Chapter 5

Noneffectively hyperbolic Cauchy problem II

5.1 C^{∞} well-posedness

We continue to assume that $\Sigma = \{(x,\xi) \mid p(x,\xi) = 0, dp(x,\xi) = 0\}$ is a C^{∞} manifold and (4.1.1) is verified. In this chapter we study the case

(5.1.1)
$$\operatorname{Ker} F_p^2(\rho) \cap \operatorname{Im} F_p^2(\rho) \neq \{0\}$$

As we have seen in Theorem 3.5.1 the following two assertions are equivalent

- (i) $H_S^3 p(\rho) = 0, \ \rho \in \Sigma,$
- (ii) p admits an elementary decomposition at every $\rho \in \Sigma$

where S is any smooth function verifying (3.4.1) and (3.4.2). As we shall prove in Chapter 7, the condition (ii) is still equivalent to

(5.1.2) there is no null bicharacteristic of p having a limit point in Σ .

In this chapter we discuss the C^{∞} well-posedness of the Cauchy problem assuming (5.1.2) (equivalently assuming (i) in Theorem 3.5.1) under the strict Ivrii-Petkov-Hörmander condition.

Theorem 5.1.1 Assume (4.1.1), (5.1.1), (5.1.2) and the subprincipal symbol P_{sub} verifies the strict Ivrii-Petkov-Hörmander condition on Σ . Then the Cauchy problem for P is C^{∞} well posed.

Let fix any $\rho \in \Sigma$. Thanks to Proposition 3.5.1 near ρ we have an elementary decomposition of $p = -\xi_0^2 + \sum_{i=1}^r \phi_i^2$ such that

$$p = -(\xi_0 + \lambda)(\xi_0 - \lambda) + Q$$

where $\lambda = \phi_1 + O(\sum_{j=1}^r \phi_j^2)$. The main difference from the case that we have studied in the previous chapter is that we have no control of ϕ_1^2 by Q, that is the best we can expect is the inequality

$$CQ \ge \sum_{j=2}^{r} \phi_j^2 + \phi_1^4 |\xi'|^{-2}.$$

Another serious difficulty is that it seems to be hard to get a local (not microlocal) elementary decomposition. To overcome this difficulty we follow [31], [24] in the next section.

5.2 Parametrix with finite propagation speed of wave front sets

Recall that we are working with operators of the form

(5.2.1)
$$P(x,D) = -D_0^2 + A_1(x,D')D_0 + A_2(x,D')$$

where $A_j(x,\xi') \in S(\langle \xi' \rangle^j, g_0)$. Let $I = (-\tau, \tau)$ be an open interval containing the origin and we denote by $C^k(I, H^p)$ the set of all k-times continuously differentiable functions from I to $H^p = H^p(\mathbb{R}^n)$ and denote by $C^k(I, H^p)^+$ the set of all $f \in C^k(I, H^p)$ vanishing in $x_0 < 0$. We put $H^{\infty} = \cap_k H^k$ and $H^{-\infty} = \bigcup_k H^k$.

Definition 5.2.1 Let T be a linear operator from $C^0(I, H^{-\infty})^+$ to $C^1(I, H^{\infty})^+$. We say that $T \in \mathcal{R}$ if there is a positive constant $\delta(T)$ such that

$$\|D_0^k Tf(t, \cdot)\|_{(q)}^2 \le c_{pq} \int^t \|f(\tau, \cdot)\|_{(p)}^2 d\tau, \quad \forall t \le \delta(T)$$

for k = 0, 1 and for any $p, q \in \mathbb{R}$ and $f \in C^0(I, H^p)^+$.

Definition 5.2.2 ([31]) Let $(0, \hat{x}', \hat{\xi}') = (0, \rho')$. We say that G is a parametrix of P at $(0, \rho')$ with finite propagation speed of wave front sets with loss of β derivatives if G satisfies the following conditions

(i) for any $h = h(x', D') \in S(1, g_0)$ supported near ρ' we have $PGh - h \in \mathcal{R}$,

(ii) we have

$$\|D_0^j Gf(t,\cdot)\|_{(p)}^2 \le c_p \int^t \|f(\tau,\cdot)\|_{(p+j+\beta)}^2 d\tau, \ j=0,1$$

for any $p \in \mathbb{R}$ and for any $f \in C^0(I, H^{p+1+\beta})^+$,

(iii) for any $h_1(x', D') \in S(1, g_0)$ which is supported near ρ' and for any $h_2(x', D') \in S(1, g_0)$ with supp $h_2 \subset \mathbb{R}^{2n} \setminus (\text{supp } h_1)$, one has

$$D_0^j h_2 G h_1 \in \mathcal{R}, \quad j = 0, 1.$$

Let \tilde{P} be another operator of the form (5.2.1) then we say

$$P \equiv \tilde{P}$$
 near $(0, \rho')$

if one can write

$$P - \tilde{P} = \sum_{j=0}^{2} B_j(x, D') D_0^{2-j}$$

with $B_j \in S(\langle \xi' \rangle^j, g_0)$ which are in $S^{-\infty} = \bigcap_k S(\langle \xi' \rangle^k, g_0)$ near ρ' uniformly in x_0 when $|x_0|$ is small.

In what follows, to simplify notations, we abbreviate a parametrix with finite propagation speed of wave front sets as just "parametrix". The next lemma is clear from the definition.

Lemma 5.2.1 Let $\tilde{P} \equiv P$ near $(0, \rho')$ and let \tilde{G} be a parametrix of \tilde{P} at $(0, \rho')$ with loss of β derivatives. Then \tilde{G} is a parametrix of P at $(0, \rho')$ with loss of β derivatives.

Let $T(x, D') \in S(1, g_0)$ be elliptic near $(0, \rho')$ uniformly in x_0 with small $|x_0|$. Then

Proposition 5.2.1 Let P, \tilde{P} be operators of the form (5.2.1). Assume that $PT \equiv T\tilde{P}$ near $(0, \rho')$. If \tilde{P} has a parametrix at $(0, \rho')$ with loss of β derivatives then so does P.

Let χ be a local homogeneous canonical transformation from a neighborhood of $(\hat{y}_0, \hat{y}', \hat{\eta}_0, \hat{\eta}')$ to a neighborhood of $(\hat{x}_0, \hat{x}', \hat{\xi}_0, \hat{\xi}')$ such that $y_0 = x_0$. Since χ preserves y_0 coordinate, the generating function of this canonical transformation has the form

$$x_0\eta_0 + H(x,\eta').$$

We work with a Fourier integral operator F associated with χ which is represented as

$$Fu(x) = \int e^{-iy'\eta' + iH(x,\eta')} a(x,\eta') u(x_0,y') dy' d\eta'$$

(in a convenient y' coordinates) and elliptic near $(\hat{x}, \hat{\xi}, \hat{y}, \hat{\eta})$, where x_0 is regarded as a parameter. We assume that F is bounded from $H^k(\mathbb{R}^n_{y'})$ to $H^k(\mathbb{R}^n_{x'})$ for any $k \in \mathbb{R}$ uniformly in x_0 with small $|x_0|$ (see [10], [17], Theorem 25.3.11 in [19]).

Proposition 5.2.2 Let χ , F be as above and P(x, D), $\tilde{P}(y, D)$ be operators of the form (5.2.1). Assume that

$$PF \equiv F\tilde{P} \quad near \quad (0, \hat{y}', \hat{\eta}').$$

If \tilde{P} has a parametrix at $(0, \hat{y}', \hat{\eta}')$ with loss of β derivatives then so does P at $(0, \hat{x}', \hat{\xi}')$ with loss of β derivatives.

Proposition 5.2.3 ([31]) Let P be an operator of the form (5.2.1). Assume that P has a parametrix at $(0,0,\xi')$ with loss of $\beta(\xi')$ derivatives for every ξ' with $|\xi'| = 1$. Then the Cauchy problem for P is locally solvable near (0,0)in C^{∞} . More precisely there is an open neighborhood $J \times \omega$ of (0,0) such that for every $f \in C^0(I, H^{p+\nu})^+$ $(p + \nu \ge 0)$ there exists $u \in \bigcap_{j=0}^1 C^j(J, H^{p-j})^+$ satisfying

$$Pu = f$$
 in $J \times \omega$

where $\nu = \sup_{|\xi'|=1} \beta(\xi')$.

In the following sections, assuming that P satisfies the strict Ivrii-Petkov-Hörmander condition on Σ , we prove the existence of parametrix of P at every $(0, 0, \xi')$ with $|\xi'| = 1$, hence we can conclude the C^{∞} well-posedness.

5.3 Preliminaries

Let fix $\rho \in \Sigma$ and we work near ρ . Thanks to Proposition 3.5.1 p admits an elementary decomposition verifying the conditions stated there. We extend these ϕ_j (given in Proposition 3.5.1) outside a neighborhood of ρ so that they belong to $S(\langle \xi' \rangle, g_0)$ and zero outside another neighborhood of ρ . Using such extended ϕ_j we define λ by the same formula in Proposition 3.5.1

$$\lambda = \phi_1 + L(\phi')\phi_1 + \gamma \phi_1^3 \langle \xi' \rangle^{-2}$$

where the coefficients of L are extended outside a neighborhood of ρ . Choosing a neighborhood enough small we may assume that

$$(5.3.1) \qquad \qquad \lambda = w\phi_1$$

where $c_1 \leq w(x,\xi') \leq c_2, w \in S(1,g_0)$ with some $c_i > 0$. Let us write

$$p = -(\xi_0 + \lambda)(\xi_0 - \lambda) + Q.$$

Recall

$$Q = \sum_{j=2}^{r} \phi_j^2 + a(\phi)\phi_1^4 \langle \xi' \rangle^{-2} + b(\phi')L(\phi')\phi_1^2 \ge c(|\phi'|^2 + \phi_1^4 \langle \xi' \rangle^{-2})$$

with some c > 0 where $\phi' = (\phi_2, ..., \phi_r)$. Take $0 \le \chi_i(x', \xi') \le 1$, homogeneous of degree 0 in ξ' ($|\xi'| \ge 1$), which are 1 in conic neighborhoods of ρ' , $\rho = (0, \rho')$ and supported in another small conic neighborhoods of ρ' such that $\chi_2 = 1$ on the support of χ_1 . We can assume that Proposition 3.5.1 holds in a neighborhood of the support of χ_2 . We now define $f(x, \xi')$ solving

(5.3.2)
$$\{\xi_0 - \lambda, f\} = 0, \quad f(0, x', \xi') = (1 - \chi_1(x', \xi')) \langle \xi' \rangle.$$

Note that $f(x,\xi') = \langle \xi' \rangle$ outside some neighborhood of ρ' because $\lambda = 0$ and $\chi_1 = 0$ outside some neighborhood of ρ' .

Lemma 5.3.1 Let $f(x,\xi')$ be as above. Taking M > 0 large and $\tau > 0$ small we have a decomposition

$$p = -(\xi_0 + \lambda)(\xi_0 - \lambda) + \hat{Q}$$

in $|x_0| < \tau$ with $\hat{Q} = Q + M^2 f(x, \xi')^2$ such that

$$|\{\xi_0 - \lambda, \hat{Q}\}| \le C\hat{Q}, \quad |\{\xi_0 + \lambda, \xi_0 - \lambda\}| \le C\big(\sqrt{\hat{Q}} + |\lambda|\big).$$

Proof: By a compactness argument there are c > 0 and $\tau > 0$ such that we have

$$f(x,\xi') \ge c|\xi'|$$

outside the support of χ_2 if $|x_0| \leq \tau$. Let us consider

$$|\{\xi_0 - \lambda, \hat{Q}\}|$$

which is bounded by CQ on the support of χ_2 by Proposition 3.5.1 and by CM^2f^2 outside the support of χ_2 , thus bounded by $C\hat{Q}$. Noting that $\{\xi_0+\lambda,\xi_0-\lambda\} = 2\{\lambda,\xi_0-\lambda\}$ and $\{\phi_j,\xi_0-\lambda\}$ is a linear combination of ϕ_j , j = 1, ..., r and $\lambda = \phi_1 + L(\phi')\phi_1 + \gamma\phi_1^3\langle\xi'\rangle^{-2}$ on the support of χ_2 repeating the same arguments we conclude that

$$|\{\xi_0 + \lambda, \xi_0 - \lambda\}| \le C(\sqrt{\hat{Q}} + |\lambda|)$$

which is the second assertion.

Let f_1 be defined as (5.3.2) with $\tilde{\chi}_1$ of which support is smaller than that of χ_1 and consider

$$\tilde{P} = p^w + P_1 + M_1 f_1(x,\xi') + P_0, \quad p = -(\xi_0 + \lambda)(\xi_0 - \lambda) + \hat{Q}$$

which coincides with the original P near ρ . In what follows to simplify notations we denote this operator by P, \hat{Q} by Q and $P_1 + M_1 f_1$ by P_1 again:

$$\tilde{P}$$
 by P , \hat{Q} by Q , $P_1 + M_1 f_1$ by P_1 .

We sometimes denote

$$\phi_{r+1}(x,\xi') = Mf(x,\xi').$$

Here we make a general remark. Let $a(x,\xi') \in S(\langle \xi' \rangle, g_0)$ be an extended symbol of some symbol which vanishes near ρ on Σ . Then repeating the same arguments as in the proof of Lemma 5.3.1 one can write a as

$$a(x,\xi') = \sum_{j=1}^{r+1} c_j \phi_j(x,\xi')$$

with some $c_j \in S(1, g_0)$.

5.4 Microlocal energy estimates

We study $P = (p + P_{sub})^w + R$ with $R \in S(1, g_0)$ where p is the symbol defined in the previous section. Recall that P coincides with the original P near ρ . We assume that the original P satisfies the strict Ivrii-Petkov-Hörmander condition. In this section we follow the arguments in [24] (also see [6]). We start with

Proposition 5.4.1 There exists $a \in S(1, g_0)$ such that we can write

$$P = -\tilde{M}\tilde{\Lambda} + Q + \hat{P}_1 + B\tilde{\Lambda} + \hat{P}_0$$

where $\tilde{\Lambda} = (\xi_0 - \lambda - a)^w$, $\tilde{M} = (\xi_0 + \lambda + a)^w$ and B, $\hat{P}_0 \in S(1, g_0)$ moreover we have

$$\begin{split} & \operatorname{Im} \hat{P}_1 = \sum_{j=2}^{r+1} c_j \phi_j, \ c_j \in S(1,g_0), \\ & \operatorname{Tr}^+ Q_\rho + \operatorname{Re} \hat{P}_1(\rho) \geq c \langle \xi' \rangle, \ \rho \in \Sigma, \ \hat{P}_1 \in S(\langle \xi' \rangle,g_0) \end{split}$$

with some c > 0.

Proof: As before let us write $P_{sub} = P_s + b(\xi_0 - \lambda)$. Then since λ vanishes on Σ we have

$$P_{sub}\big|_{\Sigma} = P_s\big|_{\{\phi_1=0,...,\phi_r=0\}}.$$

Since the strict Ivrii-Petkov-Hörmander condition is verified then we conclude that

 $\operatorname{Im} P_s = 0$

on Σ near ρ . We note that

$$p^{w} = -(\xi_{0} + \lambda)^{w}(\xi_{0} - \lambda)^{w} + Q^{w} - \frac{i}{2}\{\xi_{0} + \lambda, \xi_{0} - \lambda\} + R$$
$$= -M\Lambda + Q^{w} - \frac{i}{2}\{\xi_{0} + \lambda, \xi_{0} - \lambda\} + R, \ R \in S(1, g_{0})$$

with $\Lambda = (\xi_0 - \lambda)^w$, $M = (\xi_0 + \lambda)^w$. Since $\{\xi_0 + \lambda, \xi_0 - \lambda\}$ and $\text{Im } P_s$ are linear combinations of ϕ_j , j = 1, ..., r near ρ then, as we remarked as before, we can write

(5.4.1)
$$\operatorname{Im} \hat{P}_1 = \operatorname{Im} P_s - \frac{1}{2} \{\xi_0 + \lambda, \xi_0 - \lambda\} = \sum_{j=1}^{r+1} c_j \phi_j$$

with some real $c_j \in S(1, g_0)$. Recalling

$$w\phi_1 = \frac{1}{2} \left((\xi_0 + \lambda) - (\xi_0 - \lambda) \right)$$

one can write

$$-M\Lambda + (ic_1\phi_1)^w = -(\xi_0 + \lambda + iw^{-1}c_1/2)^w(\xi_0 - \lambda - iw^{-1}c_1/2)^w + r$$

with some $r \in S(1, g_0)$. Since it is clear $B\Lambda = B(\xi_0 - \lambda - iw^{-1}c_1/2)^w + r'$, $r' \in S(1, g_0)$ we get the assertion on $\operatorname{Im} \hat{P}_1$.

Lemma 4.5.1 and the strict Ivrii-Petkov-Hörmander condition shows that

$$\operatorname{Tr}^+ Q_{\rho} + \operatorname{\mathsf{Re}} P_s(\rho) > 0$$

on Σ near the reference point, say in V. Outside V we have $f_1(x,\xi') \ge c\langle \xi' \rangle$ with some c > 0 and hence the second assertion.

From Proposition 5.4.1 we can write

$$P = -\tilde{M}\tilde{\Lambda} + B\tilde{\Lambda} + \tilde{Q}$$

where

$$\begin{cases} \tilde{M} = \xi_0 + \lambda + a = \xi_0 - \tilde{m}, \\ \tilde{\Lambda} = \xi_0 - \lambda - a = \xi_0 - \tilde{\lambda}, \\ \tilde{Q} = Q + \hat{P}_1 + \hat{P}_0. \end{cases}$$

Recall that Proposition 4.3.2 gives

$$2\mathrm{Im}(P_{\theta}u,\tilde{\Lambda}_{\theta}u) \geq \frac{d}{dx_{0}}(\|\tilde{\Lambda}_{\theta}u\|^{2} + ((\mathrm{Re}\,\tilde{Q})u,u) + \theta^{2}\|u\|^{2})$$

$$+\theta\|\tilde{\Lambda}_{\theta}u\|^{2} + 2\theta\mathrm{Re}(\tilde{Q}u,u) + 2((\mathrm{Im}\,B)\tilde{\Lambda}_{\theta}u,\tilde{\Lambda}_{\theta}u)$$

$$+2((\mathrm{Im}\,\tilde{m})\tilde{\Lambda}_{\theta}u,\tilde{\Lambda}_{\theta}u) + 2\mathrm{Re}(\tilde{\Lambda}_{\theta}u,(\mathrm{Im}\,\tilde{Q})u)$$

$$+\mathrm{Im}([D_{0} - \mathrm{Re}\,\tilde{\lambda},\mathrm{Re}\,\tilde{Q}]u,u) + 2\mathrm{Re}((\mathrm{Re}\,\tilde{Q})u,(\mathrm{Im}\,\tilde{\lambda})u)$$

$$+\theta^{3}\|u\|^{2} + 2\theta^{2}((\mathrm{Im}\,\tilde{\lambda})u,u).$$

Since $\operatorname{Im} \tilde{m}$, $\operatorname{Im} \tilde{\lambda} \in S(1, g_0)$ then it is clear that

(5.4.3)
$$|((\operatorname{Im} \tilde{m})\tilde{\Lambda}_{\theta}u, \tilde{\Lambda}_{\theta}u)| \le C \|\tilde{\Lambda}_{\theta}u\|^2, \ |((\operatorname{Im} \tilde{\lambda})u, u)| \le C \|u\|^2.$$

It is also clear

(5.4.4)
$$((\operatorname{Im} B)\tilde{\Lambda}_{\theta}u, \tilde{\Lambda}_{\theta}u) \ge -C \|\tilde{\Lambda}_{\theta}u\|^2$$

with some C > 0 because $\text{Im } B \in S(1, g_0)$. To simplify notations let us denote

$$\Phi = (\Phi_2, ..., \Phi_r, \Phi_{r+1}, \Phi_{r+2}) = (\phi_2, ..., \phi_r, f, \phi_1^2 \langle \xi' \rangle^{-1})$$

where we recall $\Phi_j \in S(\langle \xi' \rangle, g_0)$.

Lemma 5.4.1 There exist $C_i > 0$ such that we have

$$\sum_{j=2}^{r+2} \|\Phi_j u\|^2 \le C_1(Qu, u) + C_2 \|u\|^2.$$

Proof: Take $C_1 > 0$ so that $C_1Q - \sum_{j=2}^{r+2} \Phi_j^2 \ge 0$. Then from the Fefferman-Phong inequality it follows that

$$C_1(Qu, u) \ge \left((\sum_{j=2}^{r+2} \Phi_j^2)^w u, u \right) - C_2 \|u\|^2.$$

Noting that

$$\sum_{j=2}^{r+2} \Phi_j^2 = \sum_{j=2}^{r+2} \Phi_j \# \Phi_j + R, \ R \in S(1, g_0)$$

the proof is immediate.

We now study

$$\operatorname{Re} \tilde{Q} = Q + \operatorname{Re} \hat{P}_1 + \operatorname{Re} \hat{P}_0, \quad \operatorname{Re} \hat{P}_1 \in S(\langle \xi' \rangle, g_0).$$

From Proposition 5.4.1 taking sufficiently small $\epsilon_0 > 0$ we have

$$(1-\epsilon_0)\mathrm{Tr}^+Q_{\rho} + \mathrm{Re}\,\hat{P}_1(\rho) \ge c\langle\xi'\rangle, \ \ \rho \in \Sigma$$

with some c > 0 and then from the Melin's inequality [35] it follows that

(5.4.5)
$$\mathsf{Re}((Q + \mathsf{Re}\,\hat{P}_1)u, u) \ge \epsilon_0 \mathsf{Re}(Qu, u) + c' \|u\|_{(1/2)}^2 - C \|u\|^2$$

with some c' > 0. Thus we conclude

(5.4.6)
$$\mathsf{Re}(\tilde{Q}u, u) \ge \epsilon_0(Qu, u) + c \|u\|_{(1/2)}^2 - C \|u\|^2$$

with some c > 0.

We now examine the term $\operatorname{Re}((\operatorname{Re} \tilde{Q})u, (\operatorname{Im} \tilde{\lambda})u)$. Since $\operatorname{Im} \tilde{\lambda} \in S(1, g_0)$ we have $\operatorname{Re}(\operatorname{Im} \tilde{\lambda} \# Q) = \operatorname{Im} \tilde{\lambda} Q + R$ with $R \in S(1, g_0)$ and hence

$$\operatorname{Re}(Qu,(\operatorname{Im}\tilde{\lambda})u) \leq (\operatorname{Im}\tilde{\lambda}Qu,u) + C' \|u\|^2.$$

Take C > 0 so that $C - \operatorname{Im} \tilde{\lambda} \ge 0$ then $C(Qu, u) - (\operatorname{Im} \tilde{\lambda} Qu, u) \ge -C_1 ||u||^2$ by the Fefferman-Phong inequality because $0 \le (C - \operatorname{Im} \tilde{\lambda})Q \in S(\langle \xi' \rangle^2, g_0)$. Thus we have

$$C(Qu, u) \ge \mathsf{Re}(Qu, (\mathsf{Im}\,\tilde{\lambda})u) - C_2 \|u\|^2$$

Noting $|((\operatorname{\mathsf{Re}} \hat{P}_1)u, (\operatorname{\mathsf{Im}} \tilde{\lambda})u)| \leq C ||u||_{(1/2)}^2$ for $\operatorname{\mathsf{Re}} \hat{P}_1 \in S(\langle \xi' \rangle, g_0)$ it follows from (5.4.6) that

(5.4.7)
$$C_3 \operatorname{Re}(\tilde{Q}u, u) + 2\operatorname{Re}((\operatorname{Re}\tilde{Q})u, (\operatorname{Im}\tilde{\lambda})u) \ge -C \|u\|^2$$

with some $C_3 > 0$.

Recall that

$$\operatorname{Im} \tilde{Q} = \operatorname{Im} \hat{P}_1 + \operatorname{Im} \hat{P}_0$$

and note

$$\operatorname{Im} \hat{P}_1 = \sum_{j=2}^{r+1} c_j \# \Phi_j + r, \quad c_j, \ r \in S(1, g_0)$$

by (5.4.1). Thus it is easy to see

$$|(\tilde{\Lambda}_{\theta}u, (\operatorname{Im} \hat{P}_{1})u)| \leq C \|\tilde{\Lambda}_{\theta}u\|^{2} + C \sum_{j=2}^{r+1} \|\Phi_{j}u\|^{2} + C \|u\|^{2}$$
$$\leq C \|\tilde{\Lambda}_{\theta}u\|^{2} + C'(Qu, u) + C' \|u\|^{2}$$

by Lemma 5.4.1. Thus we get

(5.4.8)
$$|(\tilde{\Lambda}_{\theta}u, (\operatorname{Im} \tilde{Q})u)| \leq C \|\tilde{\Lambda}_{\theta}u\|^{2} + C(Qu, u) + C \|u\|^{2}.$$

We consider $\operatorname{Im}([D_0 - \operatorname{Re} \tilde{\lambda}, \operatorname{Re} \tilde{Q}]u, u)$. Recall that

$$\xi_0 - \operatorname{Re} \tilde{\lambda} = \xi_0 - \lambda + R, \quad R \in S(1, g_0).$$

Since

$$[D_0 - \lambda, Q] - \frac{1}{i} \{\xi_0 - \lambda, Q\}^w \in S(1, g_0)$$

and $|\{\xi_0-\lambda,Q\}|\leq CQ$ by Lemma 5.3.1 it follows from the Fefferman-Phong inequality that

$$|([D_0 - \lambda, Q]u, u)| \le C(Qu, u) + C ||u||^2.$$

Since $[D_0 - \lambda, \operatorname{\mathsf{Re}} \hat{P}_1 + \operatorname{\mathsf{Re}} \hat{P}_0] \in S(\langle \xi' \rangle, g_0)$ we get

$$|([D_0 - \lambda, (\operatorname{Re} \tilde{Q})]u, u)| \le C(Qu, u) + C ||u||_{(1/2)}^2$$

Summarizing we get

(5.4.9)
$$\operatorname{Im}([D_0 - \operatorname{Re} \tilde{\lambda}, \operatorname{Re} \tilde{Q}]u, u) \le C(Qu, u) + C \|u\|_{(1/2)}^2$$

Taking

$$\|\Lambda_{\theta} u\|^2 \le C \|\tilde{\Lambda}_{\theta} u\|^2 + C \|u\|^2$$

into account from (5.4.6), (5.4.7), (5.4.4), (5.4.8) and (5.4.9) we have

Proposition 5.4.2 For $\theta \ge \theta_0$ we have

$$c(\|\Lambda_{\theta}u(t)\|^{2} + \|u(t)\|_{(1/2)}^{2} + \theta^{2}\|u(t)\|^{2}) + c\theta \int_{\tau}^{t} (\|\Lambda_{\theta}u(x_{0}, \cdot)\|^{2} + \operatorname{Re}(Qu, u) + \|u(x_{0}, \cdot)\|_{(1/2)}^{2} + \theta^{2}\|u(x_{0}, \cdot)\|^{2})dx_{0} + c\int_{\tau}^{t} \|\Lambda_{\theta}u(x_{0}, \cdot)\|^{2}dx_{0} \leq C\int_{\tau}^{t} \|P_{\theta}u(x_{0}, \cdot)\|^{2}dx_{0}$$

with some c > 0, C > 0 for any $u \in C^2([T_2, T_1]; C_0^{\infty}(\mathbb{R}^n))$ vanishing in $x_0 \leq \tau$.

We now derive estimates for higher order derivatives of u.

Lemma 5.4.2 We can write

$$\langle D' \rangle^s P = (-\tilde{M}\tilde{\Lambda} + \tilde{B}\tilde{\Lambda} + Q + \tilde{P}_1 + \tilde{P}_0) \langle D' \rangle^s$$

where $\tilde{\Lambda} = (\xi_0 - \lambda - \tilde{a})^w$, $\tilde{M} = (\xi_0 + \lambda + \tilde{a})^w$ with a pure imaginary $\tilde{a} \in S(1, g_0)$ and \tilde{B} , $\tilde{P}_0 \in S(1, g_0)$. Moreover \tilde{P}_1 verifies the same conditions as in Proposition 5.4.1.

Proof: Recall that we have

$$P = -\Lambda^2 + B\Lambda + \tilde{Q}$$

where

$$\left\{ \begin{array}{l} \Lambda = \xi_0 - \lambda - R, \\ B = -2\lambda + R, \\ \tilde{Q} = Q + \hat{P}_1 + R \end{array} \right.$$

with $R \in S(1, g_0)$. Noting

$$[\Lambda, \langle D' \rangle^s] \in S(\langle \xi' \rangle^s, g_0), \ [\Lambda, [\Lambda, \langle D' \rangle^s]] \in S(\langle \xi' \rangle^s, g_0)$$

it is easy to check that

$$[\Lambda^2, \langle D' \rangle^s] = R_1 \Lambda \langle D' \rangle^s + R_2 \langle D' \rangle^s$$

with some $R_i \in S(1, g_0)$.

We turn to consider $[B\Lambda, \langle D' \rangle^s]$. Let us write $[B\Lambda, \langle D' \rangle^s] = B[\Lambda, \langle D' \rangle^s] + [B, \langle D' \rangle^s]\Lambda$ and note

$$B[\Lambda, \langle D' \rangle^s] \langle D' \rangle^{-s} = (T_1 \lambda + T_2)^w \langle D' \rangle^s$$

where $T_i \in S(1, g_0)$ and $T_1 = -2i\{\lambda, \langle \xi' \rangle^s\} \langle \xi' \rangle^{-s}$ is pure imaginary. Note that one can write

$$T_1\lambda = i\sum_{j=1}^{r+1} a_j\phi_j$$

with $a_i \in S(1, g_0)$. It is clear that we can write

$$[B, \langle D' \rangle^s]\Lambda = R_1 \Lambda \langle D' \rangle^s + R_2 \langle D' \rangle^s$$

with $R_i \in S(1, g_0)$. We finally check the term $[\tilde{Q}, \langle D' \rangle^s]$. Since

$$[\tilde{Q}, \langle D' \rangle^s] \langle D' \rangle^{-s} - [Q, \langle D' \rangle^s] \langle D' \rangle^{-s} \in S(1, g_0)$$

it suffices to consider $[Q,\langle D'\rangle^s]\langle D'\rangle^{-s}.$ Note that

$$[Q, \langle D' \rangle^s] \langle D' \rangle^{-s} - \frac{1}{i} \{Q, \langle \xi' \rangle^s\} \langle \xi' \rangle^{-s} \in S(1, g_0)$$

and it is clear that we can write

$$\{Q, \langle \xi' \rangle^s\} \langle \xi' \rangle^{-s} = \sum_{j=1}^{r+1} c_j \phi_j$$

with real $c_i \in S(1, g_0)$ and hence

$$[Q, \langle D' \rangle^s] = -\left(i\left(\sum_{j=1}^{r+1} c_j \phi_j\right)^w + r\right) \langle D' \rangle^s$$

with some $r \in S(1, g_0)$. Repeating the same arguments as in the proof of Proposition 5.4.1 we move $i(a_1 + c_1)\phi_1$ to Λ to get the desired assertion. \Box

Repeating the same arguments as deriving Proposition 5.4.2 for

 $\operatorname{Im}\left(\langle D'\rangle^{s}Pu,\tilde{\Lambda}\langle D'\rangle^{s}u\right)$

we obtain energy estimates of $\langle D' \rangle^s u$. To formulate thus obtained estimate let us set

$$N_s(u) = \|\Lambda u\|_{(s)}^2 + \mathsf{Re}(Qu, u)_{(s)} + \|u\|_{(s+1/2)}^2$$

where $(u, v)_{(s)} = (\langle D' \rangle^s u, \langle D' \rangle^s v)$ and $\Lambda = D_0 - \lambda^w$ again. Here we remark that

$$\langle \xi' \rangle^s \# Q \# \langle \xi' \rangle^{-s} - Q - \frac{1}{i} \{ \langle \xi' \rangle^s, Q \} \langle \xi' \rangle^{-s} \in S(1, g_0)$$

so that

$$|\mathsf{Re}(\langle D'\rangle^{s}Qu, \langle D'\rangle^{s}u) - (Q\langle D'\rangle^{s}u, \langle D'\rangle^{s}u)| \le C ||u||_{(s)}^{2}.$$

We also note that $\tilde{\Lambda}\langle D'\rangle^s = \langle D'\rangle^s \Lambda + r\langle D'\rangle^s$ with $r \in S(1,g)$ so that

$$\|\Lambda u\|_{(s)}^{2} \leq C \|\tilde{\Lambda} \langle D' \rangle^{s} u\|^{2} + C \|u\|_{(s)}^{2}.$$

Since $e^{\theta x_0} P_{\theta} e^{-\theta x_0} = P$, $e^{\theta x_0} \Lambda_{\theta} e^{-\theta x_0} = \Lambda$, choosing and fixing θ enough large we have

Proposition 5.4.3 We have

$$N_s(u(t)) + \int_{\tau}^t N_s(u(x_0)) dx_0 \le C(s, T_i) \int_{\tau}^t \operatorname{Im}(\langle D' \rangle^s Pu, \tilde{\Lambda} \langle D' \rangle^s u) dx_0$$

for any $s \in \mathbb{R}$ and any $u \in C^2([T_2, T_1]; H^{\infty}(\mathbb{R}^n))$ vanishing in $x_0 \leq \tau$.

Corollary 5.4.1 We have

$$N_s(u(t)) + \int_{\tau}^t N_s(u(x_0)) dx_0 \le C(s, T_i) \int_{\tau}^t \|Pu\|_{(s)}^2 dx_0$$

for any $s \in \mathbb{R}$ and any $u \in C^2([T_2, T_1]; H^{\infty}(\mathbb{R}^n))$ vanishing in $x_0 \leq \tau$.

Let us put $P_{-}(x, D) = P(-x_0, x', -D_0, D')$ then it is clear that P_{-} verifies the same conditions as P. Note that $P_{-}^{*}(x, D)$ satisfies the strict Ivrii-Petkov-Hörmander condition by (4.4.6). Repeating the same arguments as proving Proposition 5.4.2 and Corollary 5.4.1 we conclude that Corollary 5.4.1 holds for P_{-}^{*} . Since

$$P^*(x,D) = P^*_{-}(-x_0, x', -D_0, D')$$

we get

Proposition 5.4.4 We have

$$N_s(u(t)) + \int_t^\tau N_s(u(x_0)) dx_0 \le C(s, T_i) \int_t^\tau \|P^*u\|_{(s)}^2 dx_0$$

for any $s \in \mathbb{R}$ and any $u \in C^2([T_2, T_1]; H^{\infty}(\mathbb{R}^n))$ vanishing in $x_0 \geq \tau$.

5.5 Finite propagation speed of WF

Thanks to Proposition 5.4.4 repeating the same arguments on functional analysis in Section 4.4 we conclude that for any given $f \in C^0([T_2, T_1]; H^{\infty}(\mathbb{R}^n))$ vanishing in $x_0 \leq 0$ there is a unique $u \in C^2([T_2, T_1]; H^{\infty}(\mathbb{R}^n))$ vanishing in $x_0 \leq 0$ such that Pu = f. Let us denote

$$u = Gf$$

then it is clear that G verifies (i) and (ii) in Definition 5.2.2 with $\beta = -1/2$. Therefore in order to show that G is a parametrix of P with finite propagation speed of WF it remains to prove (iii). To prove that G verifies (iii) we introduce symbols of spatial type following [24].

Definition 5.5.1 Let $f(x,\xi) \in S(1,g_0)$. We say that f is of spatial type if f satisfies

$$\{\xi_0 - \lambda, f\} \ge \delta > 0, \quad \{\xi_0 + \lambda, f\} \{\xi_0 - \lambda, f\} \ge \delta > 0, \\ \{f, Q\}^2 \le 4c (\{\xi_0 - \lambda, f\}^2 + 2\{\lambda, f\} \{\xi_0 - \lambda, f\})Q \\ = 4c \{\xi_0 + \lambda, f\} \{\xi_0 - \lambda, f\}Q$$

with some $\delta > 0$ and 0 < c < 1 for $|x_0| \leq \tau$ with small $\tau > 0$.

Let $\chi(x') \in C_0^{\infty}(\mathbb{R}^n)$ be equal to 1 near x' = 0 and vanish in $|x'| \ge 1$. Set

$$d_{\epsilon}(x',\xi';\bar{\rho}') = \{\chi(x'-y')|x'-y'|^2 + |\xi'\langle\xi'\rangle^{-1} - \eta'\langle\eta'\rangle^{-1}|^2 + \epsilon^2\}^{1/2}$$

with $\bar{\rho}' = (y', \eta')$. Set

$$f(x',\xi';\bar{\rho}') = x_0 - \tau + \nu d_{\epsilon}(x',\xi';\bar{\rho}')$$

for small $\nu > 0$, $\epsilon > 0$. Then it is easy to examine that f is a symbol of spatial type for $0 < \nu \leq \nu_0$ if ν_0 is small. Indeed since $0 \leq Q \in S(\langle \xi' \rangle^2, g_0)$ it follows that

(5.5.1)
$$\{Q,\nu d_{\epsilon}\}^2 \le C\nu^2 Q$$

with C > 0 independent of $\epsilon > 0$. On the other hand since it is clear that $\{\xi_0 + \lambda, f\}\{\xi_0 - \lambda, f\} = 1 + O(\nu)$ then we get the assertion taking ν_0 small. Note that ν_0 is independent of $\bar{\rho}'$ and $\epsilon > 0$. Recall that one can write

$$P = -\Lambda^2 + B\Lambda + \tilde{Q}$$

where $\Lambda = \xi_0 - \lambda$, $B = -2\lambda + R$ with $R \in S(1, g_0)$ and

$$\tilde{Q} = Q + \hat{P}_1 + \hat{P}_0, \quad \hat{P}_1 \in S(\langle \xi' \rangle, g_0)$$

Let $f(x,\xi')$ be of spatial type. We define Φ by

$$\Phi(x,\xi') = \begin{cases} \exp\left(1/f(x,\xi')\right) & \text{if } f < 0\\ 0 & \text{otherwise} \end{cases}$$

and also set

$$\Phi_1 = f^{-1} \{\Lambda, f\}^{1/2} \Phi.$$

Note that $\Phi, \Phi_1 \in S(1, g_0)$ and

(5.5.2)
$$\Phi - (f\{\Lambda, f\}^{-1/2}) \# \Phi_1 \in S(\langle \xi' \rangle^{-1}, g_0).$$

Consider

(5.5.3)
$$\operatorname{Im}(P\Phi u, \Lambda\Phi u)_{(s)} = \operatorname{Im}([P, \Phi]u, \Lambda\Phi u)_{(s)} + \operatorname{Im}(\Phi Pu, \Lambda\Phi u)_{(s)}$$

To estimate the term $\operatorname{Im}([P, \Phi]u, \Lambda \Phi u)_{(s)}$ we follow the arguments in [24].

Definition 5.5.2 Let T(u), S(u) be two real functionals of u. Then we say $T(u) \sim S(u)$ and $T(u) \preceq S(u)$ if

$$|T(u) - S(u)| \le C(N_s(\Phi u) + N_{s-1/4}(u)),$$

$$T(u) \le C(S(u) + N_s(\Phi u) + N_{s-1/4}(u))$$

respectively with some C > 0.

We first consider

$$-([\Lambda^2,\Phi]u,\Lambda\Phi u)_{(s)} = -(\Lambda[\Lambda,\Phi]u,\Lambda\Phi u)_{(s)} - ([\Lambda,\Phi]\Lambda u,\Lambda\Phi u)_{(s)}.$$

Note

$$(\Lambda[\Lambda,\Phi]u,\Phi\Lambda u)_{(s)} = -i\frac{d}{dx_0}([\Lambda,\Phi]u,\Phi\Lambda u)_{(s)} + ([\Lambda,\Phi]u,\Lambda\Phi\Lambda u)_{(s)}$$

for λ is real. Since it is clear that $([\Lambda, \Phi]u, [\Lambda, \Phi]\Lambda u)_{(s)} \sim 0$ we have

$$-\mathrm{Im}(\Lambda[\Lambda,\Phi]u,\Phi\Lambda u)_{(s)}\sim \frac{d}{dx_0}\mathrm{Re}([\Lambda,\Phi]u,\Phi\Lambda u)_{(s)}-\mathrm{Im}([\Lambda,\Phi]u,\Phi\Lambda^2 u)_{(s)}.$$

We next examine that

$$-\mathsf{Im}([\Lambda,\Phi]\Lambda u,\Lambda\Phi u)_{(s)}\sim -\|\Lambda\Phi_1 u\|_{(s)}^2.$$

Indeed since $\{\Lambda, \Phi\} - i\{\Lambda, f\}f^{-2}\Phi \in S(\langle \xi' \rangle^{-1}, g_0)$ and hence

$$-\mathsf{Im}([\Lambda,\Phi]\Lambda u,\Lambda\Phi u)_{(s)}\sim -\mathsf{Re}((\{\Lambda,f\}f^{-2}\Phi)^w\Lambda u,\Lambda\Phi u)_{(s)}.$$

Since $\Phi = (\{\Lambda, f\}^{-1/2} f) \# \Phi_1 + T, T \in S(\langle \xi' \rangle^{-1}, g_0)$ which follows from (5.5.2) and

$$(\{\Lambda, f\}^{-1/2} f) \# \langle \xi' \rangle^{2s} \# (\{\Lambda, f\} f^{-2} \Phi) = \langle \xi' \rangle^{2s} \# \Phi_1 + S(\langle \xi' \rangle^{2s-1}, g_0)$$

one conclude easily the assertion. Therefore we have

(5.5.4)
$$-\operatorname{Im}([\Lambda^{2}, \Phi]u, \Lambda \Phi u)_{(s)} \sim \frac{d}{dx_{0}} \operatorname{Re}([\Lambda, \Phi]u, \Phi \Lambda u)_{(s)} \\ -\operatorname{Im}([\Lambda, \Phi]u, \Phi \Lambda^{2}u)_{(s)} - \|\Lambda \Phi_{1}u\|_{(s)}^{2}.$$

We turn to consider

$$([B\Lambda, \Phi]u, \Lambda \Phi u)_{(s)} = (B[\Lambda, \Phi]u, \Lambda \Phi u)_{(s)} + ([B, \Phi]\Lambda u, \Lambda \Phi u)_{(s)}.$$

Write

$$\begin{split} (B[\Lambda,\Phi]u,\Lambda\Phi u)_{(s)} &= 2i((\mathsf{Im}B_s)\langle D'\rangle^s[\Lambda,\Phi]u,\langle D'\rangle^s\Lambda\Phi u) \\ &+ (B_s^*\langle D'\rangle^s[\Lambda,\Phi]u,\langle D'\rangle^s\Lambda\Phi u) \\ &= 2i((\mathsf{Im}B_s)\langle D'\rangle^s[\Lambda,\Phi]u,\langle D'\rangle^s\Lambda\Phi u) + ([\Lambda,\Phi]u,B\Lambda\Phi u)_{(s)} \end{split}$$

with $B_s = \langle D' \rangle^s B \langle D' \rangle^{-s}$ and note $\text{Im}B_s = \text{Im}B + r$, $\text{Im}B \in S(1,g_0)$, $r \in S(\langle \xi' \rangle^{-1}, g_0)$. Then we see

$$\begin{aligned} (\mathsf{Im}B_s)\langle D'\rangle^s[\Lambda,\Phi]u, \langle D'\rangle^s\Lambda\Phi u)| \\ &\leq C\|\Lambda\Phi u\|_{(s)}^2 + C\|u\|_{(s)}^2 \sim 0. \end{aligned}$$

Thus we have

$$\operatorname{Im}(B[\Lambda,\Phi]u,\Lambda\Phi u)_{(s)}\sim\operatorname{Im}([\Lambda,\Phi]u,\Phi B\Lambda u)_{(s)}.$$

On the other hand recalling $B = -2\lambda + R$ with $R \in S(1, g_0)$ we see

$$[B,\Phi] = i\{2\lambda - R,\Phi\}^w + T, \quad T \in S(\langle \xi' \rangle^{-2}, g_0)$$

and hence $\mathsf{Im}([B, \Phi]\Lambda u, \Lambda \Phi u)_{(s)} \sim \mathsf{Re}((\{2\lambda - R, \Phi\})^w \Lambda u, \Lambda \Phi u)_{(s)})$. Since $\{2\lambda - R, \Phi\} = -\{2\lambda - R, f\}f^{-2}\Phi$ and $\{R, f\} \in S(\langle \xi' \rangle^{-1}, g_0)$ then repeating the same arguments as before we get

$$\operatorname{Im}([B,\Phi]\Lambda u,\Lambda\Phi u)_{(s)} \preceq -2\Big((\{\Lambda,f\}^{-1}\{\lambda,f\})^w\Lambda\Phi_1 u,\Lambda\Phi_1 u\Big)_{(s)}$$

and hence

(5.5.5)
$$\operatorname{Im}([B\Lambda, \Phi]u, \Lambda \Phi u)_{(s)} \preceq \operatorname{Im}([\Lambda, \Phi]u, \Phi B\Lambda u)_{(s)} -2\operatorname{Re}\left((\{\Lambda, f\}^{-1}\{\lambda, f\})^w \Lambda \Phi_1 u, \Lambda \Phi_1 u\right)_{(s)}.$$

We finally consider $([\tilde{Q}, \Phi]u, \Lambda \Phi u)_{(s)}$. Noting that $\hat{P}_1 \in S(\langle \xi' \rangle, g_0)$ and hence

$$\left| ([\hat{P}_1, \Phi] u, \Lambda \Phi u)_{(s)} \right| \le C \|u\|_{(s)}^2 + C \|\Lambda \Phi u\|_{(s)}^2 \sim 0.$$

Since $[Q, \Phi] = (-i\{Q, \Phi\})^w + R$ with $R \in S(\langle \xi' \rangle^{-1}, g_0)$ it follows from the same arguments that

$$\operatorname{Im}([Q+\hat{P}_1,\Phi]u,\Lambda\Phi u)_{(s)}\sim \operatorname{Re}((\{Q,f\}\{\Lambda,f\}^{-1})^w\Phi_1u,\Lambda\Phi_1u)_{(s)}.$$

Thus we obtain

(5.5.6)
$$\operatorname{Im}([\tilde{Q}, \Phi]u, \Lambda \Phi u)_{(s)} \preceq \operatorname{Re}((\{Q, f\}\{\Lambda, f\}^{-1})^w \Phi_1 u, \Lambda \Phi_1 u)_{(s)}.$$

Note that the sum of the second and the first term on the right-hand side of (5.5.4) and (5.5.5) yields

$$\operatorname{Im}([\Lambda, \Phi]u, \Phi(-\Lambda^2 + B\Lambda)u)_{(s)}.$$

Taking into account $-\Lambda^2 + B\Lambda = P - \tilde{Q}$ let us study

$$-\operatorname{Im}([\Lambda,\Phi]u,\Phi\tilde{Q}u)_{(s)}.$$

Write $\tilde{Q} = Q + \operatorname{\mathsf{Re}} \hat{P}_1 + i \operatorname{\mathsf{Im}} \hat{P}_1$ because \hat{P}_0 is irrelevant. Note that

$$\mathsf{Re}([\Lambda,\Phi]u,\Phi\operatorname{\mathsf{Im}}\hat{P}_1u)_{(s)}\sim -\mathsf{Im}\,(\{\Lambda,\Phi\}^w u,\Phi\operatorname{\mathsf{Im}}\hat{P}_1u)_{(s)}\sim 0.$$

Hence one has

$$\begin{aligned} -\mathsf{Im}([\Lambda,\Phi]u,\Phi\tilde{Q}u)_{(s)} &\sim -\mathsf{Im}([\Lambda,\Phi]u,\Phi(Q+\mathsf{Re}\,\hat{P}_1)u)_{(s)} \\ &= -\mathsf{Im}(\Phi\langle D'\rangle^{2s}[\Lambda,\Phi]u,(Q+\mathsf{Re}\,\hat{P}_1)u). \end{aligned}$$

Here we note that $\Phi \langle D' \rangle^{2s} [\Lambda, \Phi] = (i \Phi_1 \langle \xi' \rangle^{2s} \Phi_1)^w + T_1 + T_2$ where $T_1 \in S(\langle \xi' \rangle^{2s-1}, g_0)$ is real and $T_2 \in S(\langle \xi' \rangle^{2s-2}, g_0)$. Since

$$-\operatorname{Im}((T_1+T_2)u,(Q+\operatorname{Re}\hat{P}_1)u)\sim -\operatorname{Im}(T_1u,Qu)\sim 0$$

it follows that

$$-\mathsf{Im}([\Lambda,\Phi]u,\Phi\tilde{Q}u)_{(s)}\sim -\mathsf{Re}(\Phi_1u,\Phi_1(Q+\mathsf{Re}\,\hat{P}_1)u)_{(s)}.$$

Note

$$\begin{split} (\Phi_1 u, \Phi_1 (Q + \operatorname{Re} \hat{P}_1) u)_{(s)} &= (\Phi_1 u, (Q + \operatorname{Re} \hat{P}_1) \Phi_1 u)_{(s)} \\ &+ (\Phi_1 u, [\Phi_1, Q + \operatorname{Re} \hat{P}_1] u)_{(s)} \\ &\sim (\Phi_1 u, (Q + \operatorname{Re} \hat{P}_1) \Phi_1 u)_{(s)} + (\Phi_1 u, [\Phi_1, Q] u)_{(s)} \end{split}$$

where we have $\mathsf{Re}(\Phi_1 u, [\Phi_1, Q]u)_{(s)} \sim 0$ since

$$[\Phi_1, Q] + (i\{\Phi_1, Q\})^w \in S(\langle \xi' \rangle^{-1}, g_0).$$

Thus we have

$$\begin{aligned} & \operatorname{Im}([\Lambda,\Phi]u,\Phi(-\Lambda^2+B\Lambda)u)_{(s)} = \operatorname{Im}([\Lambda,\Phi]u,\Phi Pu)_{(s)} \\ & (5.5.7) & -\operatorname{Im}([\Lambda,\Phi]u,\Phi \tilde{Q}u)_{(s)} \preceq \operatorname{Im}([\Lambda,\Phi]u,\Phi Pu)_{(s)} \\ & -\operatorname{Re}((\Phi_1u,(Q+\operatorname{Re}\hat{P}_1)\Phi_1u)_{(s)}. \end{aligned}$$

From (5.5.4), (5.5.5), (5.5.6) and (5.5.7) we conclude that

$$\begin{split} \mathsf{Im}([P,\Phi]u,\Lambda\Phi u)_{(s)} &\preceq \frac{d}{dx_0}\mathsf{Re}([\Lambda,\Phi]u,\Phi\Lambda u)_{(s)} \\ &-\|\Lambda\Phi_1u\|_{(s)}^2 - \mathsf{Re}((Q+\mathsf{Re}\,\hat{P}_1)\Phi_1u,\Phi_1u)_{(s)} \\ &-2\mathsf{Re}\big((\{\Lambda,f\}^{-1}\{\lambda,f\})^w\Lambda\Phi_1u,\Lambda\Phi_1u\big)_{(s)} \\ &+\mathsf{Re}\big((\{\Lambda,f\}^{-1}\{Q,f\})^w\Phi_1u,\Lambda\Phi_1u\big)_{(s)} \\ &+\mathsf{Im}([\Lambda,\Phi]u,\Phi Pu)_{(s)}. \end{split}$$

We remark that setting

$$a = (1 + 2\{\Lambda, f\}^{-1}\{\lambda, f\})^{1/2}, \quad b = a^{-1}\{\Lambda, f\}^{-1}\{Q, f\}$$

we see that

$$\begin{split} \|\Lambda \Phi_1 u\|_{(s)}^2 + 2 \mathsf{Re}((\{\Lambda, f\}^{-1}\{\lambda, f\})^w \Lambda \Phi_1 u, \Lambda \Phi_1 u)_{(s)} \\ &\sim \|a^w \Lambda \Phi_1 u\|_{(s)}^2, \\ \|a\Lambda \Phi_1 u\|_{(s)}^2 + \mathsf{Re}((Q + \mathsf{Re}\,\hat{P}_1)\Phi_1 u, \Phi_1 u)_{(s)} \\ &- \mathsf{Re}((\{\Lambda, f\}^{-1}\{Q, f\})^w \Phi_1 u, \Lambda \Phi_1 u)_{(s)} \\ \|(a^w \Lambda - \frac{b^w}{2})\Phi_1 u\|_{(s)}^2 + \mathsf{Re}((Q + \mathsf{Re}\,\hat{P}_1 - \frac{1}{4}(b^2)^w)\Phi_1 u, \Phi_1 u)_{(s)} \end{split}$$

because

 \sim

$$a \# a - a^2 \in S(\langle \xi' \rangle^{-1}, g_0), \ b \# b - b^2 \in S(1, g_0),$$

 $a \# b - ab \in S(1, g_0).$

From the assumption we have

$$\begin{split} \hat{Q} &= Q - \frac{1}{4}b^2 = \frac{1}{4}\{\Lambda, f\}^{-2}a^{-2} \\ &\times \left(4Q(\{\Lambda, f\}^2 + 2\{\Lambda, f\}\{\lambda, f\}) - \{Q, f\}^2\right) \ge 0. \end{split}$$

but we note that the positive trace $\operatorname{Tr}^+ \hat{Q}_{\rho}$ can be smaller than $\operatorname{Tr}^+ Q_{\rho}$ in general.

To avoid this inconvenience we choose f carefully. We first recall that

$$\operatorname{rank}\left(\{\phi_i,\phi_j\}\right)_{0\leq i,j\leq r} = \operatorname{rank}\left(\{\phi_i,\phi_j\}\right)_{1\leq i,j\leq r} = 2k$$

is constant on Σ by assumption. Let $\rho \in \Sigma$ and take a new homogeneous symplectic coordinates system (X, Ξ) around ρ such that $\Xi_0 = \xi_0 - \phi_1$ and $X_0 = x_0$ (see Appendix). Since $\{\Xi_0, \phi_j\} = 0$ on Σ , j = 1, ..., r then Σ is cylindrical in the X_0 direction and defined near ρ by $\Xi_0 = 0$, $\phi_j(0, X', \Xi') = 0$, j = 1, ..., r. From Theorem 21.2.4 in [19] there are homogeneous symplectic coordinates y', η' such that $\Sigma' = \{\phi_j(0, X', \Xi') = 0, j = 1, ..., r\}$ is defined by

$$y_1 = \dots = y_k = \eta_1 = \dots = \eta_k = 0, \ \eta_{k+1} = \dots = \eta_{k+\ell} = 0$$

where $r = 2k + \ell$. Let $\{y_{k+1}, ..., y_n, \eta_{k+\ell+1}, ..., \eta_n\}$ be given by $\psi_1(x', \xi'), ..., \psi_s(x', \xi'), s = 2n - (2k + \ell)$ in the original coordinates. We denote by the same $\psi_j(x', \xi')$ their extended symbols and define

$$d_{Q,\epsilon}(x,\xi';\bar{\rho}') = \left\{ Q(x,\xi')\langle\xi'\rangle^{-2} + \sum_{j=1}^{s} (\tilde{\psi}_j(x',\xi') - \tilde{\psi}_j(\bar{\rho}'))^2 + \epsilon^2 \right\}^{1/2}$$

with $\tilde{\psi}_j = \psi_j \langle \xi' \rangle^{-1}$. Here we note that

(5.5.8)
$$\operatorname{Tr}^{+} Q_{\rho} = \operatorname{Tr}^{+} \left(Q - \frac{1}{4} \{ Q, d_{Q,\epsilon} \}^{2} \right)_{\rho}$$

on Σ which is examined without difficulties because in the coordinates y', η' above we see that $\{Q, d_{Q,\epsilon}\}^2_{\rho}$ is a quadratic form in $(\eta_{k+1}, ..., \eta_{k+\ell})$ which is symplectically independent from $\{y_1, ..., y_k, \eta_1, ..., \eta_k\}$. It is easy to see that

$$C^{-1}d_0(x',\xi';\bar{\rho}') \le d_{Q,0}(x,\xi';\bar{\rho}') \le Cd_0(x',\xi';\bar{\rho}')$$

with some C > 0 for (x', ξ') near $\bar{\rho}'$ and x_0 close to 0. Here we define Φ using f_Q

(5.5.9)
$$f_Q(x,\xi';\bar{\rho}') = x_0 - \tau + \nu d_{Q,\epsilon}(x,\xi';\bar{\rho}').$$

From (5.5.8) it follows that there is $\nu_0 > 0$ such that for $0 < \nu \leq \nu_0$

(5.5.10)
$$\operatorname{Tr}^{+} \hat{Q}_{\rho} + \operatorname{\mathsf{Re}} \hat{P}_{1}(\rho) \ge c \langle \xi' \rangle$$

with some c > 0. Then the Melin's inequality gives

$$\mathsf{Re}((Q + \mathsf{Re}\,\hat{P}_1 - \frac{1}{4}(b^2)^w)\Phi_1, \Phi_1 u)_{(s)} \ge c' \|\Phi_1 u\|_{(s+1/2)}^2 - C\|u\|_{(s)}^2$$

with some c' > 0. We summarize what we have proved in

Lemma 5.5.1 Let Φ be defined by f_Q . Then there exists $\nu_0 > 0$ such that for any $0 < \nu \leq \nu_0$ we have

$$\begin{aligned} \mathsf{Im}([P,\Phi]u,\Lambda\Phi u)_{(s)} &\preceq \frac{d}{dx_0}\mathsf{Re}([\Lambda,\Phi]u,\Phi\Lambda u)_{(s)} \\ &+\mathsf{Im}([\Lambda,\Phi]u,\Phi Pu)_{(s)}. \end{aligned}$$

We turn to $\operatorname{Im}(P\Phi u, \Lambda \Phi u)_{(s)}$. Let $\tilde{\Lambda} = \Lambda + a$ with $a \in S(1, g_0)$ where a is pure imaginary. Since a is pure imaginary, repeating similar arguments as above we see

$$\operatorname{Im}(\langle D'\rangle^s [P,\Phi]u, a\langle D'\rangle^s \Phi u) \sim 0$$

and hence

$$\begin{split} \mathsf{Im}(\langle D' \rangle^s P \Phi u, a \langle D' \rangle^s \Phi u) &\sim \mathsf{Im}(\langle D' \rangle^s \Phi P u, a \langle D' \rangle^s \Phi u) \\ &\geq -C \| \Phi P u \|_{(s)}^2 - C \| \Phi u \|_{(s)}^2 \end{split}$$

so that

$$\operatorname{Im}(\langle D'\rangle^{s}P\Phi u, \tilde{\Lambda}\langle D'\rangle^{s}\Phi u) \succeq \operatorname{Im}(\langle D'\rangle^{s}P\Phi u, \Lambda\langle D'\rangle^{s}\Phi u) - C \|\Phi Pu\|_{(s)}^{2}$$

Noting $[\Lambda, \langle D' \rangle^s] + (i\{\Lambda, \langle \xi' \rangle^s\})^w \in S(\langle \xi' \rangle^{s-2}, g_0)$ the same reasoning shows that

$$\operatorname{Im}(\langle D'\rangle^s[P,\Phi]u,[\Lambda,\langle D'\rangle^s]\Phi u)\sim 0$$

and then we conclude that

$$\operatorname{Im}(P\Phi u, \Lambda \Phi u)_{(s)} \succeq \operatorname{Im}(\langle D' \rangle^{s} P\Phi u, \tilde{\Lambda} \langle D' \rangle^{s} \Phi u) - C \|\Phi Pu\|_{(s)}^{2}.$$

From (5.5.3) and Lemma 5.5.1 it follows that

$$\begin{aligned} c\|\Phi_1 u\|_{(s+1/2)}^2 + c\|\Lambda\Phi_1 u\|_{(s)}^2 + \operatorname{Im}(\langle D'\rangle^s P\Phi u, \tilde{\Lambda}\langle D'\rangle^s \Phi u) \\ & \leq \frac{d}{dx_0} \operatorname{Re}([\Lambda, \Phi] u, \Phi\Lambda u)_{(s)} + C\|\Phi P u\|_{(s)}^2. \end{aligned}$$

Integrating in x_0 and applying Proposition 5.4.3 we get

Proposition 5.5.1 Let Φ be as in Lemma 5.5.1. Then we have

$$N_{s}(\Phi u(t)) + \int_{\tau}^{t} N_{s}(\Phi u) dx_{0}$$

$$\leq C(s, T_{i}) \Big(N_{s-1/4}(u(t)) + \int_{\tau}^{t} \left(\|\Phi Pu\|_{(s)}^{2} + N_{s-1/4}(u) \right) dx_{0} \Big)$$

for any $s \in \mathbb{R}$ and any $u \in C^2([T_2, T_1]; H^{\infty}(\mathbb{R}^n))$ vanishing in $x_0 \leq \tau$.

REMARK: It is clear that Proposition 5.5.1 holds for any Φ defined by spatial type f satisfying (5.5.10).

Let Γ_i (i = 0, 1, 2) be open conic sets in $\mathbb{R}^{2n} \setminus \{0\}$ with relatively compact basis such that $\Gamma_0 \subset \subset \Gamma_1 \subset \subset \Gamma_2$. Here $\Gamma_i \subset \subset \Gamma_{i+1}$ means that the base of Γ_i is relatively compact in that of Γ_{i+1} . Let us take $h_i(x', \xi') \in S(1, g_0)$ with supp $h_1 \subset \Gamma_0$ and supp $h_2 \subset \Gamma_2 \setminus \Gamma_1$. We consider the solution $u \in C^1(I; H^\infty)$ to $Pu = h_1 f$ with $f \in C^0(I; H^\infty)$ where u = f = 0 in $x_0 < \tau$, with $\tau \in I$. Arguing exactly as in [31] (Lemma 5.2.1 and Proposition 5.2.3) we have **Proposition 5.5.2** Notations being as above. Then there is $\delta = \delta(\Gamma_i) > 0$ such that

$$\|D_0^j h_2 u(t)\|_{(p)}^2 \le C_{pq} \int^t \|f(x_0)\|_{(q)}^2 dx_0$$

for j = 0, 1 and $\tau \leq t \leq \tau + \delta$ and any $p, q \in \mathbb{R}$. In particular, there is a parametrix of the Cauchy problem for P with finite propagation speed of WF.

REMARK: Repeating the same arguments as in [31] one can estimate the wave front set applying Proposition 5.5.1. If we have more spatial type symbols verifying (5.5.10) then the estimate of wave front set becomes more precise. See [45].

Proof of Theorem 5.1.1: Thanks to Proposition 6.4.5 then P has a parametrix with finite propagation speed of WF at every $(0,0,\xi')$ with $|\xi'| = 1$. Then the C^{∞} well-posedness of the Cauchy problem follows from Proposition 5.2.3 immediately.

Repeating similar arguments (with necessary modifications) proving Theorem 5.1.1 we can prove

Theorem 5.5.1 Assume (4.1.1), (5.1.1), (5.1.2) and $\operatorname{Tr}^+ F_p = 0$ on Σ . Then in order that the Cauchy problem for P is C^{∞} well posed it is necessary and sufficient that P satisfies the Levi condition on Σ .

Note that Σ is neither involutive nor symplectic in this case. To prove energy estimates in Proposition 5.4.3 under the assumption $\text{Tr}^+F_p = 0$ we use the following

Lemma 5.5.2 Let $a \in S(1, g_0)$. Then we have

$$|(a\phi_1 u, u)| \le C(||\Phi_2 u||^2 + ||\Phi_{r+1} u||^2 + ||\Phi_{r+2} u||^2) + C'||u||^2$$

with some C, C' > 0.

Lemma 5.5.3 We have

$$\|\langle D'\rangle^{1/3}u\|^2 \le C(\|\Phi_2 u\|^2 + \|\Phi_{r+1}\|^2 + \|\Phi_{r+2} u\|^2 + \|u\|^2)$$

with some C > 0.