{\Lambda}_{\theta} u\right)\right| \leq C\left\|\tilde{\Lambda}_{\theta} u\right\|^{2}, \quad|((\operatorname{lm} \tilde{\lambda}) u, u)| \leq C\|u\|^{2} \tag{5.4.3}
\end{equation*}
$$

It is also clear

$$
\begin{equation*}
\left((\operatorname{lm} B) \tilde{\Lambda}_{\theta} u, \tilde{\Lambda}_{\theta} u\right) \geq-C\left\|\tilde{\Lambda}_{\theta} u\right\|^{2} \tag{5.4.4}
\end{equation*}
$$

with some $C>0$ because $\operatorname{Im} B \in S\left(1, g_{0}\right)$. To simplify notations let us denote

$$
\Phi=\left(\Phi_{2}, \ldots, \Phi_{r}, \Phi_{r+1}, \Phi_{r+2}\right)=\left(\phi_{2}, \ldots, \phi_{r}, f, \phi_{1}^{2}\left\langle\xi^{\prime}\right\rangle^{-1}\right)
$$

where we recall $\Phi_{j} \in S\left(\left\langle\xi^{\prime}\right\rangle, g_{0}\right)$.
Lemma 5.4.1 There exist $C_{i}>0$ such that we have

$$
\sum_{j=2}^{r+2}\left\|\Phi_{j} u\right\|^{2} \leq C_{1}(Q u, u)+C_{2}\|u\|^{2}
$$

78CHAPTER 5. NONEFFECTIVELY HYPERBOLIC CAUCHY PROBLEM II
Proof: Take $C_{1}>0$ so that $C_{1} Q-\sum_{j=2}^{r+2} \Phi_{j}^{2} \geq 0$. Then from the FeffermanPhong inequality it follows that

$$
C_{1}(Q u, u) \geq\left(\left(\sum_{j=2}^{r+2} \Phi_{j}^{2}\right)^{w} u, u\right)-C_{2}\|u\|^{2}
$$

Noting that

$$
\sum_{j=2}^{r+2} \Phi_{j}^{2}=\sum_{j=2}^{r+2} \Phi_{j} \# \Phi_{j}+R, \quad R \in S\left(1, g_{0}\right)
$$

the proof is immediate.
We now study

$$
\operatorname{Re} \tilde{Q}=Q+\operatorname{Re} \hat{P}_{1}+\operatorname{Re} \hat{P}_{0}, \quad \operatorname{Re} \hat{P}_{1} \in S\left(\left\langle\xi^{\prime}\right\rangle, g_{0}\right)
$$

From Proposition 5.4.1 taking sufficiently small $\epsilon_{0}>0$ we have

$$
\left(1-\epsilon_{0}\right) \operatorname{Tr}^{+} Q_{\rho}+\operatorname{Re} \hat{P}_{1}(\rho) \geq c\left\langle\xi^{\prime}\right\rangle, \quad \rho \in \Sigma
$$

with some $c>0$ and then from the Melin's inequality [35] it follows that

$$
\begin{equation*}
\operatorname{Re}\left(\left(Q+\operatorname{Re} \hat{P}_{1}\right) u, u\right) \geq \epsilon_{0} \operatorname{Re}(Q u, u)+c^{\prime}\|u\|_{(1 / 2)}^{2}-C\|u\|^{2} \tag{5.4.5}
\end{equation*}
$$

with some $c^{\prime}>0$. Thus we conclude

$$
\begin{equation*}
\operatorname{Re}(\tilde{Q} u, u) \geq \epsilon_{0}(Q u, u)+c\|u\|_{(1 / 2)}^{2}-C\|u\|^{2} \tag{5.4.6}
\end{equation*}
$$

with some $c>0$.
We now examine the term $\operatorname{Re}((\operatorname{Re} \tilde{Q}) u,(\operatorname{Im} \tilde{\lambda}) u)$. Since $\operatorname{Im} \tilde{\lambda} \in S\left(1, g_{0}\right)$ we have $\operatorname{Re}(\operatorname{Im} \tilde{\lambda} \# Q)=\operatorname{Im} \tilde{\lambda} Q+R$ with $R \in S\left(1, g_{0}\right)$ and hence

$$
\operatorname{Re}(Q u,(\operatorname{Im} \tilde{\lambda}) u) \leq(\operatorname{Im} \tilde{\lambda} Q u, u)+C^{\prime}\|u\|^{2}
$$

Take $C>0$ so that $C-\operatorname{Im} \tilde{\lambda} \geq 0$ then $C(Q u, u)-(\operatorname{Im} \tilde{\lambda} Q u, u) \geq-C_{1}\|u\|^{2}$ by the Fefferman-Phong inequality because $0 \leq(C-\operatorname{Im} \tilde{\lambda}) Q \in S\left(\left\langle\xi^{\prime}\right\rangle^{2}, g_{0}\right)$. Thus we have

$$
C(Q u, u) \geq \operatorname{Re}(Q u,(\operatorname{lm} \tilde{\lambda}) u)-C_{2}\|u\|^{2}
$$

Noting $\left|\left(\left(\operatorname{Re} \hat{P}_{1}\right) u,(\operatorname{Im} \tilde{\lambda}) u\right)\right| \leq C\|u\|_{(1 / 2)}^{2}$ for $\operatorname{Re} \hat{P}_{1} \in S\left(\left\langle\xi^{\prime}\right\rangle, g_{0}\right)$ it follows from (5.4.6) that

$$
\begin{equation*}
C_{3} \operatorname{Re}(\tilde{Q} u, u)+2 \operatorname{Re}((\operatorname{Re} \tilde{Q}) u,(\operatorname{Im} \tilde{\lambda}) u) \geq-C\|u\|^{2} \tag{5.4.7}
\end{equation*}
$$

with some $C_{3}>0$.
Recall that

$$
\operatorname{Im} \tilde{Q}=\operatorname{Im} \hat{P}_{1}+\operatorname{Im} \hat{P}_{0}
$$

and note

$$
\operatorname{Im} \hat{P}_{1}=\sum_{j=2}^{r+1} c_{j} \# \Phi_{j}+r, \quad c_{j}, r \in S\left(1, g_{0}\right)
$$

by (5.4.1). Thus it is easy to see

$$
\begin{array}{r}
\left|\left(\tilde{\Lambda}_{\theta} u,\left(\operatorname{lm} \hat{P}_{1}\right) u\right)\right| \leq C\left\|\tilde{\Lambda}_{\theta} u\right\|^{2}+C \sum_{j=2}^{r+1}\left\|\Phi_{j} u\right\|^{2}+C\|u\|^{2} \\
\leq C\left\|\tilde{\Lambda}_{\theta} u\right\|^{2}+C^{\prime}(Q u, u)+C^{\prime}\|u\|^{2}
\end{array}
$$

by Lemma 5.4.1. Thus we get

$$
\begin{equation*}
\left|\left(\tilde{\Lambda}_{\theta} u,(\operatorname{lm} \tilde{Q}) u\right)\right| \leq C\left\|\tilde{\Lambda}_{\theta} u\right\|^{2}+C(Q u, u)+C\|u\|^{2} \tag{5.4.8}
\end{equation*}
$$

We consider $\operatorname{Im}\left(\left[D_{0}-\operatorname{Re} \tilde{\lambda}, \operatorname{Re} \tilde{Q}\right] u, u\right)$. Recall that

$$
\xi_{0}-\operatorname{Re} \tilde{\lambda}=\xi_{0}-\lambda+R, \quad R \in S\left(1, g_{0}\right)
$$

Since

$$
\left[D_{0}-\lambda, Q\right]-\frac{1}{i}\left\{\xi_{0}-\lambda, Q\right\}^{w} \in S\left(1, g_{0}\right)
$$

and $\left|\left\{\xi_{0}-\lambda, Q\right\}\right| \leq C Q$ by Lemma 5.3.1 it follows from the Fefferman-Phong inequality that

$$
\left|\left(\left[D_{0}-\lambda, Q\right] u, u\right)\right| \leq C(Q u, u)+C\|u\|^{2}
$$

Since $\left[D_{0}-\lambda, \operatorname{Re} \hat{P}_{1}+\operatorname{Re} \hat{P}_{0}\right] \in S\left(\left\langle\xi^{\prime}\right\rangle, g_{0}\right)$ we get

$$
\left|\left(\left[D_{0}-\lambda,(\operatorname{Re} \tilde{Q})\right] u, u\right)\right| \leq C(Q u, u)+C\|u\|_{(1 / 2)}^{2}
$$

Summarizing we get

$$
\begin{equation*}
\operatorname{Im}\left(\left[D_{0}-\operatorname{Re} \tilde{\lambda}, \operatorname{Re} \tilde{Q}\right] u, u\right) \leq C(Q u, u)+C\|u\|_{(1 / 2)}^{2} \tag{5.4.9}
\end{equation*}
$$

Taking

$$
\left\|\Lambda_{\theta} u\right\|^{2} \leq C\left\|\tilde{\Lambda}_{\theta} u\right\|^{2}+C\|u\|^{2}
$$

into account from (5.4.6), (5.4.7), (5.4.4), (5.4.8) and (5.4.9) we have
Proposition 5.4.2 For $\theta \geq \theta_{0}$ we have

$$
\begin{array}{r}
c\left(\left\|\Lambda_{\theta} u(t)\right\|^{2}+\|u(t)\|_{(1 / 2)}^{2}+\theta^{2}\|u(t)\|^{2}\right) \\
+c \theta \int_{\tau}^{t}\left(\left\|\Lambda_{\theta} u\left(x_{0}, \cdot\right)\right\|^{2}+\operatorname{Re}(Q u, u)\right. \\
\left.+\left\|u\left(x_{0}, \cdot\right)\right\|_{(1 / 2)}^{2}+\theta^{2}\left\|u\left(x_{0}, \cdot\right)\right\|^{2}\right) d x_{0} \\
+c \int_{\tau}^{t}\left\|\Lambda_{\theta} u\left(x_{0}, \cdot\right)\right\|^{2} d x_{0} \leq C \int_{\tau}^{t}\left\|P_{\theta} u\left(x_{0}, \cdot\right)\right\|^{2} d x_{0}
\end{array}
$$

with some $c>0, C>0$ for any $u \in C^{2}\left(\left[T_{2}, T_{1}\right] ; C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right)$ vanishing in $x_{0} \leq \tau$.
We now derive estimates for higher order derivatives of u.

Lemma 5.4.2 We can write

$$
\left\langle D^{\prime}\right\rangle^{s} P=\left(-\tilde{M} \tilde{\Lambda}+\tilde{B} \tilde{\Lambda}+Q+\tilde{P}_{1}+\tilde{P}_{0}\right)\left\langle D^{\prime}\right\rangle^{s}
$$

where $\tilde{\Lambda}=\left(\xi_{0}-\lambda-\tilde{a}\right)^{w}, \tilde{M}=\left(\xi_{0}+\lambda+\tilde{a}\right)^{w}$ with a pure imaginary $\tilde{a} \in S\left(1, g_{0}\right)$ and $\tilde{B}, \tilde{P}_{0} \in S\left(1, g_{0}\right)$. Moreover \tilde{P}_{1} verifies the same conditions as in Proposition 5.4.1.

Proof: Recall that we have

$$
P=-\Lambda^{2}+B \Lambda+\tilde{Q}
$$

where

$$
\left\{\begin{array}{l}
\Lambda=\xi_{0}-\lambda-R \\
B=-2 \lambda+R \\
\tilde{Q}=Q+\hat{P}_{1}+R
\end{array}\right.
$$

with $R \in S\left(1, g_{0}\right)$. Noting

$$
\left[\Lambda,\left\langle D^{\prime}\right\rangle^{s}\right] \in S\left(\left\langle\xi^{\prime}\right\rangle^{s}, g_{0}\right), \quad\left[\Lambda,\left[\Lambda,\left\langle D^{\prime}\right\rangle^{s}\right]\right] \in S\left(\left\langle\xi^{\prime}\right\rangle^{s}, g_{0}\right)
$$

it is easy to check that

$$
\left[\Lambda^{2},\left\langle D^{\prime}\right\rangle^{s}\right]=R_{1} \Lambda\left\langle D^{\prime}\right\rangle^{s}+R_{2}\left\langle D^{\prime}\right\rangle^{s}
$$

with some $R_{i} \in S\left(1, g_{0}\right)$.
We turn to consider $\left[B \Lambda,\left\langle D^{\prime}\right\rangle^{s}\right]$. Let us write $\left[B \Lambda,\left\langle D^{\prime}\right\rangle^{s}\right]=B\left[\Lambda,\left\langle D^{\prime}\right\rangle^{s}\right]+$ $\left[B,\left\langle D^{\prime}\right\rangle^{s}\right] \Lambda$ and note

$$
B\left[\Lambda,\left\langle D^{\prime}\right\rangle^{s}\right]\left\langle D^{\prime}\right\rangle^{-s}=\left(T_{1} \lambda+T_{2}\right)^{w}\left\langle D^{\prime}\right\rangle^{s}
$$

where $T_{i} \in S\left(1, g_{0}\right)$ and $T_{1}=-2 i\left\{\lambda,\left\langle\xi^{\prime}\right\rangle^{s}\right\}\left\langle\xi^{\prime}\right\rangle^{-s}$ is pure imaginary. Note that one can write

$$
T_{1} \lambda=i \sum_{j=1}^{r+1} a_{j} \phi_{j}
$$

with $a_{j} \in S\left(1, g_{0}\right)$. It is clear that we can write

$$
\left[B,\left\langle D^{\prime}\right\rangle^{s}\right] \Lambda=R_{1} \Lambda\left\langle D^{\prime}\right\rangle^{s}+R_{2}\left\langle D^{\prime}\right\rangle^{s}
$$

with $R_{i} \in S\left(1, g_{0}\right)$. We finally check the term $\left[\tilde{Q},\left\langle D^{\prime}\right\rangle^{s}\right]$. Since

$$
\left[\tilde{Q},\left\langle D^{\prime}\right\rangle^{s}\right]\left\langle D^{\prime}\right\rangle^{-s}-\left[Q,\left\langle D^{\prime}\right\rangle^{s}\right]\left\langle D^{\prime}\right\rangle^{-s} \in S\left(1, g_{0}\right)
$$

it suffices to consider $\left[Q,\left\langle D^{\prime}\right\rangle^{s}\right]\left\langle D^{\prime}\right\rangle^{-s}$. Note that

$$
\left[Q,\left\langle D^{\prime}\right\rangle^{s}\right]\left\langle D^{\prime}\right\rangle^{-s}-\frac{1}{i}\left\{Q,\left\langle\xi^{\prime}\right\rangle^{s}\right\}\left\langle\xi^{\prime}\right\rangle^{-s} \in S\left(1, g_{0}\right)
$$

and it is clear that we can write

$$
\left\{Q,\left\langle\xi^{\prime}\right\rangle^{s}\right\}\left\langle\xi^{\prime}\right\rangle^{-s}=\sum_{j=1}^{r+1} c_{j} \phi_{j}
$$

with real $c_{j} \in S\left(1, g_{0}\right)$ and hence

$$
\left[Q,\left\langle D^{\prime}\right\rangle^{s}\right]=-\left(i\left(\sum_{j=1}^{r+1} c_{j} \phi_{j}\right)^{w}+r\right)\left\langle D^{\prime}\right\rangle^{s}
$$

with some $r \in S\left(1, g_{0}\right)$. Repeating the same arguments as in the proof of Proposition 5.4.1 we move $i\left(a_{1}+c_{1}\right) \phi_{1}$ to Λ to get the desired assertion.

Repeating the same arguments as deriving Proposition 5.4.2 for

$$
\operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s} P u, \tilde{\Lambda}\left\langle D^{\prime}\right\rangle^{s} u\right)
$$

we obtain energy estimates of $\left\langle D^{\prime}\right\rangle^{s} u$. To formulate thus obtained estimate let us set

$$
N_{s}(u)=\|\Lambda u\|_{(s)}^{2}+\operatorname{Re}(Q u, u)_{(s)}+\|u\|_{(s+1 / 2)}^{2}
$$

where $(u, v)_{(s)}=\left(\left\langle D^{\prime}\right\rangle^{s} u,\left\langle D^{\prime}\right\rangle^{s} v\right)$ and $\Lambda=D_{0}-\lambda^{w}$ again. Here we remark that

$$
\left\langle\xi^{\prime}\right\rangle^{s} \# Q \#\left\langle\xi^{\prime}\right\rangle^{-s}-Q-\frac{1}{i}\left\{\left\langle\xi^{\prime}\right\rangle^{s}, Q\right\}\left\langle\xi^{\prime}\right\rangle^{-s} \in S\left(1, g_{0}\right)
$$

so that

$$
\left|\operatorname{Re}\left(\left\langle D^{\prime}\right\rangle^{s} Q u,\left\langle D^{\prime}\right\rangle^{s} u\right)-\left(Q\left\langle D^{\prime}\right\rangle^{s} u,\left\langle D^{\prime}\right\rangle^{s} u\right)\right| \leq C\|u\|_{(s)}^{2}
$$

We also note that $\tilde{\Lambda}\left\langle D^{\prime}\right\rangle^{s}=\left\langle D^{\prime}\right\rangle^{s} \Lambda+r\left\langle D^{\prime}\right\rangle^{s}$ with $r \in S(1, g)$ so that

$$
\|\Lambda u\|_{(s)}^{2} \leq C\left\|\tilde{\Lambda}\left\langle D^{\prime}\right\rangle^{s} u\right\|^{2}+C\|u\|_{(s)}^{2}
$$

Since $e^{\theta x_{0}} P_{\theta} e^{-\theta x_{0}}=P, e^{\theta x_{0}} \Lambda_{\theta} e^{-\theta x_{0}}=\Lambda$, choosing and fixing θ enough large we have

Proposition 5.4.3 We have

$$
N_{s}(u(t))+\int_{\tau}^{t} N_{s}\left(u\left(x_{0}\right)\right) d x_{0} \leq C\left(s, T_{i}\right) \int_{\tau}^{t} \operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s} P u, \tilde{\Lambda}\left\langle D^{\prime}\right\rangle^{s} u\right) d x_{0}
$$

for any $s \in \mathbb{R}$ and any $u \in C^{2}\left(\left[T_{2}, T_{1}\right] ; H^{\infty}\left(\mathbb{R}^{n}\right)\right)$ vanishing in $x_{0} \leq \tau$.
Corollary 5.4.1 We have

$$
N_{s}(u(t))+\int_{\tau}^{t} N_{s}\left(u\left(x_{0}\right)\right) d x_{0} \leq C\left(s, T_{i}\right) \int_{\tau}^{t}\|P u\|_{(s)}^{2} d x_{0}
$$

for any $s \in \mathbb{R}$ and any $u \in C^{2}\left(\left[T_{2}, T_{1}\right] ; H^{\infty}\left(\mathbb{R}^{n}\right)\right)$ vanishing in $x_{0} \leq \tau$.
Let us put $P_{-}(x, D)=P\left(-x_{0}, x^{\prime},-D_{0}, D^{\prime}\right)$ then it is clear that P_{-}verifies the same conditions as P. Note that $P_{-}^{*}(x, D)$ satisfies the strict Ivrii-PetkovHörmander condition by (4.4.6). Repeating the same arguments as proving Proposition 5.4.2 and Corollary 5.4.1 we conclude that Corollary 5.4.1 holds for P_{-}^{*}. Since

$$
P^{*}(x, D)=P_{-}^{*}\left(-x_{0}, x^{\prime},-D_{0}, D^{\prime}\right)
$$

we get

Proposition 5.4.4 We have

$$
N_{s}(u(t))+\int_{t}^{\tau} N_{s}\left(u\left(x_{0}\right)\right) d x_{0} \leq C\left(s, T_{i}\right) \int_{t}^{\tau}\left\|P^{*} u\right\|_{(s)}^{2} d x_{0}
$$

for any $s \in \mathbb{R}$ and any $u \in C^{2}\left(\left[T_{2}, T_{1}\right] ; H^{\infty}\left(\mathbb{R}^{n}\right)\right)$ vanishing in $x_{0} \geq \tau$.

5.5 Finite propagation speed of $W F$

Thanks to Proposition 5.4.4 repeating the same arguments on functional analysis in Section 4.4 we conclude that for any given $f \in C^{0}\left(\left[T_{2}, T_{1}\right] ; H^{\infty}\left(\mathbb{R}^{n}\right)\right)$ vanishing in $x_{0} \leq 0$ there is a unique $u \in C^{2}\left(\left[T_{2}, T_{1}\right] ; H^{\infty}\left(\mathbb{R}^{n}\right)\right)$ vanishing in $x_{0} \leq 0$ such that $P u=f$. Let us denote

$$
u=G f
$$

then it is clear that G verifies (i) and (ii) in Definition 5.2 .2 with $\beta=-1 / 2$. Therefore in order to show that G is a parametrix of P with finite propagation speed of $W F$ it remains to prove (iii). To prove that G verifies (iii) we introduce symbols of spatial type following [24].

Definition 5.5.1 Let $f(x, \xi) \in S\left(1, g_{0}\right)$. We say that f is of spatial type if f satisfies

$$
\begin{array}{r}
\left\{\xi_{0}-\lambda, f\right\} \geq \delta>0, \quad\left\{\xi_{0}+\lambda, f\right\}\left\{\xi_{0}-\lambda, f\right\} \geq \delta>0 \\
\{f, Q\}^{2} \leq 4 c\left(\left\{\xi_{0}-\lambda, f\right\}^{2}+2\{\lambda, f\}\left\{\xi_{0}-\lambda, f\right\}\right) Q \\
=4 c\left\{\xi_{0}+\lambda, f\right\}\left\{\xi_{0}-\lambda, f\right\} Q
\end{array}
$$

with some $\delta>0$ and $0<c<1$ for $\left|x_{0}\right| \leq \tau$ with small $\tau>0$.
Let $\chi\left(x^{\prime}\right) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be equal to 1 near $x^{\prime}=0$ and vanish in $\left|x^{\prime}\right| \geq 1$. Set

$$
d_{\epsilon}\left(x^{\prime}, \xi^{\prime} ; \bar{\rho}^{\prime}\right)=\left\{\chi\left(x^{\prime}-y^{\prime}\right)\left|x^{\prime}-y^{\prime}\right|^{2}+\left|\xi^{\prime}\left\langle\xi^{\prime}\right\rangle^{-1}-\eta^{\prime}\left\langle\eta^{\prime}\right\rangle^{-1}\right|^{2}+\epsilon^{2}\right\}^{1 / 2}
$$

with $\bar{\rho}^{\prime}=\left(y^{\prime}, \eta^{\prime}\right)$. Set

$$
f\left(x^{\prime}, \xi^{\prime} ; \bar{\rho}^{\prime}\right)=x_{0}-\tau+\nu d_{\epsilon}\left(x^{\prime}, \xi^{\prime} ; \bar{\rho}^{\prime}\right)
$$

for small $\nu>0, \epsilon>0$. Then it is easy to examine that f is a symbol of spatial type for $0<\nu \leq \nu_{0}$ if ν_{0} is small. Indeed since $0 \leq Q \in S\left(\left\langle\xi^{\prime}\right\rangle^{2}, g_{0}\right)$ it follows that

$$
\begin{equation*}
\left\{Q, \nu d_{\epsilon}\right\}^{2} \leq C \nu^{2} Q \tag{5.5.1}
\end{equation*}
$$

with $C>0$ independent of $\epsilon>0$. On the other hand since it is clear that $\left\{\xi_{0}+\lambda, f\right\}\left\{\xi_{0}-\lambda, f\right\}=1+O(\nu)$ then we get the assertion taking ν_{0} small. Note that ν_{0} is independent of $\bar{\rho}^{\prime}$ and $\epsilon>0$.

Recall that one can write

$$
P=-\Lambda^{2}+B \Lambda+\tilde{Q}
$$

where $\Lambda=\xi_{0}-\lambda, B=-2 \lambda+R$ with $R \in S\left(1, g_{0}\right)$ and

$$
\tilde{Q}=Q+\hat{P}_{1}+\hat{P}_{0}, \quad \hat{P}_{1} \in S\left(\left\langle\xi^{\prime}\right\rangle, g_{0}\right)
$$

Let $f\left(x, \xi^{\prime}\right)$ be of spatial type. We define Φ by

$$
\Phi\left(x, \xi^{\prime}\right)=\left\{\begin{array}{l}
\exp \left(1 / f\left(x, \xi^{\prime}\right)\right) \text { if } f<0 \\
0 \text { otherwise }
\end{array}\right.
$$

and also set

$$
\Phi_{1}=f^{-1}\{\Lambda, f\}^{1 / 2} \Phi .
$$

Note that $\Phi, \Phi_{1} \in S\left(1, g_{0}\right)$ and

$$
\begin{equation*}
\Phi-\left(f\{\Lambda, f\}^{-1 / 2}\right) \# \Phi_{1} \in S\left(\left\langle\xi^{\prime}\right\rangle^{-1}, g_{0}\right) \tag{5.5.2}
\end{equation*}
$$

Consider

$$
\begin{equation*}
\operatorname{Im}(P \Phi u, \Lambda \Phi u)_{(s)}=\operatorname{Im}([P, \Phi] u, \Lambda \Phi u)_{(s)}+\operatorname{Im}(\Phi P u, \Lambda \Phi u)_{(s)} . \tag{5.5.3}
\end{equation*}
$$

To estimate the term $\operatorname{Im}([P, \Phi] u, \Lambda \Phi u)_{(s)}$ we follow the arguments in [24].
Definition 5.5.2 Let $T(u), S(u)$ be two real functionals of u. Then we say $T(u) \sim S(u)$ and $T(u) \preceq S(u)$ if

$$
\begin{array}{r}
|T(u)-S(u)| \leq C\left(N_{s}(\Phi u)+N_{s-1 / 4}(u)\right) \\
T(u) \leq C\left(S(u)+N_{s}(\Phi u)+N_{s-1 / 4}(u)\right)
\end{array}
$$

respectively with some $C>0$.
We first consider

$$
-\left(\left[\Lambda^{2}, \Phi\right] u, \Lambda \Phi u\right)_{(s)}=-(\Lambda[\Lambda, \Phi] u, \Lambda \Phi u)_{(s)}-([\Lambda, \Phi] \Lambda u, \Lambda \Phi u)_{(s)}
$$

Note

$$
(\Lambda[\Lambda, \Phi] u, \Phi \Lambda u)_{(s)}=-i \frac{d}{d x_{0}}([\Lambda, \Phi] u, \Phi \Lambda u)_{(s)}+([\Lambda, \Phi] u, \Lambda \Phi \Lambda u)_{(s)}
$$

for λ is real. Since it is clear that $([\Lambda, \Phi] u,[\Lambda, \Phi] \Lambda u)_{(s)} \sim 0$ we have

$$
-\operatorname{Im}(\Lambda[\Lambda, \Phi] u, \Phi \Lambda u)_{(s)} \sim \frac{d}{d x_{0}} \operatorname{Re}([\Lambda, \Phi] u, \Phi \Lambda u)_{(s)}-\operatorname{Im}\left([\Lambda, \Phi] u, \Phi \Lambda^{2} u\right)_{(s)}
$$

We next examine that

$$
-\operatorname{lm}([\Lambda, \Phi] \Lambda u, \Lambda \Phi u)_{(s)} \sim-\left\|\Lambda \Phi_{1} u\right\|_{(s)}^{2}
$$

84CHAPTER 5. NONEFFECTIVELY HYPERBOLIC CAUCHY PROBLEM II

Indeed since $\{\Lambda, \Phi\}-i\{\Lambda, f\} f^{-2} \Phi \in S\left(\left\langle\xi^{\prime}\right\rangle^{-1}, g_{0}\right)$ and hence

$$
-\operatorname{Im}([\Lambda, \Phi] \Lambda u, \Lambda \Phi u)_{(s)} \sim-\operatorname{Re}\left(\left(\{\Lambda, f\} f^{-2} \Phi\right)^{w} \Lambda u, \Lambda \Phi u\right)_{(s)}
$$

Since $\Phi=\left(\{\Lambda, f\}^{-1 / 2} f\right) \# \Phi_{1}+T, T \in S\left(\left\langle\xi^{\prime}\right\rangle^{-1}, g_{0}\right)$ which follows from (5.5.2) and

$$
\left(\{\Lambda, f\}^{-1 / 2} f\right) \#\left\langle\xi^{\prime}\right\rangle^{2 s} \#\left(\{\Lambda, f\} f^{-2} \Phi\right)=\left\langle\xi^{\prime}\right\rangle^{2 s} \# \Phi_{1}+S\left(\left\langle\xi^{\prime}\right\rangle^{2 s-1}, g_{0}\right)
$$

one conclude easily the assertion. Therefore we have

$$
\begin{array}{r}
-\operatorname{Im}\left(\left[\Lambda^{2}, \Phi\right] u, \Lambda \Phi u\right)_{(s)} \sim \frac{d}{d x_{0}} \operatorname{Re}([\Lambda, \Phi] u, \Phi \Lambda u)_{(s)} \tag{5.5.4}\\
-\operatorname{Im}\left([\Lambda, \Phi] u, \Phi \Lambda^{2} u\right)_{(s)}-\left\|\Lambda \Phi_{1} u\right\|_{(s)}^{2}
\end{array}
$$

We turn to consider

$$
([B \Lambda, \Phi] u, \Lambda \Phi u)_{(s)}=(B[\Lambda, \Phi] u, \Lambda \Phi u)_{(s)}+([B, \Phi] \Lambda u, \Lambda \Phi u)_{(s)} .
$$

Write

$$
\begin{array}{r}
(B[\Lambda, \Phi] u, \Lambda \Phi u)_{(s)}=2 i\left(\left(\operatorname{lm} B_{s}\right)\left\langle D^{\prime}\right\rangle^{s}[\Lambda, \Phi] u,\left\langle D^{\prime}\right\rangle^{s} \Lambda \Phi u\right) \\
+\left(B_{s}^{*}\left\langle D^{\prime}\right\rangle^{s}[\Lambda, \Phi] u,\left\langle D^{\prime}\right\rangle^{s} \Lambda \Phi u\right) \\
=2 i\left(\left(\operatorname{lm} B_{s}\right)\left\langle D^{\prime}\right\rangle^{s}[\Lambda, \Phi] u,\left\langle D^{\prime}\right\rangle^{s} \Lambda \Phi u\right)+([\Lambda, \Phi] u, B \Lambda \Phi u)_{(s)}
\end{array}
$$

with $B_{s}=\left\langle D^{\prime}\right\rangle^{s} B\left\langle D^{\prime}\right\rangle^{-s}$ and note $\operatorname{Im} B_{s}=\operatorname{Im} B+r, \operatorname{Im} B \in S\left(1, g_{0}\right), r \in$ $S\left(\left\langle\xi^{\prime}\right\rangle^{-1}, g_{0}\right)$. Then we see

$$
\begin{aligned}
& \left.\mid\left(\operatorname{lm} B_{s}\right)\left\langle D^{\prime}\right\rangle^{s}[\Lambda, \Phi] u,\left\langle D^{\prime}\right\rangle^{s} \Lambda \Phi u\right) \mid \\
& \quad \leq C\|\Lambda \Phi u\|_{(s)}^{2}+C\|u\|_{(s)}^{2} \sim 0
\end{aligned}
$$

Thus we have

$$
\operatorname{Im}(B[\Lambda, \Phi] u, \Lambda \Phi u)_{(s)} \sim \operatorname{Im}([\Lambda, \Phi] u, \Phi B \Lambda u)_{(s)}
$$

On the other hand recalling $B=-2 \lambda+R$ with $R \in S\left(1, g_{0}\right)$ we see

$$
[B, \Phi]=i\{2 \lambda-R, \Phi\}^{w}+T, \quad T \in S\left(\left\langle\xi^{\prime}\right\rangle^{-2}, g_{0}\right)
$$

and hence $\operatorname{Im}([B, \Phi] \Lambda u, \Lambda \Phi u)_{(s)} \sim \operatorname{Re}\left((\{2 \lambda-R, \Phi\})^{w} \Lambda u, \Lambda \Phi u\right)_{(s)}$. Since $\{2 \lambda-$ $R, \Phi\}=-\{2 \lambda-R, f\} f^{-2} \Phi$ and $\{R, f\} \in S\left(\left\langle\xi^{\prime}\right\rangle^{-1}, g_{0}\right)$ then repeating the same arguments as before we get

$$
\operatorname{Im}([B, \Phi] \Lambda u, \Lambda \Phi u)_{(s)} \preceq-2\left(\left(\{\Lambda, f\}^{-1}\{\lambda, f\}\right)^{w} \Lambda \Phi_{1} u, \Lambda \Phi_{1} u\right)_{(s)}
$$

and hence

$$
\begin{align*}
& \operatorname{Im}([B \Lambda, \Phi] u, \Lambda \Phi u)_{(s)} \preceq \operatorname{Im}([\Lambda, \Phi] u, \Phi B \Lambda u)_{(s)} \tag{5.5.5}\\
& \quad-2 \operatorname{Re}\left(\left(\{\Lambda, f\}^{-1}\{\lambda, f\}\right)^{w} \Lambda \Phi_{1} u, \Lambda \Phi_{1} u\right)_{(s)} .
\end{align*}
$$

We finally consider $([\tilde{Q}, \Phi] u, \Lambda \Phi u)_{(s)}$. Noting that $\hat{P}_{1} \in S\left(\left\langle\xi^{\prime}\right\rangle, g_{0}\right)$ and hence

$$
\left|\left(\left[\hat{P}_{1}, \Phi\right] u, \Lambda \Phi u\right)_{(s)}\right| \leq C\|u\|_{(s)}^{2}+C\|\Lambda \Phi u\|_{(s)}^{2} \sim 0 .
$$

Since $[Q, \Phi]=(-i\{Q, \Phi\})^{w}+R$ with $R \in S\left(\left\langle\xi^{\prime}\right\rangle^{-1}, g_{0}\right)$ it follows from the same arguments that

$$
\operatorname{Im}\left(\left[Q+\hat{P}_{1}, \Phi\right] u, \Lambda \Phi u\right)_{(s)} \sim \operatorname{Re}\left(\left(\{Q, f\}\{\Lambda, f\}^{-1}\right)^{w} \Phi_{1} u, \Lambda \Phi_{1} u\right)_{(s)}
$$

Thus we obtain

$$
\begin{equation*}
\operatorname{Im}([\tilde{Q}, \Phi] u, \Lambda \Phi u)_{(s)} \preceq \operatorname{Re}\left(\left(\{Q, f\}\{\Lambda, f\}^{-1}\right)^{w} \Phi_{1} u, \Lambda \Phi_{1} u\right)_{(s)} \tag{5.5.6}
\end{equation*}
$$

Note that the sum of the second and the first term on the right-hand side of (5.5.4) and (5.5.5) yields

$$
\operatorname{Im}\left([\Lambda, \Phi] u, \Phi\left(-\Lambda^{2}+B \Lambda\right) u\right)_{(s)}
$$

Taking into account $-\Lambda^{2}+B \Lambda=P-\tilde{Q}$ let us study

$$
-\operatorname{Im}([\Lambda, \Phi] u, \Phi \tilde{Q} u)_{(s)}
$$

Write $\tilde{Q}=Q+\operatorname{Re} \hat{P}_{1}+i \operatorname{lm} \hat{P}_{1}$ because \hat{P}_{0} is irrelevant. Note that

$$
\operatorname{Re}\left([\Lambda, \Phi] u, \Phi \operatorname{Im} \hat{P}_{1} u\right)_{(s)} \sim-\operatorname{Im}\left(\{\Lambda, \Phi\}^{w} u, \Phi \operatorname{Im} \hat{P}_{1} u\right)_{(s)} \sim 0
$$

Hence one has

$$
\begin{array}{r}
-\operatorname{lm}([\Lambda, \Phi] u, \Phi \tilde{Q} u)_{(s)} \sim-\operatorname{Im}\left([\Lambda, \Phi] u, \Phi\left(Q+\operatorname{Re} \hat{P}_{1}\right) u\right)_{(s)} \\
=-\operatorname{Im}\left(\Phi\left\langle D^{\prime}\right\rangle^{2 s}[\Lambda, \Phi] u,\left(Q+\operatorname{Re} \hat{P}_{1}\right) u\right)
\end{array}
$$

Here we note that $\Phi\left\langle D^{\prime}\right\rangle^{2 s}[\Lambda, \Phi]=\left(i \Phi_{1}\left\langle\xi^{\prime}\right\rangle^{2 s} \Phi_{1}\right)^{w}+T_{1}+T_{2}$ where $T_{1} \in$ $S\left(\left\langle\xi^{\prime}\right\rangle^{2 s-1}, g_{0}\right)$ is real and $T_{2} \in S\left(\left\langle\xi^{\prime}\right\rangle^{2 s-2}, g_{0}\right)$. Since

$$
-\operatorname{Im}\left(\left(T_{1}+T_{2}\right) u,\left(Q+\operatorname{Re} \hat{P}_{1}\right) u\right) \sim-\operatorname{Im}\left(T_{1} u, Q u\right) \sim 0
$$

it follows that

$$
-\operatorname{Im}([\Lambda, \Phi] u, \Phi \tilde{Q} u)_{(s)} \sim-\operatorname{Re}\left(\Phi_{1} u, \Phi_{1}\left(Q+\operatorname{Re} \hat{P}_{1}\right) u\right)_{(s)}
$$

Note

$$
\begin{aligned}
&\left(\Phi_{1} u, \Phi_{1}\left(Q+\operatorname{Re} \hat{P}_{1}\right) u\right)_{(s)}=\left(\Phi_{1} u,\left(Q+\operatorname{Re} \hat{P}_{1}\right) \Phi_{1} u\right)_{(s)} \\
&+\left(\Phi_{1} u,\left[\Phi_{1}, Q+\operatorname{Re} \hat{P}_{1}\right] u\right)_{(s)} \\
& \sim\left(\Phi_{1} u,\left(Q+\operatorname{Re} \hat{P}_{1}\right) \Phi_{1} u\right)_{(s)}+\left(\Phi_{1} u,\left[\Phi_{1}, Q\right] u\right)_{(s)}
\end{aligned}
$$

where we have $\operatorname{Re}\left(\Phi_{1} u,\left[\Phi_{1}, Q\right] u\right)_{(s)} \sim 0$ since

$$
\left[\Phi_{1}, Q\right]+\left(i\left\{\Phi_{1}, Q\right\}\right)^{w} \in S\left(\left\langle\xi^{\prime}\right\rangle^{-1}, g_{0}\right)
$$

Thus we have

$$
\begin{align*}
\operatorname{Im}\left([\Lambda, \Phi] u, \Phi\left(-\Lambda^{2}+B \Lambda\right) u\right)_{(s)} & =\operatorname{Im}([\Lambda, \Phi] u, \Phi P u)_{(s)} \\
-\operatorname{Im}([\Lambda, \Phi] u, \Phi \tilde{Q} u)_{(s)} \preceq & \operatorname{Im}([\Lambda, \Phi] u, \Phi P u)_{(s)} \tag{5.5.7}\\
-\operatorname{Re}\left(\left(\Phi_{1} u,\right.\right. & \left.\left(Q+\operatorname{Re} \hat{P}_{1}\right) \Phi_{1} u\right)_{(s)}
\end{align*}
$$

From (5.5.4), (5.5.5), (5.5.6) and (5.5.7) we conclude that

$$
\begin{array}{r}
\operatorname{Im}([P, \Phi] u, \Lambda \Phi u)_{(s)} \preceq \frac{d}{d x_{0}} \operatorname{Re}([\Lambda, \Phi] u, \Phi \Lambda u)_{(s)} \\
-\left\|\Lambda \Phi_{1} u\right\|_{(s)}^{2}-\operatorname{Re}\left(\left(Q+\operatorname{Re} \hat{P}_{1}\right) \Phi_{1} u, \Phi_{1} u\right)_{(s)} \\
-2 \operatorname{Re}\left(\left(\{\Lambda, f\}^{-1}\{\lambda, f\}\right)^{w} \Lambda \Phi_{1} u, \Lambda \Phi_{1} u\right)_{(s)} \\
+\operatorname{Re}\left(\left(\{\Lambda, f\}^{-1}\{Q, f\}\right)^{w} \Phi_{1} u, \Lambda \Phi_{1} u\right)_{(s)} \\
+\operatorname{Im}([\Lambda, \Phi] u, \Phi P u)_{(s)}
\end{array}
$$

We remark that setting

$$
a=\left(1+2\{\Lambda, f\}^{-1}\{\lambda, f\}\right)^{1 / 2}, \quad b=a^{-1}\{\Lambda, f\}^{-1}\{Q, f\}
$$

we see that

$$
\begin{array}{r}
\left\|\Lambda \Phi_{1} u\right\|_{(s)}^{2}+2 \operatorname{Re}\left(\left(\{\Lambda, f\}^{-1}\{\lambda, f\}\right)^{w} \Lambda \Phi_{1} u, \Lambda \Phi_{1} u\right)_{(s)} \\
\sim\left\|a^{w} \Lambda \Phi_{1} u\right\|_{(s)}^{2}, \\
\left\|a \Lambda \Phi_{1} u\right\|_{(s)}^{2}+\operatorname{Re}\left(\left(Q+\operatorname{Re} \hat{P}_{1}\right) \Phi_{1} u, \Phi_{1} u\right)_{(s)} \\
-\operatorname{Re}\left(\left(\{\Lambda, f\}^{-1}\{Q, f\}\right)^{w} \Phi_{1} u, \Lambda \Phi_{1} u\right)_{(s)} \\
\sim\left\|\left(a^{w} \Lambda-\frac{b^{w}}{2}\right) \Phi_{1} u\right\|_{(s)}^{2}+\operatorname{Re}\left(\left(Q+\operatorname{Re} \hat{P}_{1}-\frac{1}{4}\left(b^{2}\right)^{w}\right) \Phi_{1} u, \Phi_{1} u\right)_{(s)}
\end{array}
$$

because

$$
\begin{array}{ll}
a \# a-a^{2} \in S\left(\left\langle\xi^{\prime}\right\rangle^{-1}, g_{0}\right), & b \# b-b^{2} \in S\left(1, g_{0}\right), \\
& a \# b-a b \in S\left(1, g_{0}\right)
\end{array}
$$

From the assumption we have

$$
\begin{aligned}
& \hat{Q}=Q-\frac{1}{4} b^{2}=\frac{1}{4}\{\Lambda, f\}^{-2} a^{-2} \\
& \times\left(4 Q\left(\{\Lambda, f\}^{2}+2\{\Lambda, f\}\{\lambda, f\}\right)-\{Q, f\}^{2}\right) \geq 0
\end{aligned}
$$

but we note that the positive trace $\operatorname{Tr}^{+} \hat{Q}_{\rho}$ can be smaller than $\operatorname{Tr}^{+} Q_{\rho}$ in general.

To avoid this inconvenience we choose f carefully. We first recall that

$$
\operatorname{rank}\left(\left\{\phi_{i}, \phi_{j}\right\}\right)_{0 \leq i, j \leq r}=\operatorname{rank}\left(\left\{\phi_{i}, \phi_{j}\right\}\right)_{1 \leq i, j \leq r}=2 k
$$

is constant on Σ by assumption. Let $\rho \in \Sigma$ and take a new homogeneous symplectic coordinates system (X, Ξ) around ρ such that $\Xi_{0}=\xi_{0}-\phi_{1}$ and $X_{0}=x_{0}$ (see Appendix). Since $\left\{\Xi_{0}, \phi_{j}\right\}=0$ on $\Sigma, j=1, \ldots, r$ then Σ is cylindrical in the X_{0} direction and defined near ρ by $\Xi_{0}=0, \phi_{j}\left(0, X^{\prime}, \Xi^{\prime}\right)=0$, $j=1, \ldots, r$. From Theorem 21.2.4 in [19] there are homogeneous symplectic coordinates $y^{\prime}, \eta^{\prime}$ such that $\Sigma^{\prime}=\left\{\phi_{j}\left(0, X^{\prime}, \Xi^{\prime}\right)=0, j=1, \ldots, r\right\}$ is defined by

$$
y_{1}=\cdots=y_{k}=\eta_{1}=\cdots=\eta_{k}=0, \quad \eta_{k+1}=\cdots=\eta_{k+\ell}=0
$$

where $r=2 k+\ell$. Let $\left\{y_{k+1}, \ldots, y_{n}, \eta_{k+\ell+1}, \ldots, \eta_{n}\right\}$ be given by $\psi_{1}\left(x^{\prime}, \xi^{\prime}\right), \ldots$, $\psi_{s}\left(x^{\prime}, \xi^{\prime}\right), s=2 n-(2 k+\ell)$ in the original coordinates. We denote by the same $\psi_{j}\left(x^{\prime}, \xi^{\prime}\right)$ their extended symbols and define

$$
d_{Q, \epsilon}\left(x, \xi^{\prime} ; \bar{\rho}^{\prime}\right)=\left\{Q\left(x, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{-2}+\sum_{j=1}^{s}\left(\tilde{\psi}_{j}\left(x^{\prime}, \xi^{\prime}\right)-\tilde{\psi}_{j}\left(\bar{\rho}^{\prime}\right)\right)^{2}+\epsilon^{2}\right\}^{1 / 2}
$$

with $\tilde{\psi}_{j}=\psi_{j}\left\langle\xi^{\prime}\right\rangle^{-1}$. Here we note that

$$
\begin{equation*}
\operatorname{Tr}^{+} Q_{\rho}=\operatorname{Tr}^{+}\left(Q-\frac{1}{4}\left\{Q, d_{Q, \epsilon}\right\}^{2}\right)_{\rho} \tag{5.5.8}
\end{equation*}
$$

on Σ which is examined without difficulties because in the coordinates $y^{\prime}, \eta^{\prime}$ above we see that $\left\{Q, d_{Q, \epsilon}\right\}_{\rho}^{2}$ is a quadratic form in $\left(\eta_{k+1}, \ldots, \eta_{k+\ell}\right)$ which is symplectically independent from $\left\{y_{1}, \ldots, y_{k}, \eta_{1}, \ldots, \eta_{k}\right\}$. It is easy to see that

$$
C^{-1} d_{0}\left(x^{\prime}, \xi^{\prime} ; \bar{\rho}^{\prime}\right) \leq d_{Q, 0}\left(x, \xi^{\prime} ; \bar{\rho}^{\prime}\right) \leq C d_{0}\left(x^{\prime}, \xi^{\prime} ; \bar{\rho}^{\prime}\right)
$$

with some $C>0$ for $\left(x^{\prime}, \xi^{\prime}\right)$ near $\bar{\rho}^{\prime}$ and x_{0} close to 0 . Here we define Φ using f_{Q}

$$
\begin{equation*}
f_{Q}\left(x, \xi^{\prime} ; \bar{\rho}^{\prime}\right)=x_{0}-\tau+\nu d_{Q, \epsilon}\left(x, \xi^{\prime} ; \bar{\rho}^{\prime}\right) \tag{5.5.9}
\end{equation*}
$$

From (5.5.8) it follows that there is $\nu_{0}>0$ such that for $0<\nu \leq \nu_{0}$

$$
\begin{equation*}
\operatorname{Tr}^{+} \hat{Q}_{\rho}+\operatorname{Re} \hat{P}_{1}(\rho) \geq c\left\langle\xi^{\prime}\right\rangle \tag{5.5.10}
\end{equation*}
$$

with some $c>0$. Then the Melin's inequality gives

$$
\operatorname{Re}\left(\left(Q+\operatorname{Re} \hat{P}_{1}-\frac{1}{4}\left(b^{2}\right)^{w}\right) \Phi_{1}, \Phi_{1} u\right)_{(s)} \geq c^{\prime}\left\|\Phi_{1} u\right\|_{(s+1 / 2)}^{2}-C\|u\|_{(s)}^{2}
$$

with some $c^{\prime}>0$. We summarize what we have proved in
Lemma 5.5.1 Let Φ be defined by f_{Q}. Then there exists $\nu_{0}>0$ such that for any $0<\nu \leq \nu_{0}$ we have

$$
\begin{array}{r}
\operatorname{Im}([P, \Phi] u, \Lambda \Phi u)_{(s)} \preceq \frac{d}{d x_{0}} \operatorname{Re}([\Lambda, \Phi] u, \Phi \Lambda u)_{(s)} \\
+\operatorname{Im}([\Lambda, \Phi] u, \Phi P u)_{(s)} .
\end{array}
$$

88CHAPTER 5. NONEFFECTIVELY HYPERBOLIC CAUCHY PROBLEM II
We turn to $\operatorname{Im}(P \Phi u, \Lambda \Phi u)_{(s)}$. Let $\tilde{\Lambda}=\Lambda+a$ with $a \in S\left(1, g_{0}\right)$ where a is pure imaginary. Since a is pure imaginary, repeating similar arguments as above we see

$$
\operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s}[P, \Phi] u, a\left\langle D^{\prime}\right\rangle^{s} \Phi u\right) \sim 0
$$

and hence

$$
\begin{aligned}
\operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s} P \Phi u, a\left\langle D^{\prime}\right\rangle^{s} \Phi u\right) & \sim \operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s} \Phi P u, a\left\langle D^{\prime}\right\rangle^{s} \Phi u\right) \\
& \geq-C\|\Phi P u\|_{(s)}^{2}-C\|\Phi u\|_{(s)}^{2}
\end{aligned}
$$

so that

$$
\operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s} P \Phi u, \tilde{\Lambda}\left\langle D^{\prime}\right\rangle^{s} \Phi u\right) \succeq \operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s} P \Phi u, \Lambda\left\langle D^{\prime}\right\rangle^{s} \Phi u\right)-C\|\Phi P u\|_{(s)}^{2}
$$

Noting $\left[\Lambda,\left\langle D^{\prime}\right\rangle^{s}\right]+\left(i\left\{\Lambda,\left\langle\xi^{\prime}\right\rangle^{s}\right\}\right)^{w} \in S\left(\left\langle\xi^{\prime}\right\rangle^{s-2}, g_{0}\right)$ the same reasoning shows that

$$
\operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s}[P, \Phi] u,\left[\Lambda,\left\langle D^{\prime}\right\rangle^{s}\right] \Phi u\right) \sim 0
$$

and then we conclude that

$$
\operatorname{Im}(P \Phi u, \Lambda \Phi u)_{(s)} \succeq \operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s} P \Phi u, \tilde{\Lambda}\left\langle D^{\prime}\right\rangle^{s} \Phi u\right)-C\|\Phi P u\|_{(s)}^{2} .
$$

From (5.5.3) and Lemma 5.5.1 it follows that

$$
\begin{aligned}
c\left\|\Phi_{1} u\right\|_{(s+1 / 2)}^{2}+ & c\left\|\Lambda \Phi_{1} u\right\|_{(s)}^{2}+\operatorname{Im}\left(\left\langle D^{\prime}\right\rangle^{s} P \Phi u, \tilde{\Lambda}\left\langle D^{\prime}\right\rangle^{s} \Phi u\right) \\
& \preceq \frac{d}{d x_{0}} \operatorname{Re}([\Lambda, \Phi] u, \Phi \Lambda u)_{(s)}+C\|\Phi P u\|_{(s)}^{2} .
\end{aligned}
$$

Integrating in x_{0} and applying Proposition 5.4.3 we get
Proposition 5.5.1 Let Φ be as in Lemma 5.5.1. Then we have

$$
\begin{array}{r}
N_{s}(\Phi u(t))+\int_{\tau}^{t} N_{s}(\Phi u) d x_{0} \\
\leq C\left(s, T_{i}\right)\left(N_{s-1 / 4}(u(t))+\int_{\tau}^{t}\left(\|\Phi P u\|_{(s)}^{2}+N_{s-1 / 4}(u)\right) d x_{0}\right)
\end{array}
$$

for any $s \in \mathbb{R}$ and any $u \in C^{2}\left(\left[T_{2}, T_{1}\right] ; H^{\infty}\left(\mathbb{R}^{n}\right)\right)$ vanishing in $x_{0} \leq \tau$.
Remark: It is clear that Proposition 5.5 .1 holds for any Φ defined by spatial type f satisfying (5.5.10).

Let $\Gamma_{i}(i=0,1,2)$ be open conic sets in $\mathbb{R}^{2 n} \backslash\{0\}$ with relatively compact basis such that $\Gamma_{0} \subset \subset \Gamma_{1} \subset \subset \Gamma_{2}$. Here $\Gamma_{i} \subset \subset \Gamma_{i+1}$ means that the base of Γ_{i} is relatively compact in that of Γ_{i+1}. Let us take $h_{i}\left(x^{\prime}, \xi^{\prime}\right) \in S\left(1, g_{0}\right)$ with $\operatorname{supp} h_{1} \subset \Gamma_{0}$ and $\operatorname{supp} h_{2} \subset \Gamma_{2} \backslash \Gamma_{1}$. We consider the solution $u \in C^{1}\left(I ; H^{\infty}\right)$ to $P u=h_{1} f$ with $f \in C^{0}\left(I ; H^{\infty}\right)$ where $u=f=0$ in $x_{0}<\tau$, with $\tau \in I$. Arguing exactly as in [31] (Lemma 5.2.1 and Proposition 5.2.3) we have

Proposition 5.5.2 Notations being as above. Then there is $\delta=\delta\left(\Gamma_{i}\right)>0$ such that

$$
\left\|D_{0}^{j} h_{2} u(t)\right\|_{(p)}^{2} \leq C_{p q} \int^{t}\left\|f\left(x_{0}\right)\right\|_{(q)}^{2} d x_{0}
$$

for $j=0,1$ and $\tau \leq t \leq \tau+\delta$ and any $p, q \in \mathbb{R}$. In particular, there is a parametrix of the Cauchy problem for P with finite propagation speed of WF.

REMARK: Repeating the same arguments as in [31] one can estimate the wave front set applying Proposition 5.5.1. If we have more spatial type symbols verifying (5.5.10) then the estimate of wave front set becomes more precise. See [45].

Proof of Theorem 5.1.1: Thanks to Proposition 6.4.5 then P has a parametrix with finite propagation speed of $W F$ at every $\left(0,0, \xi^{\prime}\right)$ with $\left|\xi^{\prime}\right|=1$. Then the C^{∞} well-posedness of the Cauchy problem follows from Proposition 5.2.3 immediately.

Repeating similar arguments (with necessary modifications) proving Theorem 5.1.1 we can prove

Theorem 5.5.1 Assume (4.1.1), (5.1.1), (5.1.2) and $\operatorname{Tr}^{+} F_{p}=0$ on Σ. Then in order that the Cauchy problem for P is C^{∞} well posed it is necessary and sufficient that P satisfies the Levi condition on Σ.

Note that Σ is neither involutive nor symplectic in this case. To prove energy estimates in Proposition 5.4.3 under the assumption $\operatorname{Tr}^{+} F_{p}=0$ we use the following

Lemma 5.5.2 Let $a \in S\left(1, g_{0}\right)$. Then we have

$$
\left|\left(a \phi_{1} u, u\right)\right| \leq C\left(\left\|\Phi_{2} u\right\|^{2}+\left\|\Phi_{r+1} u\right\|^{2}+\left\|\Phi_{r+2} u\right\|^{2}\right)+C^{\prime}\|u\|^{2}
$$

with some $C, C^{\prime}>0$.
Lemma 5.5.3 We have

$$
\left\|\left\langle D^{\prime}\right\rangle^{1 / 3} u\right\|^{2} \leq C\left(\left\|\Phi_{2} u\right\|^{2}+\left\|\Phi_{r+1}\right\|^{2}+\left\|\Phi_{r+2} u\right\|^{2}+\|u\|^{2}\right)
$$

with some $C>0$.

