Chapter 2

Hyperbolic double characteristics

2.1 Hamilton map

Let us denote by $T^*\Omega$ the cotangent bundle over Ω with a system of local coordinates $x = (x_0, x_1, ..., x_n)$. Let (x, ξ) be a system of canonical coordinates on $T^*\Omega$, then the canonical 2-form σ on $T^*\Omega$ is given by

$$\sigma = \sum_{j=0}^{n} d\xi_j \wedge dx_j$$

in these coordinates. This 2-form gives a symplectic structure on $T^*\Omega$.

Let $f \in C^{\infty}(T^*\Omega)$. Then the Hamilton vector field H_f of f is defined by

(2.1.1)
$$df(\cdot) = \sigma(\cdot, H_f).$$

In the canonical coordinates (x,ξ) , denoting $X = \alpha \partial/\partial x + \beta \partial/\partial \xi$, $H_f = a\partial/\partial x + b\partial/\partial \xi$ we have

$$df(X) = \alpha \frac{\partial f}{\partial x} + \beta \frac{\partial f}{\partial \xi} = d\xi \wedge dx (\alpha \frac{\partial}{\partial x} + \beta \frac{\partial}{\partial \xi}, H_f) = \langle \beta, a \rangle - \langle \alpha, b \rangle.$$

That is $b = -\partial f / \partial x$, $a = \partial f / \partial \xi$ and hence

$$H_f = \frac{\partial f}{\partial \xi} \frac{\partial}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial}{\partial \xi}.$$

It is clear that

$$\sigma((x,\xi),(y,\eta)) = \langle \xi, y \rangle - \langle x, \eta \rangle$$

in a system of canonical coordinates.

Let P(x, D) be a differential operator of order m on Ω and let

$$P(x, D) = P_m(x, D) + P_{m-1}(x, D) + \cdots$$

Then the principal symbol $P_m(x,\xi) \in C^{\infty}(T^*\Omega)$, that is if $y = (y_0, y_1, ..., y_n)$ is a second system of local coordinates and (y,η) is the system of canonical coordinates on $T^*\Omega$ then

$$P_m(x,\xi) = P_m(y,\eta)$$
 if $\eta = {}^t \left(\frac{\partial x}{\partial y}\right)\xi.$

Definition 2.1.1 Let $p(x,\xi) \in C^{\infty}(T^*\Omega)$. Then a null bicharacteristic of p is an integral curve of H_p lying on $\{p = 0\}$.

In what follows we assume that $P_m(x,\xi)$ is hyperbolic and monic with respect to ξ_0 and we write $p(x,\xi) = P_m(x,\xi)$. By definition, a null bicharacteristic of pis an integral curve of the following Hamilton system

(2.1.2)
$$\begin{cases} \dot{x} = \frac{\partial p}{\partial \xi}(x,\xi), \\ \dot{\xi} = -\frac{\partial p}{\partial x}(x,\xi) \end{cases}$$

on which p = 0.

Let $\rho = (\bar{x}, \xi)$ be a multiple characteristic of $p(x, \xi)$. Then it is clear that ρ is a singular (stationary) point of the Hamilton system (2.1.2). To make a closer look on behaviors of null bicharacteristics near double characteristics we linearize the Hamilton system at the reference double characteristic $\rho = (\bar{x}, \bar{\xi})$. Let

$$x(t) = \bar{x} + \epsilon y(t), \ \xi(t) = \xi + \epsilon \eta(t)$$

and plug this into (2.1.2). Then the linear term in ϵ gives

$$\frac{d}{dt} \begin{pmatrix} y \\ \eta \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 p}{\partial \xi \partial x} & \frac{\partial^2 p}{\partial \xi \partial \xi} \\ -\frac{\partial^2 p}{\partial x \partial x} & -\frac{\partial^2 p}{\partial x \partial \xi} \end{pmatrix} \begin{pmatrix} y \\ \eta \end{pmatrix}.$$

Definition 2.1.2 We call

$$F_{p}(\rho) = \frac{1}{2} \begin{pmatrix} \frac{\partial^{2} p}{\partial \xi \partial x}(\rho) & \frac{\partial^{2} p}{\partial \xi \partial \xi}(\rho) \\ -\frac{\partial^{2} p}{\partial x \partial x}(\rho) & -\frac{\partial^{2} p}{\partial x \partial \xi}(\rho) \end{pmatrix}$$

the Hamilton map of p at ρ .

Hamilton map is first studied in [22] by the word fundamental matrix¹

¹one of the authors of [22] told me the history of the word "fundamental matrix" as follows: At this time I was a grad student and among mathematical students we had the following definitions: *Derivative* of the drunken party is the party financed through deposit bottles. [i.e. if I remember correctly the cheap booze was 1.52 per bottle, while returning the bottle intact to the store one could recover 0.12, so multiplier was 12/152 and in order to be able to get one bottle in the second round one should consume 13 in the first.]

^{*}Fundamental* drunken party is a party with non-zero second derivative.

Let Q(X, Y) be the quadratic form (polar form) corresponding to the localization p_{ρ} of p at ρ (see Definition 1.2.1)

$$2Q(X,Y) = p_{\rho}(X+Y) - p_{\rho}(X) - p_{\rho}(Y)$$

then $F_p(\rho)$ is given by

(2.1.3)
$$\frac{1}{2}Q(X,Y) = \sigma(X,F_pY), \quad \forall X,Y \in T_\rho(T^*\Omega).$$

Note that this definition is coordinates free.

2.2 Ivrii-Petkov-Hörmander condition

Thanks to Corollary 1.2.1 it follows that p_{ρ} is a hyperbolic polynomial and hence Q is a hyperbolic quadratic form, that is a quadratic form with the signature (-1, 1, ..., 1, 0, ..., 0). This hyperbolicity implies a special spectral structure of the Hamilton map F_{p} .

Lemma 2.2.1 ([22], [18]) Let $\rho \in T^*\Omega \setminus \{0\}$ be a double characteristic of p. Then all eigenvalues of $F_p(\rho)$ are on the pure imaginary axis possibly with one exception of a pair of $\pm \lambda$, $\lambda \in \mathbb{R}^+$. More precisely the eigenvalues of $F_p(\rho)$ consists of

 $\pm \lambda, \pm i\mu_1, \dots, \pm i\mu_k, \quad \lambda \in \mathbb{R}^+, \ \mu_j \in \mathbb{R}^+ \cup \{0\}.$

Definition 2.2.1 We say that p is effectively hyperbolic at ρ if F_p has non zero real eigenvalues otherwise we say that p is noneffectively hyperbolic at ρ .

We now characterize effective hyperbolicity in a more geometrical way.

Definition 2.2.2 We define the hyperbolic cone Γ_{ρ} of p_{ρ} as the connected component of $\theta = (0, ..., 0, 1, 0, ..., 0) = -H_{x_0}$ of the set

$$\{X \in T_{\rho}(T^*\Omega) \mid p_{\rho}(X) \neq 0\}.$$

Definition 2.2.3 The propagation cone C_{ρ} of the localization $p_{\rho}(x,\xi)$ is given by

$$C_{\rho} = \{ X \in T_{\rho}(T^*\Omega) \mid \sigma(X, Y) \le 0, \forall Y \in \Gamma_{\rho} \}.$$

When ρ is a simple characteristic, that is $p(\rho) = 0$, $dp(\rho) \neq 0$ then p_{ρ} is a linear function in $X = (x,\xi)$ and $p_{\rho}(X) = dp(\rho;X)$. Then it is clear that $\Gamma_{\rho} = \{X \mid dp(\rho;\theta)dp(\rho;X) > 0\}$ for $dp(\rho;\theta) \neq 0$ by Lemma 1.2.3 and hence $C_{\rho} = \mathbb{R}^+ \cdot dp(\rho;\theta)H_p(\rho)$. We note that C_{ρ} is the *minimal* cone including every null bicharacteristic which has ρ as a limit point in the following sense

Lemma 2.2.2 Let $\rho \in T^*\Omega \setminus \{0\}$ be a multiple characteristic of p. Assume that there are simple characteristics ρ_j and positive numbers γ_j such that

$$\rho_j \to \rho \quad and \quad \gamma_j H_p(\rho_j) \to X(\neq 0), \quad j \to \infty, \quad \pm dp(\rho_j; \theta) > 0, \ \forall j.$$

Then $\pm X \in C_{\rho}$.

Proof: Let K be any compact set in Γ_{ρ} . Then from Theorem 3 in [54] (see also [53]) it follows that for sufficiently large j we have $K \subset \Gamma_{\rho_i}$. Since

$$dp(\rho_j; \theta) dp(\rho_j; Y) = dp(\rho_j; \theta) \sigma(Y, H_p(\rho_j)) > 0, \quad \forall Y \in K$$

it follows that $\pm X \in C_{\rho}$.

Definition 2.2.4 Let $t(x,\xi)$ be homogeneous of degree 0 in ξ , C^{∞} near ρ . We say that t is a time function for p near ρ if $t(\rho) = 0$ and

$$(2.2.1) -H_t(\rho) \in \Gamma_{\rho}.$$

Note that $t(x,\xi)$ is a time function near ρ for p if and only if

$$C_{\rho} \cap T_{\rho}(\{t(x,\xi) = 0\}) = \{0\}.$$

Definition 2.2.5 ([12]) We define the linearity of p_{ρ} by

$$\Lambda_{\rho} = \{ X \in T_{\rho}(T^*\Omega) \mid p_{\rho}(tX+Y) = p_{\rho}(Y), \ \forall t \in \mathbb{R}, \forall Y \in T_{\rho}(T^*\Omega) \}$$

When ρ is a simple characteristic then

$$p_{\rho}(tX+Y) = dp(\rho; tX+Y) = tdp(\rho; X) + dp(\rho; Y)$$

hence it is clear that $\Lambda_{\rho} = \{X \in T_{\rho}(T^*\Omega) \mid dp(\rho; X) = 0\}$. When ρ is a double characteristic of p then we have

$$\Lambda_{\rho} = \operatorname{Ker} F_p(\rho).$$

Indeed $p_{\rho}(tX+Y) = p_{\rho}(Y)$ for any $t \in \mathbb{R}$ and $Y \in \mathbb{R}^{2(n+1)}$ implies Q(Y,X) = 0 for any Y. Since $Q(Y,X) = 2\sigma(Y,F_pX)$ and σ is non degenerate we have $F_pX = 0$.

Lemma 2.2.3 The following conditions are equivalent.

- (a) $F_p(\rho)$ has non zero real eigenvalues,
- (b) $(\operatorname{Ker} F_p(\rho))^{\sigma} \cap \Gamma_{\rho} \neq \emptyset$,

(c)
$$C_{\rho} \cap \Lambda_{\rho} = \{0\}$$

where $(\operatorname{Ker} F_p(\rho))^{\sigma} = \{ X \in T_{\rho}(T^*\Omega) \mid \sigma(X,Y) = 0, \forall Y \in \operatorname{Ker} F_p(\rho) \}.$

Proof: We give a proof in the next section.

Let P be a second order differential operator. Then we give another useful characterization of effective hyperbolicity. Write p as

(2.2.2)
$$p(x,\xi) = -(\xi_0 - a(x,\xi'))^2 + q(x,\xi')$$

where $\xi' = (\xi_1, ..., \xi_n)$ and $q(x, \xi') \ge 0$ by Theorem 1.1.1. Then we have

Lemma 2.2.4 ([44]) Assume that p is effectively hyperbolic at ρ . Then there is a time function $t(x, \xi')$ near ρ for p verifying

(2.2.3)
$$q(x,\xi') \ge ct(x,\xi')^2 |\xi'|^2 \text{ near } \rho$$

with some c > 0. Conversely if (2.2.3) holds with some time function $t(x, \xi')$ then p is effectively hyperbolic at ρ .

Proposition 2.2.1 Let p be as in (2.2.2). Assume that p is effectively hyperbolic at ρ and there is a null bicharacteristic γ having ρ as a limit point. Then γ is transversal to some hypersurface containing the double characteristic set near ρ .

Proof: Let $t(x,\xi')$ be a time function given in Lemma 2.2.4. Then it is clear that the double characteristic set is contained in

$$\{\xi_0 = a, q = 0\} \subset \{q = 0\} \subset \{t = 0\}.$$

Hence from Lemma 2.2.2 and (2.2.1) the assertion is clear.

Thanks to Corollary 1.2.2 if p is strongly hyperbolic then every multiple characteristic is double. The importance of effective hyperbolicity is clear from the following result.

Theorem 2.2.1 In order that p(x, D) is strongly hyperbolic it is necessary and sufficient that $p(x, \xi)$ is effectively hyperbolic at every double characteristic.

The necessary part follows from Theorem 2.2.2 below. The proof of sufficiency part is due to [25], [29], [30], [42]. For a detailed exposition, see [31], [48].

Theorem 2.2.1 implies, in particular, that if p is noneffectively hyperbolic at ρ then in order that the Cauchy problem for P(x, D) is C^{∞} well posed the lower order terms must verify some conditions. We discuss about one of such necessary conditions.

Definition 2.2.6 Let $\rho \in T^*\Omega \setminus \{0\}$ be a double characteristic. We define $\operatorname{Tr}^+F_p(\rho)$ by

$$\operatorname{Tr}^+ F_p(\rho) = \sum \mu_j$$

where $i\mu_j$ are the eigenvalues of $F_p(\rho)$ on the positive imaginary axis repeated according to their multiplicities.

Definition 2.2.7 The subprincipal symbol of P(x, D) is defined by

$$P_{sub}(x,\xi) = P_{m-1}(x,\xi) + \frac{i}{2} \sum_{j=0}^{n} \frac{\partial^2 p}{\partial x_j \partial \xi_j}(x,\xi)$$

which is well defined on the double characteristics.

The proof of the next result was given in part in [22] and completed in [18].

Theorem 2.2.2 (Ivrii-Petkov-Hörmander) Assume that the Cauchy problem for P is C^{∞} well posed near the origin. Let $\rho \in T_0^*\Omega \setminus \{0\}$ be a multiple characteristic and p is not effectively hyperbolic at ρ . Then we have

$$\operatorname{Im} P_{sub}(\rho) = 0, \quad -\operatorname{Tr}^+ F_p(\rho) \le P_{sub}(\rho) \le \operatorname{Tr}^+ F_p(\rho).$$

We end this subsection with a conjecture proposed by Melrose [37]. Let Σ_e be the subset in $T^*\Omega \setminus \{0\}$ on which p is effectively hyperbolic. Denote by $e(\rho)$ the positive eigenvalue of $F_p(\rho)$ when $\rho \in \Sigma_e$. Set

$$s(\rho) = |\text{Im} P_{sub}(\rho)| + \inf\{|\text{Re} P_{sub}(\rho) - s| \mid |s| \le \text{Tr}^+ F_p(\rho)\}.$$

Then

CONJECTURE: ([37]) Assume that the Cauchy problem for P is C^{∞} well posed near the origin. Then there is a neighborhood U of the origin such that $s(\rho)/e(\rho)$ is uniformly bounded in $\Sigma \cap (T^*U \setminus \{0\})$.

2.3 Hyperbolic quadratic form

Since p_{ρ} is a hyperbolic quadratic form it is natural to make more detailed studies about general hyperbolic quadratic forms.

Here we restate Theorem 21.5.3 in [19] about symplectic equivalence of hyperbolic quadratic forms.

Theorem 2.3.1 Let Q be a hyperbolic quadratic form on $\mathbb{R}^{2(n+1)}$, that is a quadratic form with the signature (-1, 1, ..., 1, 0, ..., 0) and let F be the Hamilton map of the quadratic form Q

$$\frac{1}{2}Q(X,Y) = \sigma(X,FY), \quad \forall X,Y \in \mathbb{R}^{2(n+1)}.$$

Then one can choose symplectic coordinates $(x,\xi) = (x_0, x_1, ..., x_n, \xi_0, \xi_1, ..., \xi_n)$ so that

(1)
$$Q = -\xi_0^2 + \sum_{j=1}^k \mu_j (x_j^2 + \xi_j^2) + \sum_{j=k+1}^l \xi_j^2,$$

(2)
$$Q = (-\xi_0^2 + 2\xi_0\xi_1 + x_1^2)/\sqrt{2} + \sum_{j=2}^k \mu_j(x_j^2 + \xi_j^2) + \sum_{j=k+1}^l \xi_j^2,$$

(3)
$$Q = \lambda (x_0^2 - \xi_0^2) / \sqrt{2} + \sum_{j=1}^k \mu_j (x_j^2 + \xi_j^2) + \sum_{j=k+1}^l \xi_j^2$$

where F has only pure imaginary eigenvalues in the case (1) and (2) while F has a pair of non zero real eigenvalues in the case (3) and

$$\sum \mu_j = \mathrm{Tr}^+ F.$$

In (1) and (3) we have Ker $F^2 \cap \text{Im } F^2 = \{0\}$ while one has Ker $F^2 \cap \text{Im } F^2 \neq \{0\}$ in the case (2).

For symplectic coordinates, see Chapter 10 where we gathered basic facts about them.

Corollary 2.3.1 Assume that Q is a hyperbolic quadratic form. Then the following conditions are equivalent.

- (i) F has non zero real eigenvalues,
- (ii) there is $v \in V_0^{\sigma}$ such that Q(v) < 0,
- (iii) there is $v \in (\operatorname{Ker} F)^{\sigma}$ such that Q(v) < 0,
- (iv) for any $v \in \text{Ker } F$ there is $w \in \mathbb{R}^{2(n+1)}$ such that $\sigma(v, w) = 0$, Q(w) < 0,

where V_0 denotes the space of generalized eigenvectors belonging to the zero eigenvalue.

Proof: The implication (i) \Longrightarrow (ii) follows from Theorem 2.3.1. Indeed assume the case (3) occurs. Then we have $V_0 = \{x_0 = \cdots = x_k = 0, \xi_0 = \cdots = \xi_\ell = 0\}$ and hence $V_0^{\sigma} = \{\xi_0, \dots, \xi_k, x_0, \dots, x_\ell\}$ so that $v = H_{x_0}$ is a desired vector. The implications (ii) \Longrightarrow (iii) \Longrightarrow (iv) are trivial. We now prove (iv) \Longrightarrow (i). By Theorem 2.3.1, Q has one of the forms (1), (2) and (3) in suitable symplectic coordinates. Suppose now (2) occurs. Working in $\{x_0, x_1, \xi_0, \xi_1\}$ space Ker Fis given by $\{x_1 = \xi_0 = \xi_1 = 0\}$. If $\sigma(v, w) = 0, \forall v \in \text{Ker } F$ it follows that the ξ_0 coordinate of w is zero. Hence we get $Q(w) \ge 0$ and this shows that if (iv) holds then (2) never occurs.

Suppose that the case (1) occurs. Working in $\{x_0, \xi_0\}$ space we have Ker $F = \{\xi_0 = 0\}$. If $\sigma(v, w) = 0$, $\forall v \in \text{Ker } F$ then we see that the ξ_0 coordinate of w is zero and hence $Q(w) \ge 0$. This shows that the case (1) also never happens if (iv) holds.

Thus we proved that (iv) implies that only the case (3) happens. This proves the assertion. $\hfill \Box$

Proof of Lemma 2.2.3: Apply Corollary 2.3.1 to $Q = -F_p(\rho)$ which is a hyperbolic quadratic form. Then (iii) of Corollary 2.3.1 shows that (a) and (b) are equivalent. It is sufficient to prove the equivalence of (b) and (c). Recall that Ker $F_p(\rho) = \Lambda_\rho$ in this case. Assume $\Gamma_\rho \cap \Lambda_\rho^\sigma = \emptyset$. Then by the Hahn-Banach theorem there is $0 \neq Y \in T_\rho(T^*\Omega)$ such that

$$\sigma(Y,X) \le 0, \ \forall X \in \Gamma_{\rho}, \ \sigma(Y,X) \ge 0, \ \forall X \in \Lambda_{\rho}^{\sigma}.$$

This implies that $Y \in C_{\rho} \cap \Lambda_{\rho}$ which would give a contradiction to (c). Thus (c) \Longrightarrow (b). Suppose $0 \neq Y \in \Gamma_{\rho} \cap \Lambda_{\rho}^{\sigma}$. Then it is clear that $\langle Y \rangle^{\sigma} \supset \Lambda_{\rho}$ and $\langle Y \rangle^{\sigma} \cap C_{\rho} = \{0\}$ because Γ_{ρ} is open where $\langle Y \rangle = \mathbb{R} \cdot Y$. This implies obviously $C_{\rho} \cap \Lambda_{\rho} = \{0\}$ and hence (b) \Longrightarrow (c).