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Abstract. Let G(m, p, n) be a complex re�ection group and R
(
G(m, p, n)

)
one

of its representation group, and let G(m, p,∞) and R
(
G(m, p,∞)

)
be their in-

ductive limits as n → ∞. We study projective irreducible representations (=

IRs) of G(m, p, n) and their characters which we call spin characters of them.

We study in particular projective IRs of generalized symmetric groups G(m, 1, n)
and projective factor representations of G(m, 1,∞) and their characters, and also

limiting process as n →∞. Since R
(
G(m, 1, n)

)
is a special central extension of

G(m, 1, n) by the Schur multiplier Z = H2
(
G(m, 1, n), C×)

, a projective IR π of

G(m, 1, n) has its spin type, a character χ of Z, such that π(z) = χ(z)I. In the

latter part of the paper we study in detail the case of a certain spin type and also

the relation to the non-spin case.6

0 Introduction

1. In this paper we study projective (or spin) representations of in�nite
family of complex re�ection groups G(m, p, n), m > 1, n ≥ 4, p|m, and their
inductive limits G(m, p,∞) = limn→∞ G(m, p, n), and characters of such rep-
resentations, called spin characters. Our principal aims or problems here are
three-fold as
(A) Construct all the irreducible spin representations and calculate their char-

acters for �nite groups G(m, p, n), n ≥ 4.
(B) Analyse the limiting procedure of normalized irreducible characters of

G(m, p, n) as n →∞.
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(C) Determine all the spin characters of projective factor representations of
�nite type of in�nite groups G(m, p,∞), and give the explicit character formula.

2. Thanks to Schur [Sch1], we know that a �nite group G has a �nite number
of non-isomorphic representation groups. Take one of representation groups of
G and denote it by R(G). Then, any projective representation of G can be lifted
up to a linear representation of R(G), and any choice of representation group
R(G) of G gives an equivalent theory of projective representations of G. In this
sense, we may call R(G) a universal covering group of G, even though it is not
unique.

A representation group R(G) is a special kind of central extension of G by the
abelian group Z = H2(G,C×), called Schur multiplier of G. Schur multipliers
are given by Ihara-Yokonuma [IhYo] for Weyl groups, by Davies-Morris [DaMo]
for general symmetric groups G(m, 1, n), and by Read [Rea1] for general complex
re�ection groups G(m, p, n). For each of such groups G, they have determined,
on the way of calculating Schur multiplier H2(G, C×), one of its representation
groups, denoted by R(G) here. These groups R(G) are given by presenting a set
of generators and a set of fundamental relations together, and to go further we
are forced to manipulate these things well.

3. We have a constructive de�nition of an in�nite family of complex re�ec-
tion groups G(m, p, n) as the wreath product groups as follows. For p = 1,
G(m, 1, n) = Sn(Zm) = Dn(Zm) o Sn, wreath product of Zm with the sym-
metric group Sn, where Dn(Zm) denotes the direct product (restricted direct
product if n = ∞) of n copies of Zm. For p > 1, G(m, p, n) are a special kind of
normal subgroups Sn(Zm)S(p) of Sn(Zm) (cf. �2).

We have studied, for this kind of wreath product groups, in case of n = ∞,
characters of factor representations of �nite type and construction of such kind of
representations, and also in case n < ∞, construction of irreducible representa-
tions and explicit character formula for them, and furthermore the limiting pro-
cedure of characters when n tends to ∞. Our results in [Hir] and [HH1]∼ [HH4]
for these non-spin cases of Sn(Zm)S(p) = G(m, p, n) prepare a fundamental back-
ground of the spin case at present.

4. Among the category of G(m, p, n), the groups G(m, 1, n) form an im-
portant subcategory called generalized symmetric groups, which were �rst in-
troduced by Osima [Osi]. For the study on projective representations and spin
characters, a generalized symmetric group G(m, 1, n) with p = 1 can be con-
sidered as a mother group, whereas complex re�ection groups G(m, p, n) with
p > 1 as her child groups. The reason why we use this terminology is that many
results for G(m, p, n) follow from those for G(m, 1, n), as the results in �4 and
�6 indicate it (cf. in particular, Theorem 6.2). For instance, in some cases, the
restriction onto the subgroup G(m, p, n) of a character on G(m, 1, n) is itself a
character of G(m, p, n).

5. The paper consists of two parts. Part I is the preparatory part for the
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whole of the future studies, which start from Part II and might continue so long,
of the subject in the title of this paper. It is mainly devoted to the general
theory of projective representations and spin characters of complex re�ection
groups. Concerning to them, when we �rst read Nazarov's paper [Naz, 1992] on
projective representations of the in�nite symmetric group S∞ = G(1, 1,∞), we
have a strong impression about the explicit form of spin characters. Then we
asked naturally several questions. In particular, �Why spin characters of S∞
unilaterally have such unbalanced supports ? � In the �nite case of Sn, n < ∞,
spin characters have unbalanced supports or rather balanced supports according
as they are self-associate or non-self-associate (for the de�nition of self-associate,
cf. De�nition 8.1 in [II]), and so we ask �What happened on the way of transition
from the �nite case of Sn, n < ∞, to the in�nite case of S∞, n = ∞ ? �

By de�nition (cf. �6.1), a normalized spin irreducible character of G = G(m, p,
n), n < ∞, or a normalized spin character of G = G(m, p,∞), is a function f
on R(G), normalized as f(e) = 1, which satis�es the conditions (i), (ii) and (iii)
below (then f satis�es automatically (iv) in addition):

(i) f is central
(
or invariant under inner automorphisms of R(G)

)
,

(ii) positive de�nite,
(iii) extremal in the set K1

(
R(G)

)
of all functions satisfying (i)�(ii),

(iv) for some χ ∈ Ẑ with Z = H2(G,C×), f satis�es

f(zg′) = χ(z)f(zg′)
(
z ∈ Z, g′ ∈ R(G)

)
.

The central character χ ∈ Ẑ above is called the spin type (or simply type) of f .
At the starting point of the series of our present studies for G = G(m, p, n),

we analyse questions similar as above in the following way. To be fundamental,
we start from the most elementary assumption that a normalized central function
f on R(G) satis�es (iv), or has a certain spin type (and not assuming neither
positive-de�niteness nor extremality). Then we study how many important in-
formations come out from this simplest assumption on f .

As basic foundations for the future, we study in �7, conjugacy relations (mod-
ulo Z) in R(G). Then we prove that very important informations, principally on
the evaluation of the support of f , come out from the above simple assumption:
in ��8�9, for �nite case G = G(m, 1, n), n < ∞, and in �10, for in�nite case
G = G(m, 1,∞). As is proved partly in �6.6 and mainly in �11, these informa-
tions are crucial for factorisability of characters, and also in the in�nite case of
G(m, 1,∞), for the validity of the criterion (EF) for a normalized central f with
spin type to be a character, in each of di�erent spin types. These informations
help us to foresee and to carry out the explicit calculations of irreducible spin
characters later. For the importance of evaluation of supp(f), also see �16.1 and
[II, Tables 21.2 and 25.1] for example.

6. At the end of Part I, we add one section, �14, to extend general theory
on the limiting process of (normalized) irreducible characters of an increasing se-
quence H1 ↪→ H2 ↪→ . . . ↪→ Hn ↪→ . . . of �nite groups, in particular the so-called
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Vershik-Kerov ergodic method [VK]. In addition, to understand the situations
better, we discuss also the case where Hn's are compact and Hn is imbedded
into Hn+1 continuously. This additional section serves as a preparatory section
for the present papers [I] and [II] both. Put H∞ = limn→∞ Hn = ∪n≥1Hn. It is
called locally �nite in [Ker, p.5], when Hn's are �nite, for which the following is
known in [VK],

(b-1) any normalized character f of H∞ is a limit of normalized irreducible
characters χ̃πn := χπn/ dim πn of IRs πn of Hn.

In the case of wreath product Hn = Sn(T ) of a compact group T with sym-
metric group Sn, this assertion is known by [HH5], [HH6], [HHH1] and [HoHH].
In the general case where Hn's are in�nite compact groups, the assertion (b-1)
and more are proved here in �14 (cf. Theorems 14.2 and 14.3 below).

We consider naturally a converse assertion to (b-1) as

(b-2) if a series of normalized irreducible characters χ̃πn has a pointwise
limit f∞, then it is necessarily a character of H∞ . (??)

For a locally �nite group H∞, Kerov wrote on the middle of p.11 of [Ker] as

� Let us call a path t ∈ T regular if the limits (5.2) exist. The cor-
responding limiting function ϕt is harmonic, though not necessarily
extreme. . . . . . . . . . . . . . . . �

As is explained in �14.5, this means that a pointwise limit f∞ = limn→∞ χ̃πn on
H∞ is not necessarily a character, and so (b-2) does not always hold.

We call a limit f∞ a bad limit if it is not extremal or not continuous. In
the case of symmetric groups Sn ↗ S∞, the assertion (b-2) is true [VK]. It is
also true in the case of wreath product groups Hn = Sn(T ) of a �nite group
T with symmetric groups Sn, as seen by [HH1]∼ [HH4] and by [Boy]. On the
contrary, when T is an in�nite compact group, the assertion (b-2) never holds
for Hn = Sn(T ) and H∞ = S∞(T ), because explicit examples of bad limits
are given in [HHH1] (cf. Theorems 6.1 and 7.1, loc. cit.) Actually we wish to
establish (b-2) in the case of the universal covering groups Hn = R

(
G(m, p, n)

)
of G(m, p, n) = Sn(Zm)S(p) and their limit H∞ = R

(
G(m, p,∞)

)
.

7. The paper is organized as follows. In Part I, after a preparation in �1,
we give in �2, a constructive de�nition of G(m, p, n) as the wreath products
Sn(Zm) = G(m, 1, n) and their normal subgroups Sn(Zm)S(p) = G(m, p, n).
In �3, representation groups R(G) are explicitly given for generalized symmetric
groups G = G(m, 1, n) and for their child groups G = G(m, p, n), p|m, p > 1,
by giving pairs of a set of generators and a set of fundamental relations, from
the results of [DaMo] and [Rea1]. In �4, normal subgroups of R

(
G(m, 1, n)

)
corresponding to child groups are studied. By this it becomes clear that the
study for mother groups G(m, 1, n) is fundamentally important so that they
merit names of mother groups. In �5, the results in ��3�4 for the case of n �nite
are extended to the case of n = ∞. In �6 we collects general aspects of characters.
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Since R(G) is a special kind of central extension of G by Z = H2(G, C×) as

1 → Z → R(G)
Φ→ G → 1 (exact), any (irreducible) character f of R(G) has its

own spin type χ ∈ Ẑ given as f(zg′) = χ(z)f(g′)
(
z ∈ Z, g′ ∈ R(G)

)
. If χ is

trivial, or χ = 1Z , then f is reduced to the base group G through the canonical
homomorphism Φ : R(G) → G ∼= R(G)/Z, and is essentially a non-spin character
of G. On the other hand, we say g′, k′ ∈ R(G) are conjugate modulo Z if there
exists h′ ∈ R(G) such that h′g′h′−1 = zk′ for some z ∈ Z. In that case, we have
f(g′) = χ(z)f(k′), and so f is fully determined if we know its values on a complete
set of representatives of classes of conjugacy modulo Z. Going down on the base
level G, we have hgh−1 = k with g = Φ(g′), k = Φ(k′), h = Φ(h′), and in this
connection our former results for wreath product groups (e.g., [HH1]∼ [HH4])
lead our calculations in �7 on the conjugation modulo Z. In ��8�9, starting from
a simple assumption that a central function f has a spin type, the support of
f de�ned as supp(f) := {g′ ∈ R(G); f(g′) 6= 0} is evaluated on the level of
G(m, 1, n), according to the type χ and to the parity of m. In �10 these basic
results on supp(f) for a central function f with spin type are extended to the
case of G = G(m, 1,∞), n = ∞. The properties of supp(f) depend heavily on
the spin type χ of f .

A spin character f of G = G(m, 1,∞) is said to be factorizable if

f(g′g′′) = f(g′)f(g′′)

for g′, g′′ ∈ R(G) with disjoint supports supp(g′), supp(g′′) ⊂ N , where
supp(g′) := supp

(
Φ(g′)

) ⊂ N . Factorisability holds in general for non-spin
characters on the base level G = S∞(Zm) and played important role in our pre-
vious works. But, for spin characters, this property does not necessarily hold for
some spin types. We can examine this situation in �11 using the result in �10.

A projective representation π of G is called of (spin) type χ if π(z) =
χ(z)I

(
z ∈ Z = H2(G, Z×)

)
, where I denotes the identity operator. In �12,

for G = G(m, 1,∞), we study if �nite-dimensional spin representations exist or
not for each spin type χ. By [DaMo], we have H2

(
G(m, 1,∞),Z×)

= Z2 if m
is odd, and = Z 3

2 if m is even. So the case of m even is more complicated and
interesting. Let the standard generators of Z = Z 3

2 be z1, z2, z3 (cf. Theorem
3.3), then spin type χ ∈ Ẑ is expressed by β = (β1, β2, β3), βi = χ(zi) = ±1.
Except non-spin type β = (1, 1, 1), we have 7 di�erent spin types. The results
in Part I for R

(
G(m, 1,∞)

)
with m even is summarized in �13 in Table 13.1,

depending on spin types, separated into Cases I to VII.

8. In Part II, which is the start of our detailed studies, the case of spin type
β = (1, 1,−1), called Case VII, is studied along with the non-spin case with
β = (1, 1, 1), called Case VIII. These two cases have very intimate relation. In
�15, we recall known results of the non-spin case. All the characters in Case VII
can be obtained through a simple manner from those in Case VIII as is explained
in �16, and thus we can arrive to an explicit character formula in Case VII, Type
(1, 1,−1), which is the �nal result for the problem (C) in this case. The relation



of this result to the results of Dudko and Nessonov in [DuNe] on spin characters
of G(m, 1,∞), obtained by a di�erent method, is simple in this case (cf. [II],
�25).

Starting from �17, we study the problems (A) and (B) in Case VII. In �17,
all the irreducible spin representations of G(m, 1, n) of type β = (1, 1,−1) are
constructed as induced representations. In �18, all the spin irreducible charac-
ters of this type are calculated. On the other hand, spin theory of generalized
symmetric groups has been studied by Read [Rea1], Ho�man and Humphreys
[HoHu1], Stembridge [Stem], and Morris and Jones [MoJo] etc. Our method here
is quite di�erent from theirs. In �19, the limiting process as n →∞ for series of
normalized spin irreducible characters of G(m, 1, n) of this type, is studied.

A short summary of the essential part of Part I was reported in [HHH2].

Part I

General theory for complex

re�ection groups

1 Projective representations and representa-

tion groups

1.1. Projective representations and spin characters.
A projective representation ρ of a group G is by de�nition an assignment for

each g ∈ G a continuous operator ρ(g) on a Hilbert space V (ρ) satisfying

ρ(g)ρ(h) = rρ
g,h ρ(gh) (g, h ∈ G),(1.1)

where rρ
g,h ∈ C×. The C×-valued function rρ

g,h on G×G is called the factor set of
ρ. Here in this paper we treat only discrete groups and so there is no demand on
the continuity of g → ρ(g), but we assume that each ρ(g) is unitary. A character
of a projective representation, if it exists in any sense, is called a spin character
of G (and accordingly the representation itself is also called spin, as in [Mor]).

Two projective representations ρ and ρ′ are mutually equivalent if there ex-
ists a bounded linear operator R from V (ρ) onto V (ρ′) such that R ρ(g) R−1 =

ρ′(g) (g ∈ G). They are called associated if their factor sets rρ
h,g and rρ′

g,h are
mutually equivalent or if there exists a C×-valued function cg on G such that

rρ
g,h =

cg ch

cgh

· rρ′
g,h (g, h ∈ G).(1.2)

The equivalence class of rρ
g,h is an element of the cohomology group H2(G, C×),

which is called Schur multiplier of G.

54
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Take a central extension G̃ of G by an abelian subgroup Z:

1 −→ Z −→ G̃
Φ−→ G −→ 1 (exact),(1.3)

where Φ denotes the natural homomorphism from G̃ onto G. Let π be a unitary
representation of G̃ such that π(z) = λ(z) IV (π) (z ∈ Z) with a non-zero scalar
λ(z) and the identity operator IV (π) on the representation space V (π) of π. Take
a section Ψ : G → G̃, that is, a map such that Φ ◦ Ψ is the identity map on G,
and put

ρ(g) := π
(
Ψ(g)

)
(g ∈ G),(1.4)

then ρ is a projective representation of G with a factor set given by the character
λ of Z as

rρ
g,h := λ

(
Ψ(g) Ψ(h) Ψ(gh)−1

)
(g, h ∈ G).(1.5)

A central extension G̃ in (1.3) is called a representation group of G and
denoted by R(G) if it satis�es the following:

(PR1) any irreducible projective representation of G is equivalent to such a
one which is associated to someone obtained as in (1.4)�(1.5);
(PR2) among central extensions with the property (PR1), it is minimal.

For any �nite group G, Schur proved in [Sch1] that there exists a �nite number
of non-isomorphic representation groups of G, where (PR2) is replaced by �the
order |G̃| is the smallest. He also proved that the central subgroup Z for any
representation group is unique and isomorphic to Schur multiplier H2(G, C×).
Moreover he proved the following.

Lemma 1.1 ([Sch1, �5]). Let G be a �nite group. A central extension G̃ in
(1.3) is a representation group of G if and only if it satis�es (1) and (2) below:

(1) the central subgroup Z is contained in the commutator group
[
G̃, G̃

]
:

Z ⊂ [
G̃, G̃

]
;

(2) among such G̃, the order
∣∣G̃

∣∣ is the largest (which equals to |G|·|H2(G,C×)|).
Moreover the condition (2) can be replaced by (2′) below :

(2′) |Z| = |H2(G, C×)|.

We take one of representation groups of G and denote it by R(G). Any
projective representation of G can be lifted up to a linear representation of R(G),
and the study of projective representations of G is translated to the study of
linear representations of R(G). This situation is similar also for the study of spin
characters. Any choice of representation group R(G) of G gives an equivalent
theory of projective representations of G. In this point of view, a representation
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group R(G), even it is not necessarily unique, may be called as a universal
covering group of G, comparing it to the case of connected Lie groups.

De�nition 1.1. The spin type or simply type of a projective irreducible
representation (=IR) π of G is a character χ of the central group Z = H2(G, C×)

such that π(z) = χ(z)IV (π). A central (or an invariant) function f on G̃, for
instance a spin character, is called of type χ if

f(zg′) = χ(z) f(g′) (z ∈ Z, g′ ∈ G̃).(1.6)

In the sequel we study projective representations and spin characters (cf. def-
inition in �6.1) of complex re�ection groups G(m, p, n), and also of their inductive
limits G(m, p,∞) as n →∞.

1.2. Cases of �nite and in�nite symmetric groups.
In [Sch3, Part I], it is proved that, for n-th symmetric group Sn, the Schur

multiplier H2(Sn,C
×) = Z2, and there exist two non-isomorphic representation

groups Tn,T′n for n ≥ 4, n 6= 6, and for n = 6 these two are isomorphic. Moreover,
for n-th alternating group An, the cases of n = 6, 7 are exceptional, and for
n ≥ 4, 6= 6, 7, H2(An,C×) = Z2, and there exists unique representation group
Bn given as Bn = [Tn,Tn] ∼= [T′n,T

′
n].

Theorem 1.2 ([Sch3]). (i) The n-th symmetric group Sn is presented by
a set of generators and fundamental relations as follows, where e denotes the
identity element:

• set of generators: {s1, s2, . . . , sn−1} with si = (i i+1) simple re�ections ;

• set of fundamental relations:

(S-n)

{
s 2

i = e (1 ≤ i ≤ n− 1), (sisi+1)
3 = e (1 ≤ i ≤ n− 2),

sisj = sjsi (|i− j| ≥ 2).

(ii) A representation group of Sn, which is denoted by T′n in [Sch3], is given
by a set of generators and fundamental relations as follows:

• set of generators: {z, r1, r2, . . . , rn−1} ;
• set of fundamental relations:

(T-n)





z2 = e , zri = riz (1 ≤ i ≤ n− 1),

r 2
i = e (1 ≤ i ≤ n− 1), (riri+1)

3 = e (1 ≤ i ≤ n− 2),

rirj = zrjri (|i− j| ≥ 2);

{e} −→ Z = {z, e} −→ T′n
Φ−→ Sn −→ {e},

with the natural homomorphism: Φ : T′n 3 ri → si ∈ Sn.
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We denote T′n by R(Sn) or S̃n and prefer to use it in our study (rather
than Tn). The in�nite symmetric group S∞ is de�ned as the group of �nite
permutations of the set of natural numbers N , then it is an inductive limit of
Sn as n → ∞ : S∞ := lim

n→∞
Sn. According to this, put T′∞ := lim

n→∞
T′n, then we

see that it is a representation group of S∞ and so denote it by R(S∞) or S̃∞:

S∞ = lim
n→∞

Sn, R(S∞) = lim
n→∞

R(Sn).(1.7)

Projective representations and spin characters of S∞ have been studied by
Nazarov [Naz], where he has chosen groups Tn and T∞ := limn→∞ Tn to be
studied.

2 Wreath product groups and complex re�ec-

tion groups

2.1. Wreath products of symmetric groups with �nite abelian
groups.

For a set I, denote by SI the group of �nite permutations on I. For I =
In := {1, 2, . . . , n} or I = I∞ := N , the su�ces I are usually replaced by n
or ∞ respectively: SIn = Sn, SN = S∞. Take a �nite abelian group T and
de�ne the wreath product groups SI(T ) as follows:

SI(T ) := DI(T )oSI , DI(T ) :=
∏′

j∈I

Tj, Tj := T (j ∈ I),(2.1)

where
∏′ denotes the restricted direct product if I is in�nite, and SI acts on

DI(T ) naturally by permuting the components. For a subgroup S of T , we have
a canonical normal subgroup of SI(T ) given as

SI(T )S := DI(T )S oSI , DI(T )S := {d ∈ DI(T ) ; P (d) ∈ S},(2.2)

where P (d) :=
∏

j∈I ti for d = (tj)j∈I ∈ DI(T ). Replacing SI by its subgroup
AI consisting of even permutations, we de�ne a subgroup AI(T )S of SI(T )S

similarly. Later on, the index I is replaced by n or ∞ according to I = In or
I = N .

Now let T = Zm, understood as a multiplicative group. Then the groups
Sn(Zm) were introduced in [Osi] and called generalized symmetric groups. Any
subgroup of T = Zm is given as

S(p) := {tp ; t ∈ T} ∼= Zm/p for a divisor p of m.(2.3)

We put G(m, p, n) := Sn(Zm)S(p) for n �nite and also for n = ∞. Then we have

G(m, p,∞) = lim
n→∞

G(m, p, n) for p|m.(2.4)
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This is a constructive de�nition of �nite and in�nite complex re�ection groups.
In [HH1], we have studied the characters of S∞(T ) and of S∞(T )S for any

�nite abelian group T , and in [HH2]�[HH3], similarly for the case of �nite groups
T . They serve as basic ingredient in our present study.

2.2. Classi�cation of complex re�ection groups.
A linear transformation on a complex �nite-dimensional vector space V is

called a complex re�ection if it is of �nite order and leaves a complex hyperplane
invariant pointwise. A group G is called a complex re�ection group if it is gen-
erated by complex re�ections. In [ShTo], Shephard and Todd classi�ed all �nite
complex re�ection groups G acting irreducibly on V . In their classi�cation, the
groups G(m, p, n) are divided into 3 in�nite subfamilies numbered as 1 to 3 as
follows, leaving other 34 exceptional groups aside:

1. symmetric groups Sn = G(1, 1, n) ;
2. G(m, p, n) = S(Zm)S(p), m > 1, n > 1, p|m,(

this family contains generalized symmetric groups G(m, 1, n) = Sn(Zm)
)
;

3. cyclic groups G(m, 1, 1) = Zm, G(m, p, 1) = Zm/p .

3 Representation groups of complex re�ection

groups

3.1 Representation groups of generalized symmetric groups

For a generalized symmetric group G = G(m, 1, n) = Sn(Zm), Davies and Morris
[DaMo] gave its Schur multiplier H2(G,C×) and also one of its representation
groups. First we choose generators and fundamental relations as follows.

Proposition 3.1. The generalized symmetric group G(m, 1, n) = Sn(Zm)
is presented by

• set of generators : {s1, s2, . . . , sn−1, y1, y2, . . . , yn} ,
where yj corresponds to a generator of Tj = Zm ;

• set of fundamental relations:

(ST-mn)





relations (S-n) for {s1, . . . , sn−1},
y m

j = e (1 ≤ j ≤ n),

yjyk = ykyj (j 6= k),

siyis
−1
i = yi+1, siyi+1s

−1
i = yi (1 ≤ i ≤ n− 1),

siyjs
−1
i = yj (j 6= i, i + 1).

We can translate the result in [DaMo] as follows.
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Theorem 3.2 (Case m odd). Suppose 4 ≤ n and m is odd.
(i) For G(m, 1, n) = Sn(Zm), a representation group R

(
G(m, 1, n)

)
is given

as
{e} −→ Z −→ R

(
G(m, 1, n)

) Φ−→ G(m, 1, n) −→ {e},
• set of generators :

{
z1, ri (1 ≤ i ≤ n− 1), ηj (1 ≤ j ≤ n)

}
;

Φ(ri) = si (1 ≤ i ≤ n− 1), Φ(ηj) = yj (1 ≤ j ≤ n) ;

• set of fundamental relations :

(i) z 2
1 = e , z1 central element ;

(ii)

{
r 2
i = e (1 ≤ i ≤ n− 1), (riri+1)

3 = e (1 ≤ i < n− 1),
rirj = z1rjri (|i− j| ≥ 2),

(iii) η m
j = e (1 ≤ j ≤ n),

(iv) ηjηk = ηkηj (j 6= k),

(v)

{
riηir

−1
i = ηi+1, riηi+1r

−1
i = ηi (1 ≤ i ≤ n− 1),

riηjr
−1

i = ηj (j 6= i, i + 1) ;

Z = H2
(
G(m, 1, n),C×)

= 〈z1〉 ∼= Z2.

(ii) This representation group R
(
G(m, 1, n)

)
is isomorphic to the semidirect

product of R(Sn) with Dn(Zm) as

R
(
G(m, 1, n)

) ∼= Dn(Zm)oR(Sn),(3.1)

where R(Sn) = 〈r1, r2, . . . , rn−1〉 acts on Dn(Zm) ∼= 〈η1, η2, . . . , ηn〉 through the
quotient group R(Sn)/〈z1〉 ∼= Sn.

Theorem 3.3 (Case m even). Suppose 4 ≤ n and m is even. Then for
G(m, 1, n) = Sn(Zm), a representation group R

(
G(m, 1, n)

)
is given as

{e} −→ Z −→ R
(
G(m, 1, n)

) Φ−→ G(m, 1, n) −→ {e},
• set of generators :

{
z1, z2, z3, ri (1 ≤ i ≤ n− 1), ηj (1 ≤ j ≤ n)

}
;

Φ(ri) = si (1 ≤ i ≤ n− 1), Φ(ηj) = yj (1 ≤ j ≤ n) ;

• set of fundamental relations :

(i) z 2
i = e (1 ≤ i ≤ 3), zi central element ;

(ii)

{
r 2
i = e (1 ≤ i ≤ n− 1), (riri+1)

3 = e (1 ≤ i < n− 1),
rirj = z1rjri (|i− j| ≥ 2),

(iii) η m
j = e (1 ≤ j ≤ n),

(iv) ηjηk = z2ηkηj (j 6= k),

(v)

{
riηir

−1
i = ηi+1, riηi+1r

−1
i = ηi (1 ≤ i ≤ n− 1),

riηjr
−1

i = z3ηj (j 6= i, i + 1) ;

Z = H2
(
G(m, 1, n),C×)

= 〈z1, z2, z3〉 ∼= Z 3
2 .
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3.2 Representation groups of general complex re�ection
groups G(m, p, n)

For a general complex re�ection group G(m, p, n), Read [Rea1] gave its Schur
multiplier and one of its representation groups. The main part of the former is
given as below:

Table 3.1. Schur multiplier H2
(
G(m, p, n),C×) ∼= Z `

2 ,
` = `(m, p, n), 5 ≤ n.

CASE p q = m/p `(m, p, n)
OO odd odd 1
OE odd even 3
EO even odd 2
EE even even 3

(
n ≥ 5 is a stable
range for the exponent
` = `(m, p, n)

)

To give a representation group in each case, we present the complex re�ection
group G(m, p, n) by giving a set of generators and that of fundamental relations.
Put

{
x1 := y p

1 (when p = m, x1 = e),

xj := y−1
1 yj (2 ≤ j ≤ n).

(3.2)

Proposition 3.4. Let 4 ≤ n < ∞.
The complex re�ection group G(m, p, n) = Sn(Zm)S(p) is presented as fol-

lows:

• set of generators: {s1, s2, . . . , sn−1 ; x1, x2, . . . , xn} ;
• set of fundamental relations:

(ii)

{
s 2

i = e (1 ≤ i ≤ n− 1), (sisi+1)
3 = e (1 ≤ i ≤ n− 2),

sisj = sjsi (|i− j| ≥ 2) ;

(iii)

{
x q

1 = e with q = m/p ,
x m

j = e (2 ≤ j ≤ n) ;

(iv) xjxk = xkxj (j 6= k) ;

(v-1)

{
sixis

−1
i = xi+1

sixi+1s
−1
i = xi

(2 ≤ i ≤ n− 1),

sixjs
−1
i = xj (2 ≤ i ≤ n− 1, j 6= i, i + 1, 1 ≤ j ≤ n),

(v-2)

{
s1x1s

−1
1 = x1x

p
2 ,

s1x2s
−1
1 = x −1

2 ,

s1xjs
−1
1 = x −1

2 xj (3 ≤ j ≤ n).

Note that the choice of generators in (3.2) is a little di�erent from that of
Read [Rea1] for the convenience of considering inductive limits as n →∞.
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In [Rea1], the Schur multiplier H2
(
G(m, p, n)

)
is given for any possible (m, p, n),

and on the way of calculating it, Read gave one of representation groups of
G(m, p, n), which we denote by R

(
G(m, p, n)

)
. It is written in a uni�ed form,

but we rewrite it separately in each of 4 cases in Table 3.1, since the structure of
R

(
G(m, p, n)

)
is one of fundamental ingredients of our study, and as our starting

point it should be clearly written in our notation.

Theorem 3.5 (Case OO). Assume 5 ≤ n < ∞ and m is odd.
(i) A representation group R

(
G(m, p, n)

)
is given as

• set of generators: {r1, r2, . . . , rn−1; w1, w2, . . . , wn−1, wn},
Φ(ri) = si (1 ≤ n ≤ n− 1), Φ(wj) = xj (1 ≤ j ≤ n) ;

• set of fundamental relations:

(i) z 2
1 = e, z1 central element ;

(ii)

{
r 2
i = e (1 ≤ i ≤ n− 1), (riri+1)

3 = e (1 ≤ i ≤ n− 2),
rirj = z1rjri (|i− j| ≥ 2) ;

(iii)

{
w q

1 = e with q = m/p,
w m

j = e (2 ≤ j ≤ n) ;

(iv) wjwk = wkwj (j 6= k) ;

(v-1)

{
riwir

−1
i = wi+1

riwi+1r
−1

i = wi
(2 ≤ i ≤ n− 1),

riwjr
−1

i = wj (2 ≤ i ≤ n− 1, j 6= i, i + 1, 1 ≤ j ≤ n) ;

(v-2)

{
r1w1r

−1
1 = w1 w p

2 ,
r1 w2 r −1

1 = w −1
2 ,

r1wjr
−1
1 = w −1

2 wj (3 ≤ j ≤ n).

(ii) The representation group R
(
G(m, p, n)

)
is isomorphic to the semidirect

product of R(Sn) with Dn(Zm)S(p) as

R
(
G(m, p, n)

) ∼= Dn(Zm)S(p) oR(Sn),(3.3)

where R(Sn) acts on Dn(Zm)S(p) ∼= 〈w1, w2, . . . , wn〉 through the quotient group
R(Sn)/〈z1〉 ∼= Sn.

Theorem 3.6 (Case OE). Assume 5 ≤ n < ∞, p be odd and q = m/p be
even (∴ m = pq even). A representation group R

(
G(m, p, n)

)
in this case is

given as follows:

• set of generators:
{
z1, z2, z3, r1, r2, . . . , rn−1, w1, w2, . . . , wn

}
;

• set of fundamental relations:

(i) z 2
1 = z 2

2 = z 2
3 = e, zi central elements ;
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(ii)

{
r 2
i = e (1 ≤ i ≤ n− 1), (riri+1)

3 = e (1 ≤ i ≤ n− 2),
rirj = z1rjri (|i− j| ≥ 2) ;

(iii)

{
w q

1 = e with q = m/p,

w m
j = z

m/2
2 (2 ≤ j ≤ n) ;

(iv) wjwk = z2wkwj (j 6= k) ;

(v-1)

{
riwir

−1
i = wi+1

riwi+1r
−1

i = wi
(2 ≤ i ≤ n− 1),

riwjr
−1

i = wj (2 ≤ i ≤ n− 1, j 6= i, i + 1, 2 ≤ j ≤ n),

riw1r
−1

i = z3w1 (2 ≤ i ≤ n− 1) ;

(v-2)

{
r1w1r

−1
1 = z

(p−1)/2
2 z3 w1 w p

2 ,
r1 w2 r −1

1 = w −1
2 ,

r1wjr
−1
1 = w −1

2 wj (3 ≤ j ≤ n) ;

Z = H2
(
G(m, p, n), C×)

= 〈z1, z2, z3〉 ∼= Z 3
2 .

Theorem 3.7 (Case EO). Assume 5 ≤ n < ∞, p be even and q = m/p be
odd (∴ m even). A representation group R

(
G(m, p, n)

)
in this case is given

as follows:

• set of generators:
{
z1, z2, r1, r2, . . . , rn−1, w1, w2, . . . , wn

}
;

• set of fundamental relations:

(i) z 2
1 = e, z 2

2 = e, zi central elements ;

(ii)

{
r 2
i = e (1 ≤ i ≤ n− 1), (riri+1)

3 = e (1 ≤ i ≤ n− 2),
rirj = z1 rjri (|i− j| ≥ 2) ;

(iii)

{
w q

1 = e with q = m/p ,
w m

j = z2
m/2 (2 ≤ j ≤ n) ;

(iv)

{
wjwk = z2 wkwj (j 6= k, 2 ≤ j, k ≤ n) ,
w1wk = wkw1 (2 ≤ k ≤ n) ;

(v-1)

{
riwir

−1
i = wi+1

riwi+1r
−1

i = wi
(2 ≤ i ≤ n− 1),

riwjr
−1

i = wj (2 ≤ i ≤ n− 1, j 6= i, i + 1, 1 ≤ j ≤ n) ;

(v-2)

{
r1w1r

−1
1 = z2

p/2 w1w
p
2 ,

r1w2r
−1
1 = w −1

2 ,

r1wjr
−1
1 = w −1

2 wj (3 ≤ j ≤ n) ;

Z = H2
(
G(m, p, n), C×)

= 〈z1, z2〉 ∼= Z 2
2 .

Theorem 3.8 (Case EE). Assume 5 ≤ n < ∞ and both p and q are even.
A representation group R

(
G(m, p, n)

)
is given as follows:

• set of generators:
{
z1, z2, z3, r1, r2, . . . , rn−1, w1 w2, . . . wn

}
;
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• set of fundamental relations:

(i) z 2
1 = z 2

2 = z 2
3 = e, zi central elements ;

(ii)

{
r 2
i = e (1 ≤ i ≤ n− 1), (riri+1)

3 = e (1 ≤ i ≤ n− 2),
rirj = z1 rjri (|i− j| ≥ 2) ;

(iii)

{
w q

1 = e with q = m/p ,
w m

j = e (2 ≤ j ≤ n) ;

(iv)

{
wjwk = z2 wkwj (j 6= k, 2 ≤ j, k ≤ n) ,
w1wk = wkw1 (2 ≤ k ≤ n) ;

(v-1)

{
riwir

−1
i = wi+1

riwi+1r
−1

i = wi
(2 ≤ i ≤ n− 1),

riwjr
−1

i = wj (2 ≤ i ≤ n− 1, j 6= i, i + 1, 2 ≤ j ≤ n),

riw1r
−1

i = z3 w1 (2 ≤ i ≤ n− 1) ;

(v-2)

{
r1w1r

−1
1 = z

p/2
2 z3 w1w

p
2 ,

r1w2r
−1
1 = w −1

2 ,

r1wjr
−1
1 = w −1

2 wj (3 ≤ j ≤ n).

Z = H2
(
G(m, p, n), C×)

= 〈z1, z2, z3〉 ∼= Z 3
2 ;

Note that, in Theorems 3.6∼ 3.8, Z = 〈z1〉, 〈z1, z2, z3〉, 〈z1, z2〉, 〈z1, z2, z3〉, in
respective cases is contained in [R

(
G(m, p, n)

)
, R

(
G(m, p, n)

)
] as is demanded

in Lemma 1.1 (1).

4 Normal subgroups of R
(
G(m, 1, n)

)
correspond-

ing to G(m, p, n)

In the exact sequence for the representation group of a generalized symmetric
group:

{e} −→ Z −→ R
(
G(m, 1, n)

) Φ−→ G(m, 1, n) −→ {e},(4.1)

we take the full inverse image Φ−1
(
G(m, p, n)

)
, and compare it with the repre-

sentation group R
(
G(m, p, n)

)
of G(m, p, n).

Theorem 4.1 (Cases OO). Let 5 ≤ n < ∞, and both p and q = m/p are
odd. Put

{
w′

1 = η p
1 ,

w′
j = η −1

1 ηj (2 ≤ j ≤ n),
(4.2)

in R
(
G(m, 1, n)

)
. Then the full inverse image Φ−1

(
G(m, p, n)

)
is presented by
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the set of generators {r1, r2, . . . , rn−1 ; w′
1, w

′
2, . . . , w

′
n} and the set of

fundamental relations obtained from that of Theorem 3.5 (Case OO) by

replacing wj with w′
j.

The normal subgroup Φ−1
(
G(m, p, n)

) ⊂ R
(
G(m, 1, n)

)
is canonically isomor-

phic to the representation group R
(
G(m, p, n)

)
under ri → ri (1 ≤ i ≤ n −

1), w′
j → wj (1 ≤ j ≤ n).

Theorem 4.2 (Cases OE and EO). Let 5 ≤ n < ∞, and assume that one
of p, q is odd and the other is even. Put

{
w′

1 = η p
1 ,

w′
j = z j−1

3 η −1
1 ηj (2 ≤ j ≤ n).

(4.3)

in R
(
G(m, 1, n)

)
. Then the full inverse image Φ−1

(
G(m, p, n)

) ⊂ R
(
G(m, 1, n)

)
is presented by




the set of generators {r1, r2, . . . , rn−1 ; w′
1, w

′
2, . . . , w

′
n} and the set of

fundamental relations obtained from that of Theorem 3.6 (Case OE) or

that of Theorem 3.7 (Case EO) replacing by replacing wj with w′
j.

The normal subgroup Φ−1
(
G(m, p, n)

) ⊂ R
(
G(m, 1, n)

)
is canonically isomor-

phic to the representation group R
(
G(m, p, n)

)
under ri → ri (1 ≤ i ≤ n −

1), w′
j → wj (1 ≤ j ≤ n).

Theorem 4.3 (Case EE). Let 5 ≤ n < ∞, and both p, q are even. Put w′
j

be as in (4.3) above. Let H ′ be the subgroup of R
(
G(m, 1, n)

)
generated by the

set

{r1, r2, . . . , rn−1 ; w′
1, w

′
2, . . . , w

′
n}.(4.4)

Then the latter satis�es a set of relations obtained from that of Theorem 3.8
(Case EE) by replacing wj with w′

j and also by reducing z3 to e.

In this manner, the normal subgroup H ′ of R
(
G(m, 1, n)

)
is canonically

isomorphic to the quotient group R
(
G(m, p, n)

)/〈z3〉 under the correspondence
ri → ri (1 ≤ i ≤ n− 1), w′

j → wj mod 〈z3〉 (1 ≤ j ≤ n).

Sketch of Proofs of Theorems 4.1∼ 4.3.
The assertion that the set {r1, r2, . . . , rn−1 ; w′

1, w
′
2, . . . , w

′
n} satis�es the cor-

responding fundamental relations of the set of generators {r1, r2, . . . , rn−1; w1, w2,
. . . , wn} (resp. under modulo 〈z3〉 for Theorem 4.3) can be proved by calcula-
tions.

Hence we know that the map ri → ri (1 ≤ i ≤ n − 1), wj → w′
j (1 ≤ j ≤

n) (resp. w′
j → wj mod 〈z3〉 (1 ≤ j ≤ n)) from R

(
G(m, p, n)

) (
resp. from

R
(
G(m, p, n)

)/〈z3〉 into R
(
G(m, 1, n)

) )
is homomorphic.
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To prove that this homomorphism is actually an isomorphism, it is enough
to count the orders of both groups. 2

Summarizing the main result, we obtain the following table.

Table 4.1. Inclusion relations between representation groups.

Case Inclusion Relation

OO, OE, EO R
(
G(m, p, n)

)
↪→ R

(
G(m, 1, n)

)
EE R

(
G(m, p, n)

)/〈z3〉 ∼= H ′ ⊂ R
(
G(m, 1, n)

)

Remark 4.1. Thus we see that, in Cases OO, OE and EO, if we obtain
some results on (spin) characters of R

(
G(m, 1, n)

)
, then by restriction we get the

corresponding informations on (spin) characters of R
(
G(m, p, n)

)
, and similarly

for the case of n = ∞ (cf. Theorem 7.1 in [HH4] or ��6.3∼ 6.4 and Theorem 6.2
below). Moreover the same assertion holds for

R
(
G(m, p, n)

)/〈z3〉 ∼= H ′ ⊂ R
(
G(m, 1, n)

)
.

Additional discussions will help us to get rather complete information on (spin)
characters f of R

(
G(m, p, n)

)
for which f(z3g

′) = −f(g′)
(
g′ ∈ R

(
G(m, p, n)

))
.

In this sense, we call generalized symmetric groups G(m, 1, n), 4 ≤ n < ∞,
as mother groups and G(m, p, n) with p > 1 as her child groups of G(m, 1, n).
The study on projective representations and spin characters of mother groups
is fundamental and plays a crucial role for studying the cases of child groups
(cf. �16.1 below).

The situation is also similar in the case of in�nite general complex re�ection
groups.

5 In�nite version R
(
G(m, 1,∞)

)
and R

(
G(m, p,∞)

)

It can be proved that the inductive limits lim
n→∞

R
(
G(m, 1, n)

)
and lim

n→∞
R

(
G(m, p, n)

)

are representation groups of G(m, 1,∞) and G(m, p,∞) respectively, and so we
can denote them by R

(
G(m, 1,∞)

)
and R

(
G(m, p,∞)

)
. Here we only list up

the similar results as in ��3∼ 4 as follows.

5.1. Similarly as Proposition 3.1, the in�nite generalized symmetric group
G(m, 1,∞) = lim

n→∞
G(m, 1, n) has a presentation with

a set of generators {si (1 ≤ i < ∞) ; yj (1 ≤ j < ∞)}, and
a set of fundamental relations in (ST-mn) in Proposition 3.1, but replacing
� 1 ≤ i ≤ n− 1 � by � 1 ≤ i < ∞ �, and � 1 ≤ j ≤ n � by � 1 ≤ j < ∞ �.

5.2. Quite similar theorems as Theorem 3.2 (Case m odd) and Theorem
3.3 (Case m even) hold under the above replacements.

5.3. Similar result as in Table 3.1 holds for G(m, p,∞).
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5.4. Similarly as Proposition 3.4, the in�nite generalized symmetric group
G(m, p,∞) = lim

n→∞
G(m, p, n), p|m, has a presentation with

a set of generators {si (1 ≤ i < ∞) ; xj (1 ≤ j < ∞)}, and
a set of fundamental relations in Proposition 3.4 but replacing

� i ≤ n−1 � and � i ≤ n−2 � by � i < ∞ � ; and � j ≤ n � by � j < ∞ �.

5.5. Quite similar theorems as Theorem 3.5 (Case OO), Theorem 3.6 (Case
OE), Theorem 3.7 (Case EO) and Theorem 3.8 (Case EE) hold under the above
replacements, and we have the following.

Theorem 5.1. There exist canonical embeddings as normal subgroups:
{

R
(
G(m, p,∞)

)
↪→ R

(
G(m, 1,∞)

)
(in Case OO, EO, OE),

R
(
G(m, p,∞)

)/〈z3〉 ∼= H ′ ⊂ R
(
G(m, 1,∞)

)
(in Case EE),

where H ′ denotes the subgroup of R
(
G(m, p,∞)

)
generated by {ri (1 ≤ i <

∞), w′
j (1 ≤ j < ∞)} in Case EE.

5.6. Similar remark as Remark 4.1 holds also for the relations between
(spin) characters of a mother group R

(
G(m, 1,∞)

)
and those of child groups

R
(
G(m, p,∞)

)
,

p > 1, p|m. This leads the direction of our study.

6 General aspects about characters of groups

6.1. Characters. We give here a de�nition of character in a certain narrow
sense, and we will utilize it hereafter except otherwise clearly stated.

In general, for a topological group G, denote by P(G) the set of continuous
positive de�nite functions on G, by K(G) the set of f ∈ P(G) central or invariant
under G. Put K1(G) := {f ∈ K(G); f(e) = 1} with the identity element e of
G, and E(G) := Extr

(
K1(G)

)
the set of all extremal points of the convex set

K1(G). We call a function f ∈ E(G) a character of G. It corresponds 1-1 way
to the normalized character of a quasi-equivalence class of factor representation
of �nite type of G, that is, that of a �nite-dimensional irreducible representation
or of a II1 factor representation (cf. e.g., [HH3]).

6.2. Induction of characters from a subgroup.
Let H be a subgroup of G. Corresponding to taking a diagonal matrix element

of induced representation from H to G, we de�ne trivial extension f̃ of a positive
de�nite function f ∈ P(H) as

f̃(g) :=

{
f(g) if g ∈ H,

0 if g 6∈ H.
(6.1)

Then f̃ is positive de�nite on G, and is continuous if H is open in G.
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Moreover, in the case where G/H is compact, for a character f of H, we
de�ne an inducing up F = IndG

Hf of f as

F (g) :=

∫

G/H

f̃(kgk−1) dk̇ (g, k ∈ G),(6.2)

where k̇ = kH ∈ G/H and dk̇ denotes the normalized invariant measure on
G/H. The function F is positive de�nite but its continuity is to be discussed.
This process f → F corresponds to the process of taking the normalized character
of an induced representation.

6.3. Restriction of characters onto a normal subgroup.
Let N be a normal subgroup of G. For g ∈ G, the restriction of the inner

automorphism ι(g) of G onto N is denoted by ι|N(g), and the set of all ι|N(g), g ∈
G, is denoted by AutG(N).

Suppose a function F on G is invariant. Then its restriction f := F |N onto
N is G-invariant or invariant under AutG(N) ⊃ Int(N). Put

K(N,G) := {f ∈ K(N) ; f is G-invariant},
K1(N,G) := {f ∈ K(N, G) ; f(e) = 1},(6.3)

E(N, G) := the set of all extremal elements in K1(N,G).

Lemma 14 in [Tho1] asserts the following (more generally, see [HH6, Theorem
14.1]):

Lemma 6.1 ([Tho1, Lemma 14]). Let G be a countable discrete group and
N its normal subgroup. For any character F ∈ E(G), its restriction f = F |N
belongs to E(N, G).

6.4. Restriction in the case of representation groups R
(
G(m, 1,∞)

)
.

Let G = R
(
G(m, 1,∞)

)
and N be its normal subgroup given as follows:

(6-a) In case m is odd, or in case m is even and Case OO, OE or EO, put
N = R

(
G(m, p,∞)

)
which is imbedded canonically into G as in Theorem 5.1 ;

(6-b) In case m is even and Case EE, put N = R
(
G(m, p,∞)

)
/〈z3〉 imbed-

ded canonically into G as in Theorem 5.1.

Theorem 6.2. (i) The index [AutG(N), Int(N)] = p.
(ii) A function f on N is G-invariant if and only if it is invariant, and

E(N) = E(N, G).
(iii) The restriction map E(G) 3 F → f = F |N ∈ E(N, G) = E(N) is

surjective.

Proof. (i) Here we give a proof only for Case OO, n = ∞. For the other
cases we will give necessary comments afterwards. Let Z(N) :=

∏′
i∈N Zi be
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the restricted direct product of additive groups Zi = Z (i ∈ N ), and for a =
(ai)i∈N ∈ Z(N), put d′(a) := η a1

1 η a2
2 · · · ∈ G = R

(
G(m, 1,∞)

)
and ord

(
d′(a)

)
:=

a1 + a2 + · · · , where the product and the sum are actually �nite since ai = 0
except for a �nite number of i's by de�nition. De�ne

{
Z(N)(p) :=

{
a ∈ Z(N); a1 + a2 + · · · ≡ 0 (mod p)

}
, S̃∞ := 〈ri (i ∈ N)〉,

D̃∞ :=
〈
ηj (j ∈ N )

〉
, D̃

S(p)
∞ :=

{
d′ ∈ D̃∞ ; ord(d′) ≡ 0 (mod p)

}
,

Then there hold isomorphisms D̃∞ ∼= Z(N) and D̃
S(p)
∞ ∼= Z(N)(p). Also we have

semidirect product expressions as G = D̃∞o S̃∞ and N = D̃
S(p)
∞ o S̃∞, whence

ι(G) = ι
(
D̃∞

)
o ι

(
S̃∞

)
, ι(N) = ι

(
D̃S(p)
∞

)
o ι

(
S̃∞

)
.(6.4)

Hence [AutG(N) : Int(N)] =
[
ι(G)

∣∣
N

: ι(N)
]

=
[
ι
(
D̃∞

)∣∣
N

: ι
(
D̃

S(p)
∞

)]
.

To calculate the latter index, we consider a map C on Z(N) as

C : Z(N) 3 a → b = (bi)i∈N ∈ Z(N), bi := ai − ai+1 (i ∈ N ).(6.5)

Then we see that C is an automorphism of Z(N), and the inverse C−1(b) = a is
given by the formula ai =

∑
j≥i bj. Denote by Z(N)((p)) the image of Z(N)(p)

under C.
On the other hand, we can prove, by calculation using Theorem 3.2, the

following formula: with w1 = η p
1 , wj = η −1

1 ηj (j > 1),

{
ι
(
d′(a)

)
r1 :=

(
w −1

2

)b1 · r1 ,

ι
(
d′(a)

)
ri :=

(
wiw

−1
i+1

)bi · ri (i > 1),
(6.6)

and ι
(
d′(a)

)
= the identity on D̃∞, where b = C(a). Moreover we see by calcu-

lation using Theorem 3.5 that this formula holds also for N with a ∈ Z(N)(p).
Since C is bijective, we can de�ne, for any b = (bi)i∈N ∈ Z(N)

(
resp. b ∈

Z(N)((p))
)
, an automorphism Θ(b) of G (resp. of N) by putting

{
Θ(b)r1 :=

(
w −1

2

)b1 · r1 ,

Θ(b)ri :=
(
wiw

−1
i+1

)bi · ri ,
(6.7)

and Θ(b) := the identity on D̃∞ (resp on D̃
S(p)
∞ ), and there holds on Z(N)

(
resp.

between Z(N)(p) and Z(N)((p))
)
.

ι
(
d′(a)

)
= Θ(b), b = C(a).(6.8)

Thus we see that
[
ι
(
D̃∞

)∣∣
N

: ι
(
D̃

S(p)
∞

)]
=

[
Z(N) : Z(N)(p)

]
= p.

Now, for other cases, the proof is essentially similar with the help of Theorems
3.3 and 3.6 � 3.8. Only the di�erence is that there appear multiplicative factors
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coming from the central subgroups 〈z2, z3〉 for the case EO and EE, and 〈z2〉 for
the case OE.

(ii) For any g′ ∈ G, h′ ∈ N , if g′ 6∈ N , there exists an element g′′ ∈ G
commuting with h′ modulo Z such that g′g′′ ∈ N . Cf. Theorem 16.2 in [HH6].

(iii) We can discuss as for Theorem 15.1 in [HH6]. 2

Theorem 6.2 above tells us that if we know all the spin characters for a
generalized symmetric groups G(m, 1,∞), a mother group, then the results for
spin characters of complex re�ection groups G(m, p,∞), her child groups, are
obtained simply by restriction, except Case EE. The last case needs some more
additional studies.

6.5. (Spin) types of projective representations and of spin char-
acters.

For a complex re�ection group G(m, p, n), 5 ≤ n ≤ ∞, take one of its repre-
sentation groups as

{e} −→ Z −→ R
(
G(m, p, n)

) Φ−→ G(m, p, n) −→ {e}.(6.9)

A projective representation π of G(m, p, n) is called of (spin) type χ ∈ Ẑ,
if it satis�es π(z) = χ(z)IV (π), where χ is a one-dimensional character of the
central group Z. An irreducible representation or a factor representation of
R

(
G(m, p, n)

)
has its own type.

A character f ∈ E
(
R

(
G(m, p, n)

))
of R

(
G(m, p, n)

)
has its own (spin) type

χ ∈ Ẑ because of its extremality, that is,

f(zg′) = χ(z) f(g′)
(
z ∈ Z, g′ ∈ R

(
G(m, p, n)

))
.(6.10)

For example, in the case of G(m, p, n) with q = m/p is even, a character χ of
Z = 〈z1, z2, z3〉 is given as

χ(zi) = βi = ±1 (1 ≤ i ≤ 3), β := (β1, β2, β3).(6.11)

In the following, type χ is often called type β.

6.6. Factorisability of spin characters of complex re�ection groups.
For a g = (d, σ) ∈ G(m, 1, n) = Dn(T ) o Sn, T = Zm, de�ne supports

supp(d), supp(σ), supp(g) as




supp(d) := {i ∈ In ; ti 6= eT} with d = (ti)i∈In , ti ∈ Ti = T,

supp(σ) := {j ∈ In ; σ(j) 6= j},
supp(g) := supp(d)

⋃
supp(σ),

(6.12)

where eT denotes the identity element of T . For a g′ ∈ R
(
G(m, p, n)

)
such that

g = Φ(g′) ∈ G(m, p, n) ⊂ G(m, 1, n), we put supp(g′) := supp(g).
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De�nition 6.1. A normalized central (or invariant) positive de�nite func-
tion f ∈ K1(G

′), G′ = R
(
G(m, p, n)

)
, 5 ≤ n ≤ ∞, p|m, is called factorizable

if

f(g′g′′) = f(g′)f(g′′),(6.13)

for any g′, g′′ ∈ G′ with supp(g′)
⋂

supp(g′′) = ∅.

We will check in �11 if the following criterion for f ∈K1(G
′), G′=R

(
G(m, 1,∞)

)
,

to be extremal, or to be a character, holds or not, for each of spin types of f
separately :

(EF) f is extremal ⇐⇒ f is factorizable.

Denote by F (G′) the set of all factorizable f ∈ K1(G
′), then F (G′) ⊂ E(G′)

in general (see just below), and F (G′) = E(G′) if the criterion (EF) holds.
In some of previous works, this criterion was proved and played important

roles, for instance, for G(1, 1,∞) = S∞ in [Tho2], for spin characters of S∞
in [Naz], for G(m, 1,∞) = S∞(Zm) in [HH1], for G(m, p,∞) = S∞(Zm)S(p)

in [HH2] and [HH4], and for S∞(T ) with T a compact group in [HH5]�[HH6].
Contrary to these cases, for Cases II, III and VII of the present groups G′ =
R

(
G(m, 1,∞)

)
, the criterion (EF) does not hold (cf. Theorem 11.1 below).

Before going into ��7�10 of rather long studies on conjugacies in G′
n :=

R
(
G(m, 1, n)

)
, 4 ≤ n ≤ ∞, and on supports of f ∈ KY

1 (G′
n) for Cases Y=I∼VII,

which prepare basic informations for our later study, we prove here impatiently
the following theorem, borrowing some results in �7 in advance.

Theorem 6.3. For the in�nite group R
(
G(m, 1,∞)

)
, the implication

factorizable =⇒ extremal

is always true. In other words, for f ∈ K1

(
R

(
G(m, 1,∞)

))
of certain type

χ ∈ Ẑ, � to be factorizable � is su�cient for � to be a character �.

Proof. This assertion can be proved similarly as the � if �-part of the proof
for Satz 1 in [Tho2, pp.42�44]. In fact, let f ∈ K1(G

′), G′ = R
(
G(m, 1,∞)

)
,

be in Case Y and of type χY, then f is completely determined if its values
for representative elements of conjugacy classes modulo Z is known. Let the
notations be as in 7.1.3, Case of R

(
G(m, 1,∞)

)
. The set KY

1 (G′) is compact
and convex, and the parameter space SY for factorizable f 's are imbedded into
it through SY 3 s → fs ∈ KY

1 (G′). We apply Gelfand's theorem on uniform
convergence in the space of continuous functions C(SY) on the compact set
SY, and the Choquet-Bishop-de Leeuw representation theorem using the set of
extremal points EY(G′) in KY

1 (G′). For more details, see e.g. [HH4, �15]. 2

Note 6.1. The implication � factorizable =⇒ extremal � in Theorem 6.3 is
not true for any �nite group R

(
G(m, 1, n)

)
, n < ∞. In fact, let f = δe the

delta function supported by the identity element e. Then it is factorizable in the
trivial sense, but it is the normalized character of the regular representation.
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7 Conjugation in R
(
G(m, p, n)

)
modulo Z

7.1 Conjugacy classes modulo Z of a representation group
R

(
G(m, p, n)

)

7.1.1. For mother groups G(m, 1, n) we take usually as n ≥ 4, and for child
groups G(m, p, n), p > 1, we take usually as n ≥ 5 because of Theorems 3.2∼ 3.3
and Theorems 3.4∼ 3.8 respectively. Let f be an central positive de�nite function
on R

(
G(m, 1, n)

)
, 4 ≤ n ≤ ∞, or on R

(
G(m, p, n)

)
, p > 1, 5 ≤ n ≤ ∞, of type

χ. Then

f(z h′g′h′−1
) = χ(z)f(g′)

(
z ∈ Z, g′, h′ ∈ R

(
G(m, p, n)

))
.(7.1)

Therefore f is totally determined if the values f(g′) are given on a complete
set of representatives of conjugacy classes modulo Z. Here we say g′, g′′ ∈
R

(
G(m, p, n)

)
are mutually conjugate modulo Z if g′ = z h′g′h′−1 for some

z ∈ Z, h′ ∈ R
(
G(m, p, n)

)
, where Z is 〈z1〉 or 〈z1, z2, z3〉 according as m is

odd or even. As a general terminology, we call a function f on R(G) a spin

function of spin type χ ∈ Ẑ if f(zg′) = χ(z)f(g′)
(
z ∈ Z, g′ ∈ R(G)

)
.

To study spin characters of G(m, p, n) (containing the case of n = ∞), we
are asked

(7-1) to �x a complete set of representatives of conjugacy classes of R
(
G(m,

p, n)
)
modulo Z;

(7-2) to study structure of every conjugacy classes modulo Z of R
(
G(m, p, n)

)
;

(7-3) to �x a section Ψ from G(m, p, n) to R
(
G(m, p, n)

)
, especially for

elements in the set of representatives.
Then we will apply the results to a central function f on R(G) with a certain

non-trivial spin type χ, to evaluate its support and so on.

7.1.2. Case of G(m, 1,∞). For the demand (7-1), we recall the case of
G(m, 1, n) = Sn(T ), T = Zm, 4 ≤ n ≤ ∞, from [HH1]. De�ne for g = (d, σ) ∈
G(m, 1, n) = Sn(T ), d = (ti)i∈In ∈ Dn(T ), ti ∈ Ti = T, σ ∈ Sn, their supports
as in (6.12). An element g = (d, σ) ∈ Sn(T ) is called basic if

Case 1: σ is cyclic and supp(d) ⊂ supp(σ),
Case 2: σ = 1 and for d = (ti)i∈In , tq 6= eT only for one q ∈ In.

The element (d,1) in Case 2 is denoted by ξq = ξq(tq) = (tq, (q)), where (q)
denotes the symbolic permutation of length 1 consisting of one point q. An
arbitrary element g = (d, σ) ∈ Sn(T ) is expressed as a product of basic elements
as

g = ξq1ξq2 · · · ξqrg1g2 · · · gs(7.2)

with gj = (dj, σj) in Case 1, and q1, q2, . . . , qr, supp(gj) (1 ≤ j ≤ s) are mutually
disjoint. This is called the standard decomposition of g even though it is unique
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only up to the orders between ξqk
's and between gj's. For a basic component

gj = (dj, σj), put

{
`j := `(σj) = |supp(σj)|,
Kj := supp(σj), dj := (ti)i∈Kj

, P (dj) :=
∏

i∈Kj
ti.

(7.3)

Theorem 7.1. The conjugacy class of g ∈ Sn(T ), T = Zm, is characterized
by the set

{
(tqk

, 1) (1 ≤ k ≤ r), (P (dj), `(σj) ) (1 ≤ j ≤ s)
}
.(7.4)

According to this, we prepare the set Ω := {(t, `) ; t ∈ T, ` ≥ 1} as a
fundamental ingredient of a set of representatives of conjugacy classes of the
in�nite group G := G(m, 1,∞), and [g] is parametrized by n(g) :=

(
nω(g)

)
ω∈Ω

∈(
Z≥0

)(Ω)
, where nω(g) denotes the multiplicity of ω = (t, `) in (7.4). For a central

function f on G, if it is factorizable, similarly as in De�nition 6.1, then it is
expressed as

f(g) =
∏
ω∈Ω

s nω(g)
ω ,(7.5)

where sω = f(gω) for a �xed representative gω ∈ G of ω ∈ Ω. Put s = (sω)ω∈Ω,
then it belongs to the direct product

∏
ω∈Ω Dω of unit discs Dω = {z ∈ C; |z| ≤

1}. Denote f in (7.5) by fs. Then the positive de�niteness of f = fs is expressed
by the set of inequalities expressed by polynomials of �nite number of sω, sω, and
so the subset S of

∏
ω∈Ω Dω consisting s from f = fs ∈ K1(G) is closed and so

compact. In [HH4, �15], Theorem 12 asserts the validity of the criterion (EF)
for G = G(m, 1,∞). In that occasion, to prove the implication � factorizable ⇒
extremal �, we utilize the compact set S in a clever manner following the idea of
[Tho2].

7.1.3. Case of R
(
G(m, 1,∞)

)
. We can imitate this method for the covering

group G′ := R
(
G(m, 1,∞)

)
too. However the situation is a little complicated.

For each ω ∈ Ω, �x once for all a representative g′ω ∈ G′ such that Φ(g′ω) = gω

with Φ in (6.9). Denote the conjugacy class of g′ ∈ G′ modulo Z by [g′]Z , then
it corresponds bijectively to the conjugacy class [g] of g = Φ(g′) ∈ G, hence

it is parametrized by n(g′) := n(g) ∈ (
Z>0

)(Ω)
with nω(g′) := nω(g). Any

element g′′ ∈ [g′ω] is expressed as g′′ = z′h′g′ωh′ −1 with z′ ∈ Z, h′ ∈ G′, and for
f ∈ KY

1 (G′), we have, by (7.1), f(g′′) = χY(z′)sω with sω := f(g′ω).
Now, for a g′ ∈ G′, put g = Φ(g′) and let (7.2) be its standard decomposition.

Taking appropriate preimages ξ′qk
(k ∈ Ir), g′j (j ∈ Is) of corresponding elements

such as Φ(ξ′qk
) = ξqk

etc., we have a decomposition of g′, called standard as

g′ = ξ′q1
ξ′q2
· · · ξ′qr

g′1g
′
2 · · · g′s .(7.6)
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Let the parameters in Ω corresponding to ξ′qk
and g′j be respectively be ω(k) and

ω[j]. Then there are z(k), z[j] ∈ Z such that ξ′qk
∼ z(k)g′

ω(k) and g′j ∼ z[j]g′
ω[j] ,

where ∼ denotes the conjugacy under G′. If an f ∈ KY
1 (G′) is factorizable, then

f(g′) = χY
(
z(1) · · · z(r)z[1] · · · z[s]

) ·
∏
ω∈Ω

s nω(g′)
ω .(7.7)

Denote this f by fY
s , then the subset SY of

∏
ω∈Ω Dω consisting s from fY

s ∈
KY

1 (G′) is closed and so compact. This fact is utilized to prove Theorem 6.3
above.

7.2 Conjugation around a g′ ∈ R
(
G(m, 1, n)

)
modulo Z

(preparation)

For the demand (7-2), we proceed as follows. First recall the exact sequence for
generalized symmetric group G(m, 1, n) = Sn(Zm), n ≥ 4, as

{e} −→ Z −→ R
(
G(m, 1, n)

) Φ−→ G(m, 1, n) −→ {e},(7.8)

with Z = 〈z1〉 if m is odd, and Z = 〈z1, z2, z3〉 if m is even.
To prove the results in this section, we appeal to calculations using the fol-

lowing lemmas on the structure of representation groups.

Lemma 7.2. Put, for j < k, rjk := (rjrj+1 · · · rk−2)rk−1(rk−2 · · · rj+1rj), rkj =
rjk in R

(
G(m, 1, n)

)
. Then, Φ(rjk) = (sjsj+1 · · · sk−2)sk−1(sk−2 · · · sj+1sj) =

(j k)
=: sjk the permutation of j and k.

(i)

{
rirjkr

−1
i = z1rjk (j, k 6= i, i + 1),

rirjir
−1

i = rj,i+1, rirj,i+1r
−1

i = rji (j 6= i, i + 1).

(ii) In case m is even,





rjkηjr
−1

jk = z k−j−1
3 ηk,

rjkηkr
−1

jk = z k−j−1
3 ηj,

rjkηir
−1

jk = z3 ηi (i 6= j, k).

Proof. (i) rirpr
−1

i = z1rp (p 6= i, i + 1),
ri(ri−1riri+1)r

−1
i = ri−1riri−1 · ri+1ri = z1ri−1riri+1 · ri−1ri,

ri(ri+1riri−1)r
−1

i = riri+1 · ri−1riri−1 = z1riri−1 · ri+1riri−1,
∴ rirjkr

−1
i =

= z
2(i−1−j)+2

1 (rjrj+1 · · · ri−1riri+1)(ri−1ri)×
ri(ri+2 · · · rk−2)rk−1(rk−2 · · · ri+2)r

−1
i · (riri−1)(ri+1riri−1 · · · rj+1rj)

= z1(rjrj+1 · · · ri−1riri+1)(ri+2 · · · rk−2)rk−1(rk−2 · · · ri+2)·
·(ri+1riri−1 · · · rj+1rj) = z1rjk.

Suppose j < i, then

rirjiri = ri(rjrj+1 · · · ri−2ri−1ri−2 · · · rj+1rj)ri
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= (rjrj+1 · · · ri−2)riri−1ri(ri−2 · · · rj+1rj)

= (rjrj+1 · · · ri−2)ri−1riri−1(rn−2 · · · rj+1rj) = rj,i+1.

(ii) rjkηjr
−1

jk = (rjrj+1 · · · rk−2rk−1rk−2 · · · rj+1rj)ηj ·
· (rjrj+1 · · · rk−2rk−1rk−2 · · · rj+1rj)

= (rjrj+1 · · · rk−2)ηk(rk−2 · · · rj+1rj) = z k−j−1
3 ηk. 2

Take an element g′ ∈ R
(
G(m, 1, n)

)
, G(m, 1, n) = Sn(Zm), and put

Z(g′) := {h′ ∈ R
(
G(m, 1, n)

)
; Φ(h′g′h′−1

) = Φ(g′)},(7.9)

which is the centralizer of g′ modulo Z. We study the group Z(g′) or more exactly
the set of elements z ∈ Z appearing as h′g′h′−1 = zg′ under the conjugations
g′ → h′g′h′−1 by h′ ∈ Z(g′). Put g = Φ(g′), h = Φ(h′), then h ∈ Z(g) :=
{h ∈ G(m, 1, n); hgh−1 = g}. Then a set of generators of the centralizer Z(g) ⊂
G(m, 1, n) of g can be obtained rather easily, and using it we have the following.

Lemma 7.3. Let 4 ≤ n ≤ ∞. For g′ ∈ R
(
G(m, 1, n)

)
, let the standard

decomposition of g := Φ(g′) ∈ G(m, 1, n) be as

g = Φ(g′) = (d, σ) = ξq1ξq2 · · · ξqr g1g2 · · · gs ∈ Sn(Zm) = G(m, 1, n).

Then, the stationary subgroup in R
(
G(m, 1, n)

)
of g′, considered modulo the

central subgroup Z, contains the following elements:

(i) rk for k, k + 1 6∈ supp(g′),

(ii) ηk for k 6∈ supp(g′),

(iii) ηqi
(1 ≤ i ≤ r),

(iv) g′j such that Φ(g′j) = gj (1 ≤ j ≤ s),

(v) η̃j :=
∏

p∈supp(σj)
ηp (1 ≤ j ≤ s),

where the product for η̃j depends on the order of taking product by a factor z a
2 .

Notation 7.1. For a cyclic permutation σ ∈ Sn, let `(σ) be its length. For a
general σ ∈ Sn, let L(σ) be its length with respect to simple re�ections, and take
its cyclic decomposition σ = σ1 · · · σr, then L(σ) ≡ ∑

1≤j≤r

(
`(σj)− 1

)
(mod 2),

and sgn(σ) = (−1)L(σ). For σ′ ∈ R(Sn) with σ = Φ(σ′) ∈ Sn, we put

L(σ′) := L(σ), sgn(σ′) := sgn(σ).(7.10)

7.3 Conjugation around a g′ ∈ R
(
G(m, 1, n)

)
modulo Z

(Case of m odd)

Theorem 7.4 (Case m odd, 4 ≤ n < ∞). For g′ ∈ R
(
G(m, 1, n)

)
, G(m, 1, n) =

Sn(Zm), 4 ≤ n < ∞, m odd, let the standard decomposition of g = Φ(g′) ∈
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G(m, 1, n) be as in (7.2), then the conjugations by elements in (i) and (vi) give
the following conjugacy relations, and (ii), (iii) and (v) give trivial ones:

(i) rkg
′r −1

k = z
L(σ)

1 · g′ if |supp(g′)| ≤ n− 2 and supp(g′) 63 k, k + 1 ;

(iv) g′jg
′g′j

−1
= z

(L(σ)−L(σj))L(σj)
1 · g′ (1 ≤ j ≤ s).

Theorem 7.5 (Case m odd, n = ∞). For g′ ∈ R
(
G(m, 1,∞)

)
, G(m, 1,∞) =

S∞(Zm), let the standard decomposition of g = Φ(g′) ∈ G(m, 1,∞) be as in
(7.2), then the conjugations by elements in in (i) and (vi) give the following
conjugacy relations, and (ii), (iii) and (v) give trivial ones:

(i) rkg
′r −1

k = z
L(σ)

1 · g′,
(iv) g′jg

′g′j
−1

= z
(L(σ)−L(σj))L(σj)

1 · g′ (1 ≤ j ≤ s).

7.4 Conjugation around a g′ ∈ R
(
G(m, 1, n)

)
modulo Z

(Case of m even)

De�nition 7.1. For d = y a1
1 y a2

2 · · · y an
n ∈ Dn(Zm), and for d′ ∈ D̃n(Zm) :=

〈η1, . . . , ηn〉 such that d = Φ(d′), we put

ord(d) :=
∑

1≤j≤n

aj (mod m), ord(d′) := ord(d).(7.11)

Theorem 7.6 (Case m even, 4 ≤ n < ∞). For g′ ∈ R
(
G(m, 1, n)

)
, G(m, 1, n) =

Sn(Zm), 4 ≤ n < ∞, m even, let the standard decomposition of g = Φ(g′) ∈
G(m, 1, n) be as in (7.2), then the conjugations by elements in (i)∼ (v) give the
following conjugacy relations:

(i) rkg
′r −1

k = z
L(σ)

1 · z ord(d)
3 · g′, if |supp(g′)| ≤ n−2 and supp(g′) 63 k, k + 1;

(ii) ηkg
′η −1

k = z
ord(d)

2 · z L(σ)
3 · g′, if |supp(g′)| ≤ n− 1 and supp(g′) 63 k ;

(iii) ηqi
g′η −1

qi
= z

ord(d)−ord(ξqi )
2 · z L(σ)

3 · g′ (1 ≤ i ≤ r),

(iv) g′jg
′g′j

−1
= z

(L(σ)−L(σj))L(σj)
1 · z (ord(d)−ord(dj))ord(dj)

2 ·
·z L(σ) ord(dj)+ord(d) L(σj)

3 · g′ (1 ≤ j ≤ s),

(v) η̃jg
′η̃ −1

j = z
ord(d)(L(σj)+1)+L(σj)−ord(dj)

2 · z L(σ)(L(σj)+1)
3 · g′ (1 ≤ j ≤ s).

Proof. (i) Take h′ ∈ R
(
G(m, 1, n)

)
such that g′′ = h′g′h′−1 satis�es

supp(g′′) 63 1, 2.

r1g
′′r −1

1 = z
L(σ)

1 · z ord(d)
3 · g′′, r1g

′′r −1
1 = (r1h

′r −1
1 )r1g

′r −1
1 (r1h

′r −1
1 )−1,

∴ z
L(σ)

1 · z ord(d)
3 · g′′ = (h′−1

r1h
′)g′(h′−1

r1h
′)−1.
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(v) Let g′ = g′′g′jg
′′′, Φ(g′′) = ξq1 · · · ξqrg1 · · · gj−1, Φ(g′j) = gj = (dj, σj), Φ(g′′′) =

gj+1 · · · gs, then with Kj := supp(σj)

η̃jg
′η̃ −1

j = z
(ord(d)−ord(dj))`(σj)

2 z
(L(σ)−L(σj))`(σj)

3 g′′ · η̃jg
′
j η̃

−1
j · g′′′ =: ♣

g′j :=
∏

p∈Kj

η ap
p · σ′j, Φ(σ′j) = σj, η̃j = η1η2 · · · η`,

ηq ·
∏

p∈Kj

η ap
p · η −1

q = z
∑

p6=q ap

2

∏
p∈Kj

η ap
p

∴ η̃j ·
∏

p∈Kj

η ap
p · η̃ −1

j = z
∑

q

∑
p6=q ap

2

∏
p∈Kj

η ap
p

= z
(|supp(σj)|−1)

∑
p ap

2

∏
p∈Kj

η ap
p = z

ord(dj)(`(σj)−1)
2

∏
p∈Kj

η ap
p ,

put η̃j · σ′j · η̃ −1
j = z B

2 z C
3 σ′j, then,

♣ = z
(ord(d)−ord(dj))`(σj)

2 z
(L(σ)−L(σj))`(σj)

3 g′′ · z ord(dj)(`(σj)−1)
2 (z B

2 z C
3 g′j) · g′′′

= z
(ord(d)−ord(dj))(L(σj)+1)+ord(dj) L(σj)+B

2 z
(L(σ)−L(σj))(L(σj)+1)+C

3 g′

= z
ord(d)(L(σj)+1)−ord(dj)+B

2 z
L(σ)(L(σj)+1)+C

3 g′ ,

put σ′j := r1r2 · · · r`−1 with ` = `(σj),

σj = Φ(σ′j) = Φ(r1r2 · · · r`−1) = s1s2 . . . s`−1 = (1 2 3 . . . `),

∴ η̃j · r1r2 · · · r`−1 = z
(`−1)(`−2)

3 · (r1r2 · · · r`−1) · η` · η1η2 · · · η`−1

= z `−1
2 (r1r2 · · · r`−1) · η1η2 · · · η`−1η` = z

L(σj)
2 (r1r2 · · · r`−1) · η̃j,

∴ B = L(σj), C = 0.

∴ η̃jg
′η̃ −1

j = z
ord(d)(L(σj)+1)+L(σj)−ord(dj)

2 z
L(σ)(L(σj)+1)

3 · g′. 2

In the proof, we have seen the following.

Lemma 7.7. Let g′j =
∏

p∈Kj
η

ap
p · σ′j, Φ(σ′j) = σj, η̃j =

∏
p∈Kj

ηp. Then

η̃jg
′
j η̃

−1
j = z

(ord(dj)+1)L(σj)
2 g′j.(7.12)

Theorem 7.8 (Case m even, n = ∞). For g′ ∈ R
(
G(m, 1,∞)

)
, G(m, 1,∞) =

S∞(Zm), m even, let the standard decomposition of g = Φ(g′) ∈ G(m, 1,∞) be
as in (7.2), then the conjugations by elements in (i)∼ (v) give the following
conjugacy relations:

(i) rkg
′r −1

k = z
L(σ)

1 · z ord(d)
3 · g′,

(ii) ηkg
′η −1

k = z
ord(d)

2 · z L(σ)
3 · g′,

(iii) ηqi
g′η −1

qi
= z

ord(d)−ord(ξqi )
2 · z L(σ)

3 · g′ (1 ≤ i ≤ r),

(iv) g′jg
′g′j

−1
= z

(L(σ)−L(σj))L(σj)
1 · z (ord(d)−ord(dj))ord(dj)

2 ·
·z L(σ) ord(dj)+ord(d) L(σj)

3 · g′ (1 ≤ j ≤ s),

(v) η̃jg
′η̃−1

j = z
ord(d)(L(σj)+1)+L(σj)−ord(dj)

2 · z L(σ)(L(σj)+1)
3 · g′ (1 ≤ j ≤ s).
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Note 7.1. When we look into details on conjugacy among gj's and that
among ξqi

's, we may have some elements in Z(g′) which are not generated by
elements listed up in Lemma 7.3 as follows.

(i) Suppose gj = (dj, σj) and gj′ = (dj′ , σj′) are similar, that is, there exists
a τ ∈ Sn only permuting Kj and Kj′ such that τ gj τ−1 = gj′ , i.e., τσjτ

−1 =
σj′ , τdjτ

−1 = dj′ . Then τ ∈ Z(g). Take τ ′ ∈ R(G) such that Φ(τ ′) = τ , then

τ ′ g′ τ ′−1
= z

(L(σ)−1)L(σj)
1 z

ord(dj)
2 z

ord(d)L(σj)
3 g′.(7.13)

(ii) Suppose ξq and ξp are similar, that is, τξqτ
−1 = ξp with τ = (p q). Take

an element τ ′ with τ = Φ(τ ′) ∈ Z(g), then

τ ′ g′ τ ′−1
= z

L(σ)
1 z

ord(tq)
2 z

ord(d)
3 g′.(7.14)

8 Supports of spin characters of G(m, 1, n) (m

odd)

8.1 Evaluation of supports of spin characters of G(m, 1, n),
m odd

As basic foundations for later studies (in [I], [II] and so on), we are interested
in checking that a central function f on R(G) with a certain spin type (not
necessarily a character) has what kind of restrictions on its support, in general.
So, in consecutive sections, ��8∼10, the main objects are central spin functions
f on R(G) with certain spin types, containing spin characters in particular.

Here assume 4 ≤ n ≤ ∞, m odd. An irreducible character f of R(G), G =
G(m, 1, n), has spin type χ: χ(z1) =: β1 = ±1. According as β1 = −1 or β1 = 1,
f is a spin or non-spin character.

We obtain the following from Theorems 7.4 and 7.5 respectively.

Lemma 8.1 (Case m odd, 4 ≤ n < ∞). Let G = G(m, 1, n) = Sn(Zm), 4 ≤
n < ∞, m odd. Let f be a central spin function on R(G), in particular a spin
character of G. For g′ ∈ R(G), let the standard decomposition of g = Φ(g′) ∈ G
be as in (7.2).

(a) Conjugacy relations in (i) and (vi) in Theorem 7.4 give

(i) f(g′) = (−1) L(σ) f(g′) if |supp(g′)| ≤ n− 2 ;

(iv) f(g′) = (−1) (L(σ)−L(σj))L(σj) f(g′) (1 ≤ j ≤ s).

(b) f(g′) 6= 0 =⇒
{

L(σ) ≡ 0, L(σj) ≡ 0 (1 ≤ j ≤ s) ; or

L(σ) ≡ 1, |supp(g′)| ≥ n− 1.

Lemma 8.2 (Case m odd, n = ∞). Let G = G(m, 1,∞) = S∞(Zm), m
odd. Let f be a central spin function on R(G), in particular a spin character
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of G. For g′ ∈ R
(
G(m, 1,∞)

)
, let the standard decomposition of g = Φ(g′) ∈

G(m, 1,∞) be as in (7.2).
(a) Conjugacy relations in (i) and (vi) in Theorem 7.5 give

(i) f(g′) = (−1) L(σ) f(g′),

(iv) f(g′) = (−1) (L(σ)−L(σj))L(σj) f(g′) (1 ≤ j ≤ s).

(b) f(g′) 6= 0 =⇒ L(σ) ≡ 0, L(σj) ≡ 0 (1 ≤ j ≤ s).

8.2 Supports and factorizability of spin characters of
G(m, 1,∞), m odd

The results for R(G), G = G(m, 1,∞) = S∞(Zm), m odd, is summarized in
Table 8.1 below. Note that R(G) = D∞(Zm)oR(S∞) with R(S∞) = T′∞, and
G(1, 1,∞) = S∞ for m = 1.

Table 8.1. On characters of R
(
G(m, 1,∞)

)
, m odd.

χ(z1) = ±1 Existence of spin extremal Support (mod Z) of f :
(spin) Type of �nite-dimensional ⇔ f(g′) 6= 0 =⇒

Case factor represen- irred. represen. π ; factori- Condition for g = Φ(g′)
tation Reason why zable = (d, σ), σ = σ1σ2 · · ·σs

χ(z1) = −1 ¬∃ π σ ∈ A∞, and
I.odd R

(
S∞(Zm)

)
∵ YES L(σi) ≡ 0 (∀i)

seed represen. if ∃π, then the smallest normal subgr.
in [DaMo] Ker(π) ⊃ N 3 z1 N = Φ−1

(
A∞(Zm)e

)
χ(z1) = 1 ∃ 1-dimensional No condition

II.odd S∞(Zm) characters : YES the smallest non-trivial
char. formula χε,ζ normal subgroup :
in [HH1] (ε = 0, 1; ζ ∈ Ẑm) N = A∞(Zm)e

χ(z1) = −1 σ = Φ(σ′) ∈ A∞, and
III.odd spin symmetric ¬∃ π L(σi) ≡ 0 (∀i)
R(S∞) group R(S∞) , ∵ YES
:= T′∞ charac. formula if ∃π, then the smallest normal subgr.

in [Naz] Ker(π) ⊃ N 3 z1 N = Φ−1(A∞)
χ(z1) = 1 No condition

VI.odd the symmetric ∃ characters YES
S∞ group S∞ χε = sgnε the smallest normal subgr.

cf. [Tho2] (ε = 0, 1) N = A∞
in Case II.odd, one-dimensional characters χε,ζ(g) = sgn(σ)εζ

(
P (d)

)
for g = (d, σ)

• in the 2nd column, � the type (spin or non-spin) of a character f � ;
• in the 3rd column, � existence or non-existence of a �nite-dimensional rep-

resentations π, with reason �
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(if π exists, then Ker(π) necessarily contains {riri′ , ηjη
−1

k } (cf. �12.1), and
accordingly the smallest normal subgroup N containing Φ−1

(
A∞(Zm)e

)
, given

in the last column) ;
• in the 4th column, � does the criterion (EF) hold or not ? � (the answer

YES in Case I.odd is obtained similarly as for R(S∞), cf. �11);
• in the 5th column, � evaluation of the support supp(f) (mod Z) of a charac-

ter f of R
(
G(m, 1,∞)

)
�, and � the smallest proper normal subgroup N containing

Φ−1
(
A∞(Zm)e

)
�.

9 Supports of spin characters of G(m, 1, n) (m

even)

We evaluate the support supp(f) (mod Z) of a normalized irreducible character
f of R

(
G(m, 1, n)

)
, in each case of (spin) type χ. Here, to be more fundamental,

we assume simply f is a central spin function with a non-trivial spin type on
R(G), G = G(m, 1, n), 4 ≤ n < ∞, m even, and study what kind of restriction
on its support we can get. Then the results can be applied immediately to
characters. The results are important to calculate spin irreducible characters and
also to study limiting behavior of a series of irreducible characters as n ↗ ∞,
and thus to get all the characters of the inductive limit group R

(
G(m, 1,∞)

)
.

From Theorem 7.6, we get the following.

Lemma 9.1 (Case I, Type (−1,−1,−1)). Let f be a central function of
this spin type.

(a) f satis�es a system of relations coming from (i)∼ (v) of Theorem 7.6 as

(i) f(g′) = (−1)L(σ)+ord(d) f(g′) if |supp(g′)| ≤ n− 2 ;

(ii) f(g′) = (−1)ord(d)+L(σ) f(g′) if |supp(g′)| ≤ n− 1 ;

(iii) f(g′) = (−1)ord(d)−ord(ξqi )+L(σ) f(g′) (1 ≤ i ≤ r) ;

(iv) f(g′) = (−1)(L(σ)+1)L(σj)+(ord(d)+1)ord(dj)+L(σ)ord(dj)+ord(d)L(σj) f(g′)

(1 ≤ j ≤ s) ;

(v) f(g′) = (−1)ord(d)(L(σj)+1)+L(σj)−ord(dj)+L(σ)(L(σj)+1) f(g′) (1 ≤ j ≤ s).

(b) f(g′) 6= 0 =⇒




ord(d) + L(σ) ≡ 0, ord(ξqi
) ≡ 0 (∀i), ord(dj) + L(σj) ≡ 0 (∀j) ;

or,
ord(d) + L(σ) ≡ 1, |supp(g′)| = n, ord(ξqi

) ≡ 1 (∀i),
ord(dj) ≡ 1 (∀j).

We can discuss similarly in each case, and omitting part (a) of the assertion,
only the part (b) is given in the form of a complete list, which is convenient to
check and refer. The detailed data in the list will be also applied to the case
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of n = ∞ with necessary modi�cations: in the part (b) in each Case below, we
omit the word ` or ' after semicolon ` ; '.

Case II, Type (−1,−1, 1): (b) f(g′) 6= 0 =⇒




ord(d) ≡ 0, L(σ) ≡ 0, ord(ξqi
) ≡ 0 (∀i), ord(dj) + L(σj) ≡ 0 (∀j) ;

ord(d) ≡ 0, L(σ) ≡ 1, ∅ ;

ord(d) ≡ 1, L(σ) ≡ 0, |supp(g′)| = n, ord(ξqi
) ≡ 1 (∀i), ord(dj) ≡ 1 (∀j),

L(σj) ≡ 0 (∀j) (=⇒ r + s odd) ;

ord(d) ≡ 1, L(σ) ≡ 1, |supp(g′)| = n, ord(ξqi
) ≡ 1 (∀i), ord(dj) ≡ 1 (∀j)

(=⇒ r + s odd).

Case III, Type (−1, 1,−1): (b) f(g′) 6= 0 =⇒




ord(d) ≡ 0, L(σ) ≡ 0, L(σj) ≡ 0 (∀j) ;

ord(d) ≡ 0, L(σ) ≡ 1, |supp(g′)| = n, r = 0, ord(dj) ≡ 0 (∀j),
L(σj) ≡ 1 (∀j) (=⇒ s odd) ;

ord(d) ≡ 1, L(σ) ≡ 0, |supp(g′)| ≥ n− 1 ;

ord(d) ≡ 1, L(σ) ≡ 1, |supp(g′)| = n, ord(dj) ≡ 1, L(σj) ≡ 1 (∀j)
(=⇒ s odd).

Case IV, Type (−1, 1, 1): (b) f(g′) 6= 0 =⇒




L(σ) ≡ 0, L(σj) ≡ 0 (∀j) ;

L(σ) ≡ 1, |supp(g′)| ≥ n− 1, ord(ξqi
) ≡ 0 (∀i),

ord(dj) ≡ 0 (∀j), L(σj) ≡ 0 (∀j).
Case V, Type (1,−1,−1): (b) f(g′) 6= 0 =⇒





ord(d) ≡ 0, L(σ) ≡ 0, ord(ξqi
) ≡ 0 (∀i), ord(dj) ≡ 0 (∀j), L(σj) ≡ 0 (∀j);

ord(d) ≡ 0, L(σ) ≡ 1, |supp(g′)| = n, ord(ξqi
) ≡ 1 (∀i), ord(dj) ≡ 1 (∀j)

(=⇒ r + s even) ;

ord(d) ≡ 1, L(σ) ≡ 0, |supp(g′)| = n, ord(ξqi
) ≡ 1 (∀i), ord(dj) ≡ 1 (∀j),

L(σj) ≡ 0 (∀j) (=⇒ r + s odd) ;

ord(d) ≡ 1, L(σ) ≡ 1, |supp(g′)| ≥ n− 1, ord(ξqi
) ≡ 0 (∀i),

ord(dj) + L(σj) ≡ 0 (∀j).
Case VI, Type (1,−1, 1): (b) f(g′) 6= 0 =⇒





ord(d) ≡ 0, ord(ξqi
) ≡ 0 (∀i), ord(dj) ≡ 0 (∀j),

L(σj) ≡ 0 (∀j) (=⇒ L(σ) ≡ 0) ;

ord(d) ≡ 1, |supp(g′)| = n, ord(ξqi
) ≡ 1 (∀i),

ord(dj) ≡ 1 (∀j), (=⇒ r + s odd).

Case VII, Type (1, 1,−1): (b) f(g′) 6= 0 =⇒
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ord(d) ≡ 0, L(σ) ≡ 0, No additional condition ;

ord(d) ≡ 0, L(σ) ≡ 1, |supp(g′)| = n, r = 0, s odd, ord(dj) ≡ 0 (∀j),
L(σj) ≡ 1 (∀j) (=⇒ n even) ;

ord(d) ≡ 1, L(σ) ≡ 0, |supp(g′)| ≥ n− 1, L(σj) ≡ 0 (∀j)
(=⇒ r + s odd) ;

ord(d) ≡ 1, L(σ) ≡ 1, |supp(g′)| = n, r = 0, s odd, ord(dj) ≡ 1 (∀j),
L(σj) ≡ 1 (∀j) (=⇒ n even).

Table 9.1. For �nite group R(Gn), Gn = Sn(Zm) = G(m, 1, n),
4 ≤ n < ∞, m = 2m′: 1 → Z = 〈z1, z2, z3〉 → R(Gn) Φ→ Gn → 1 :

(β1, β2, β3) f(g′) 6= 0 =⇒ Condition for g = Φ(g′) = (d, σ)
(spin)Type = ξq1 · · · ξqr

g1 · · · gs, ξqi
= (tqi

, (qi)), gj = (dj , σj)
Case of factor ord(d) + L(σ) ≡ 0 (mod 2) ord(d) + L(σ) ≡ 1 (mod 2)
Y represen- ord(d) ≡ 0 ord(d) ≡ 1 ord(d) ≡ 0 ord(d) ≡ 1

tation L(σ) ≡ 0 L(σ) ≡ 1 L(σ) ≡ 1 L(σ) ≡ 0
(−1,−1,−1) |supp(g′)| = n

I seed repre. ord(ξqi) ≡ 0 (1 6 i 6 r) ord(ξqi) ≡ 1 (1 6 i 6 r)
in [IhYo], ord(dj) + L(σj) ≡ 0 (1 6 j 6 s) ord(dj) ≡ 1 (1 6 j 6 s)
in [DaMo]

|supp(g′)| = n |supp(g′)| = n
(−1,−1, 1) L(σ) ≡ 0 r + s odd r + s odd

II ord(ξqi)≡0 (∀i) ord(ξqi) ≡ 1 (∀i) ∅ ord(ξqi) ≡ 1 (∀i)
seed repre. ord(dj) + L(σj) ord(dj) ≡ 1 (∀j) ord(dj) ≡ 1 (∀j)
in [DaMo] ≡ 0 (∀j) L(σ) ≡ 1 L(σj) ≡ 0 (∀j)

⊂ An(T )S n even, |supp(g′)| = n
III (−1, 1,−1) r = 0, s odd, |supp(g′)|>n−1

L(σj) ≡ 0 (∀j) ord(dj) ≡ ord(d) (∀j)
L(σj) ≡ 1 (∀j), g = g1g2 · · · gs

(−1, 1, 1) ⊂ An(T )S ⊂ An(T ),
IV seed repre. |supp(g′)| > n− 1

in [IhYo], L(σj) ≡ 0 (∀j) L(σj) ≡ 0 (∀j)
in [DaMo] σ = σ1 · · ·σs σ = σ1 · · ·σs

⊂ An(T )S |supp(g′)|>n−1 |supp(g′)| = n |supp(g′)| = n
ord(ξqi) ≡ 0 (∀i) r + s even r + s odd

V (1,−1,−1) ord(ξqi)≡0 (∀i) ord(dj) + L(σj) ord(ξqi)≡1 (∀i) ord(ξqi) ≡ 1 (∀i)
ord(dj)≡0 (∀j) ≡ 0 (∀j) ord(dj)≡1 (∀j) ord(dj) ≡ 1 (∀j)
L(σj) ≡ 0 (∀j) L(σ) ≡ 1 L(σ) ≡ 1 L(σj) ≡ 0 (∀j)
⊂ An(T )S |supp(g′)| = n |supp(g′)| = n

VI (1,−1, 1) ord(ξqi)≡0 (∀i) r + s odd ∅ r + s odd
ord(dj)≡0 (∀j) ord(ξqi) ≡ 1 (∀i) ord(ξqi) ≡ 1 (∀i)
L(σj) ≡ 0 (∀j) ord(dj) ≡ 1 (∀j) ord(dj) ≡ 1 (∀j)

(1, 1,−1) ⊂ An(T )S n even, |supp(g′)| = n |supp(g′)|>n−1
VII r = 0, s odd,

seed repre. No other ord(dj) ≡ ord(d) (∀j) L(σj) ≡ 0 (∀j)
in [IhYo] condition L(σj) ≡ 1 (∀j), g = g1g2 · · · gs

VIII (1, 1, 1)
(
Case of non-spin characters of Sn(Zm)

)

No condition
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In the table above, notations are as follows: (spin) type is (β1, β2, β3) with
χ(zi) = βi (1 ≤ i ≤ 3) according to Case Y (Y=I∼VIII); L(σ) denote the
length of σ ∈ Sn with respect to simple re�ections {s1, s2, . . . , sn−1}, and `(σj)
the length of a cycle σj; S := S(2) = {t2; t ∈ T} ∼= Zm/2, T = Zm, An(T )S :=
{(d, σ) ∈ Sn(T ); σ ∈ An, P (d) ∈ S}.

10 Supports of spin characters of in�nite gen-

eralized symmetric groups G(m, 1,∞)

Since the situation in the case of m odd is simple, we treat here mainly the case
of m even. The case of m odd can be easily estimated from it. Let f be a central
spin function on R

(
G(m, 1,∞)

)
with a non-trivial spin type, in particular, a spin

character of G(m, 1,∞), m even.
An evaluation of support of f can be obtained from Theorem 7.8, similarly

as for �nite groups G(m, 1, n), n < ∞. In each Case Y (Y = I, II, . . . , VII) for
n = ∞, the evaluation of supp(f) is given by the system of conditions listed up in
�9.2 after “ (b) f(g′) =⇒ � but without the restrictive conditions � |supp(g′)| =
n � and � |supp(g′)| ≥ n− 1 �. Their proofs are by easy calculations and omitted
here. We call this system of conditions as Condition Y.

The subset of the representation group R
(
G(m, 1,∞)

)
consisting of g′ satis-

fying (Condition Y) is denoted by O(Y). Then our results are stated as follows.

Theorem 10.1 (m even). Let f be a central function on R
(
G(m, 1,∞)

)
with the spin type in Case Y. Then, in each Case Y (Y = I, II, . . . , VII),

f(g′) 6= 0 =⇒ g′ ∈ O(Y), or O(Y) ⊃ supp(f).(10.1)

De�nition 10.1. A non-empty subset O of R
(
G(m, 1,∞)

)
is called weakly

multiplicative (resp. multiplicative) if it has the following property:

h′, k′ ∈ O, supp(h′)
⋂

supp(k′) = ∅ =⇒ h′k′ ∈ O(10.2)

(resp. h′, k′ ∈ O =⇒ h′k′ ∈ O ).(10.3)

De�nition 10.2. A non-empty subset O of R
(
G(m, 1,∞)

)
, containing the

central subgroup Z, is called factorizable if it has the following property: for any
g′ ∈ O,

g′ = h′k′, h′, k′ ∈ R
(
G(m, 1,∞)

)
, supp(h′)

⋂
supp(k′) = ∅ =⇒ h′, k′ ∈ O.

De�nition 10.3. A non-empty subset O of R
(
G(m, 1,∞)

)
, containing the

central subgroup Z, is called commutatively factorizable for type χ, χ ∈ Ẑ, if it
has the following property: for any g′ ∈ O,

{
g′ = h′k′, h′, k′ ∈ R

(
G(m, 1,∞)

)
, supp(h′)

⋂
supp(k′) = ∅

=⇒ h′, k′ ∈ O and h′k′Ker(χ) = k′h′Ker(χ).
(10.4)
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Table 10.1. Subsets O(Y) ⊂ R
(
G(m, 1,∞)

)
, G(m, 1,∞) = S∞(Zm) ,

O(Y) ⊃ supp(f), f ∈ EY
(
R

(
G(m, 1,∞)

)
:

Type χ = Type β, β = (β1, β2, β3) with βi = χ(zi) for m even.

Subset
O(Y)

in
Case Y

(β1, β2, β3)
Type of

factor rep-
resentation

(Condition Y) for O(Y) :
g = Φ(g′) = (d, σ) =

ξq1 · · · ξqrg1 · · · gs,
gj =(dj , σj)

O(Y)
Fac-
tori-
zable

O(Y)
commu.
facto-
rizable

O(Y)
weakly
multi-
plica.

O(Y)
multi-
plica-
tive

m ODD

O(I.odd) χ(z1) = −1 L(σj) ≡ 0 (mod 2)
(1 6 j 6 s) YES YES YES NO

m EVEN

O(I) (−1,−1,−1) ord(ξqi
) ≡ 0 (mod 2) (∀i)

ord(dj) + L(σj) ≡ 0 (∀j) YES YES YES NO

O(II) (−1,−1, 1)
ord(d) ≡ 0, L(σ) ≡ 0,
ord(ξqi

) ≡ 0 (∀i),
ord(dj) + L(σj) ≡ 0 (∀j)

NO NO YES NO

O(III) (−1, 1,−1)
ord(d) ≡ 0,
L(σj) ≡ 0 (∀j) NO NO YES NO

O(IV) (−1, 1, 1) L(σj) ≡ 0 (∀j),
for σ = σ1σ2 · · ·σs

YES YES YES NO

O(V) (1,−1,−1)
ord(ξqi) ≡ 0 (∀i),
ord(dj) ≡ 0 (∀j),
L(σj) ≡ 0 (∀j)

YES YES YES NO

O(VI) (1,−1, 1)
ord(ξqi) ≡ 0 (∀i),
ord(dj) ≡ 0 (∀j),
L(σj) ≡ 0 (∀j)

YES YES YES NO

O(VII) (1, 1,−1) ord(d) ≡ 0,
L(σ) ≡ 0 NO NO YES YES

O(VIII) (1, 1, 1)
non-spin

No condition YES YES YES YES

Notation 10.1. In Case Y, denote by EY
(
R

(
G(m, 1,∞)

))
the set of all nor-

malized spin characters of Type χY
(
or of type β = (β1, β2, β3), βi = χY(zi), 1 ≤

i ≤ 3
)
of G(m, 1,∞), and by KY

1

(
R

(
G(m, 1,∞)

))
the set of normalized central

positive de�nite functions on R
(
G(m, 1,∞)

)
of (spin) type χY. Put

G̃Y(m, 1,∞) := R
(
G(m, 1,∞)

)
/Ker(χY), ZY := Z/Ker(χY).(10.5)

Then ZY ∼= Z2 is of order 2. Note that EY
(
R

(
G(m, 1,∞)

))
is the set of

extremal points of the convex set KY
1

(
R

(
G(m, 1,∞)

))
, and that a central positive

de�nite function f ∈ KY
1

(
R

(
G(m, 1,∞)

))
can be considered as a function on the

quotient group G̃Y(m, 1,∞). We have a disjoint union

E
(
R

(
G(m, 1,∞)

)
=

⊔

Y=I ∼ VIII

EY
(
R

(
G(m, 1,∞)

)
,(10.6)

and similarly for K1

(
R

(
G(m, 1,∞)

))
.
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We have a central extension (or a covering group) of G(m, 1,∞) as

{e} −→ ZY −→ G̃Y(m, 1,∞)
ΦY−→ G(m, 1,∞) −→ {e} (exact).(10.7)

Diagram 10.1. Covering groups of G(m, 1,∞).

upper level R
(
G(m, 1,∞)

)
covering group

↓ degree of covering = 22 = |Ker(χY)|
upper level G̃Y(m, 1,∞)

)
double covering group

↓ degree of covering = 2

lower (non-spin) level G(m, 1,∞) basic group

When we consider a spin character f of Type χ = χY, we take O = O(Y).
If it is commutatively factorizable for type χ, the property in De�nition 10.3
implies that the images of h′, k′ ∈ O(Y) ⊂ R

(
G(m, 1,∞)

)
down in the quotient

group G̃Y(m, 1,∞) are mutually commutative, and so f(h′k′) = f(k′h′).
To check if the subset O = O(Y) satis�es or not the conditions for the

corresponding χ = χY ∈ Ẑ, we apply the fundamental relations listed up in �9.2.

Remark 10.1. Noting (1 2 3)(2 3 4) = (1 2)(3 4), we see that the
condition � L(σj) ≡ 0 (∀j) � is not � multiplicative �, and accordingly that the
subset O(Y) is not multiplicative except Y = VII, VIII.

For Cases Y, Y = II, III, VII, consider a strengthened condition (str-Condition
Y) on g′ ∈ R

(
G(m, 1,∞)

)
demanding that each component ξqi

, gj of g = Φ(g′)
satis�es itself (Condition Y), and denote by Ostr(Y) the subset of g′ de�ned by
(str-Condition Y).

Lemma 10.2. (i) For Case Y, Y = II, III, or VII, the condition (str-
Condition Y) for g′ ∈ R

(
G(m, 1,∞)

)
is given by

(str) ord(ξqi
) ≡ 0 (1 ≤ i ≤ r), L(σj) ≡ 0, ord(dj) ≡ 0 (1 ≤ j ≤ s),

and the subsets Ostr(Y) are all equal to the subset O(str) de�ned by the condition
(str) above and equal to O(V) = O(VI).

(ii) In such Case Y, if f ∈ KY
1

(
R

(
G(m, 1,∞)

))
is factorizable (cf. De�nition

6.1), then we have supp(f) ⊂ Ostr(Y) = O(str).

Lemma 10.3. (i) Put O′(Y) as

O′(Y) :=

{
O(Y) for Y = I.odd, I, IV, V, VI ,

Osrt(Y) for Y = II, III, VII .
(10.8)
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For a g′ ∈ O′(Y), take any of its basic components h′ such that h = Φ(h′) equals
one of ξqi

(1 ≤ i ≤ r) and gj (1 ≤ j ≤ s). Let J := supp(h′) and

G′
J := {k′ ∈ R

(
G(m, 1,∞)

)
; supp(k′) ∩ J = ∅},(10.9)

then h′ and G′
J commute with each other elementwise modulo Ker(χY), that is,

h′k′Ker(χY) = k′h′Ker(χY) (k′ ∈ G′
J), where χY ∈ Ẑ corresponds to Case Y. In

other words, going down to the quotient G̃Y(m, 1,∞)=R
(
G(m, 1,∞)

)
/Ker(χY),

they commute with each other.

(ii) In Case Y, Y = II, III, VII, take g′ ∈ O(Y) \ Ostr(Y), then g′ has a
basic component h′ such that h′ is not commutative with some elements of G′

J

modulo Ker(χY).

11 Factorisability for spin characters of G(m, 1,∞)

Contrary to the non-spin case (Case VIII) of in�nite generalized symmetric
groups G(m, 1,∞) = S∞(Zm) in [HH1], the factorizability criterion (EF) for
characters in �6.6 :

for f ∈ K1

(
R

(
G(m, 1,∞)

))
of certain type χ ∈ Ẑ,

(EF) f extremal ⇐⇒ f factorizable,

does not necessarily hold for the spin case, that is, for representation groups
R

(
G(m, 1,∞)

)
if m is even. As a result of our study, the validity of factorizabil-

ity criterion (EF) corresponds to that of the factorizability for the subset O(Y) in
�10, as seen below. Recall that the implication � factorizable =⇒ extremal � is
always true as seen in Theorem 6.3. In other words, for f ∈ K1

(
R

(
G(m, 1,∞)

))

of certain type χ ∈ Ẑ, � to be factorizable � is su�cient for � to be a character �.

Theorem 11.1. (i) The converse implication � extremal =⇒ factoriz-
able � holds in Case Y, Y = I.odd, I, IV, V, and VI, and the criterion (EF)
holds in these cases.

(ii) The criterion (EF) does not holds in Case VII.

Proof. (i) Since f(zh′) = χY(z)f(h′)
(
z ∈ Z, h′ ∈ R

(
G(m, 1,∞)

) )
, f can be

considered as a function on the quotient group G̃Y(m, 1,∞) = R
(
G(m, 1,∞)

)
/

Ker(χY), and we can and do discuss on G̃Y through modulo Ker(χY) ⊂ Z.
Consider Case Y, Y=I.odd, I, IV,V, or VI. Take g′ ∈ G̃Y(m, 1,∞) such that

f(g′) 6= 0. Then g′ belongs to the subset O(Y). Let J = supp(g′) and put as in
(10.9),

G′
J = {h′ ∈ G̃Y(m, 1,∞); supp(h′) ∩ J = ∅}.

By Lemma 10.3, g′ and G′
J commute with each other elementwise. Let N be the

order of g′, and ZN = 〈g′〉 the cyclic group generated by g′, then

ZN ∩G′
J = {e} or ZN ∩G′

J = ZY,
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where ZY := Z/Ker(χY), since Z/Ker(χY) ∼= Z2 . Then the direct product
ZN × G′

J is a subgroup of G̃Y in the �rst case, and (ZN × G′
J)/ZY is imbedded

into G̃Y as such a one in the second case.
The group G′

J is naturally isomorphic to G̃Y(m, 1,∞) and any conjugacy
class of the latter meets with the former. Hence the restriction f̂ = f |G′J onto

G′
J determines f naturally, and f̂ is extremal in K1(G

′
J) or f̂ ∈ E(G′

J).
Moreover we have E(ZN × G′

J) = E(ZN) × E(G′
J), and thus we can follow

the proof of � only if �-part of Satz 1 in [Tho2].
(ii) We know from Lemma 10.2 (ii) that if a spin character f in Case VII has

support supp(f) 6⊂ Ostr(Y) = O(str), then it is not decomposable. Such a spin
character is given by the normalized trace character χ̃π2,ζk

of two-dimensional
IRs (see Theorem 12.2 below).

Thus the proof of Theorem 11.1 is completed. 2

Remark 11.1. In Cases II and III, the criterion (EF) does not hold as in
Case VII, principally because of the property of O(Y) in Lemma 10.3 (ii), for
Y = II, III, VII. But its proof is postponed until a succeeding paper, since it
needs an example of characters with supports touching O(Y) \ Ostr(Y).

12 Finite-dimensional spin representations of

G(m, 1,∞)

12.1 Spin type admitting �nite-dimensional IRs for
R

(
G(m, 1,∞)

)

Let m be even, and π a �nite-dimensional IR of R
(
G(m, 1,∞)

)
. Then π has its

own type β = (β1, β2, β3) given by π(zi) = βiI (1 ≤ i ≤ 3) with the identity
operator I.

Since R
(
G(m, 1,∞)

)
= limn→∞ R

(
G(m, 1, n)

)
, there exists an n0 such that π

is irreducible already on a �nite subgroup R
(
G(m, 1, n0)

)
. For n > n0, elements

of the form riri′ (i, i′ > n) or ηjη
−1

k (j, k > n) commute with R
(
G(m, 1, n0)

)
,

and so

π(riri′) = λi,i′I, π(ηjη
−1

k ) = µj,kI ,(12.1)

where λi,i′ , µj,k ∈ C×. From (riri+1)
3 = e and (riri′)

2 = z1 (|i− i′| ≥ 2), we get

(λi,i+1)
3 = 1, (λi,i+1λi+1,i+2)

2 = β1.

It follows from this that λi,i+1λi+1,i+2 = β1, and so β 3
1 = 1 whence β1 = 1. Thus

we have λi,i+1 = 1 (i > n0) and λi,i′ = 1 (i, i′ > n0, i 6= i′). This forces that π is
trivial on the subgroup Φ−1

(
A∞) ⊂ R

(
G(m, 1,∞)

)
. Thus,

π(ri) = π(r1) (i ≥ 2), π(r1) =: J with J2 = I.(12.2)
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From rj(ηjη
−1

j+1 )rj = ηj+1η
−1

j = (ηjη
−1

j+1 )−1, (ηjη
−1

j+1 )m = z
m(m−1)/2

2 = z
m/2

2 ,

(ηjη
−1

j+2 )m = z
m/2

2 , and ηjη
−1

k · ηkηk+1 = ηjη
−1

k+1 , we get

µj,j+1 = µ −1
j,j+1 , (µj,j+1)

m = β
m/2

2 ,

(µj,j+1µj+1,j+2)
m = β

m/2
2 , µj,kµk,k+1 = µj,k+1 (j < k),

whence β
m/2

2 = 1, (µj,j+1)
2 = 1. Moreover from ηjηj+1 = z2ηj+1ηj, we have

ηjη
−1

j+1 = z2η
−1

j+1 ηj = z2η
−1

j+1 (ηjη
−1

j+1 )ηj+1, and so µj,j+1 = β2µj,j+1, whence
β2 = 1.

Finally rk(ηjη
−1

k )r −1
k = z3ηjη

−1
k+1 (j < k) gives µj,k = β3µj,k+1 = β3µj,kµk,k+1,

and

µk,k+1 = β3 (∀k), µj,k = β k−j
3 (j < k).

So

{
π(ηj) = β3π(ηj+1), π(ηj) = β j−1

3 π(η1), π(η1) =: K,

π(r1) = J, J2 = I, Km = I, JK = β3KJ.

Thus we have a unique spin type β = (β1, β2, β3) = (1, 1,−1), Case VII,
which may admit �nite-dimensional representations.

12.2 Type (1, 1,−1): Finite-dimensional irreducible spin
representations

To obtain such representations, we are lead to look for pairs {K, J} which satis�es
J2 = I, Km = I, JK = −KJ, {J,K} is irreducible.(12.3)

Also we can treat it by the method of induced representations for the semidi-
rect product group R

(
Sn(Zm)

)
/〈z1, z2〉. However, in this reduced case where

π(ri) = π(r1) = J (i ≥ 2) and π(ηj) = β j−1
3 π(η1) = (−1)j−1K (j ≥ 2),

it is enough to consider a simpler group given as H := D o R with D :=
〈z〉 × 〈η1〉, R := 〈r1〉 and with fundamental relations

{
z2 = e, z central, r 2

1 = e,

η m
1 = e, r1η1r1 = zη1.

(12.4)

Let D̂− be the set of characters χ of D for which χ(z) = −1. Then
{

D̂− ∼=
{
ζ0, ζ1, . . . , ζm−1

}
, ζk(η1) = ωk,

ω = e2πi/m = a primitive m-th root of 1.
(12.5)

The action of r1 on D̂− is given by ζk → ζk+m′ with m′ = m/2, where the index
k + m′ is understood modulo m. In fact,

(
r1(ζk)

)
(η1) = ζk

(
r1(η1)

)
= −ζk(η1) = −ωk = ωk+m′

= ζk+m′(η1).
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In this way we get all �nite-dimensional irreducible spin representations of
H, and then those of R

(
G(m, 1,∞)

)
as follows.

Theorem 12.1. Let m be even.
(i) The type of spin factor representations of G(m, 1,∞), which admits

�nite-dimensional irreducible ones, is uniquely β = (1, 1,−1), Case VII.
(ii) For Case VII, Type β = (1, 1,−1), all �nite-dimensional irreducible

spin representations are 2-dimensional. A complete set of representatives of
their equivalence classes is given by {π2,ζk

; 0 ≤ k < m′ = m/2}, where

π2,ζk
(ri) = π2,ζk

(r1) =

(
0 1
1 0

)
(i ≥ 2),(12.6)

π2,ζk
(ηj) = (−1)j−1π2,ζk

(η1) =

(
ωk+(j−1)m′

0
0 ωk+jm′

)
(j ≥ 1).(12.7)

Introduce new generators η′j := z j−1
3 ηj (j ∈ N) for D̃∞ = 〈z3, η1, η2, . . . 〉, then

π2,ζk
(η′j) =

(
ζk(η1) 0

0 −ζk(η1)

)
=

(
ωk 0
0 ωk+m′

)
(j ∈ N).

Put ord(d′) :=
∑

j∈N aj for d′ =
∏

j∈N η′j
aj ∈ D̃∞, then

π2,ζk
(d′) =

(
(ωk)ord(d′) 0

0 (−ωk)ord(d′)

)
.(12.8)

We note that this explicit form of two-dimensional representations is a little
di�erent from those in [IhYo] and [DaMo] in appearance.

The trace character f = χπ2,ζk
is of type β = (1, 1,−1) and it can be

considered as a central function on G̃ := R
(
G(m, 1,∞)

)
/〈z1, z2〉 and

G̃ = D̃∞ oS∞, D̃∞ = 〈z3〉 ×
∏′

j∈N
〈ηj〉, 〈ηj〉 ∼= Zm.(12.9)

Theorem 12.2. Let m be even, and π2,ζk
two-dimensional irreducible spin

representation of G(m, 1,∞) of Case VII given above. Then its trace character
χπ2,ζk

is completely determined if its value is given for

g̃ = (d′, σ) ∈ G̃ with d′ = z a
3

∏
j∈N

η′j
aj , σ ∈ S∞.(12.10)

Then, with notations L(σ) in �9 and ord(d′) :=
∑

j∈N aj,

χπ2,ζk
(g̃) =





2 · (−1)aωk·ord(d′) = 2 · (−1)aζk(η1)
ord(d′)

if L(σ) ≡ 0, ord(d′) ≡ 0 ,

0 otherwise.

(12.11)
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Note 12.1. If we keep to the original generators {η1, η2, . . . } of D̃∞, we
should have a kind of sign function on D̃∞ as follows: for d′ =

∏
j∈N η

aj

j ∈ D̃∞,
put

sgn(d′) :=
∏
j∈N

(−1)(j−1)aj , ord′(d′) :=
∑
j∈N

aj ,

then

π2,ζk
(d′) =

(
sgn(d′) ωk·ord′(d′) 0

0 sgn(d′) (−ωk)ord′(d′)

)
(j ∈ N).

13 Summary of results for R
(
G(m, 1,∞)

)
, m even

For the convenience of later use, we summarize in the following table.

Table 13.1. For in�nite group R
(
G(m, 1,∞)

)
.

Case
Y

(β1, β2, β3)
Type of factor
representation

Existence of spin
�nite-dimensional
irred. represen. π

extremal
⇔

factori-
zable

supp(f) : f(g′) 6= 0 =⇒
Condition Y : g = Φ(g′) =
(d, σ) = ξq1 · · · ξqrg1 · · · gs,

gj = (dj , σj)
(−1,−1,−1) ord(ξqi) ≡ 0 (mod 2) (∀i)

I seed represen. ¬∃ (not exist) π YES i.e., ξqi = (tqi , (qi)), tqi ∈ S,
[IhYo], [DaMo] ord(dj) + L(σj) ≡ 0 (∀j)

II
(−1,−1, 1)
seed represen.
in [DaMo]

¬∃ π NO(∗)
⊂ A∞(T )S , i.e.,
ord(d) ≡ L(σ) ≡ 0, and
ord(ξqi) ≡ 0 (∀i),
ord(dj) + L(σj) ≡ 0 (∀j)
⊂ A∞(T )S , and

III (−1, 1,−1) ¬∃ π NO(∗) ord(d) ≡ 0,
L(σj) ≡ 0 (∀j)

(−1, 1, 1) ⊂ A∞(T ), and
IV seed represen. ¬∃ π YES L(σj) ≡ 0, i.e., σj even (∀j)

[IhYo], [DaMo] for σ = σ1σ2 · · ·σs

⊂ A∞(T )S , and
V (1,−1,−1) ¬∃ π YES ord(ξqi) ≡ 0 (∀i),

ord(dj) ≡ L(σj) ≡ 0 (∀j)
⊂ A∞(T )S , and

VI (1,−1, 1) ¬∃ π YES ord(ξqi) ≡ 0 (∀i),
ord(dj) ≡ L(σj) ≡ 0 (∀j)

VII
(1, 1,−1)
seed represen.
in [IhYo]

∃ 2-dimensional
irred. representa.

π2,ζk

(0 6 k < m/2)

NO
⊂ A∞(T )S , i.e.,
ord(d) ≡ 0,
L(σ) ≡ 0

VIII

(1, 1, 1)
S∞(Zm)
char. formula
in [HH1]

∃ 1-dimensional
character

χε,ζ

(ε = 0, 1; ζ ∈ T̂ )

YES No condition

(∗) A proof for this will be given in the succeeding paper.
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In the table above, the following are given:

• in the second column, (spin) type of factor representation or of spin charac-
ters, and the information on the basic representations given in [IhYo] or [DaMo]
which are called here as seed representation ;

• in the 3rd column, information on �nite-dimensional representations ;
• in the 4th column, information on the validity of the criterion (EF) ;
• in the 5th column, (Condition Y) to de�ne O(Y) for which supp(f) ⊂

O(Y).
The results in Table 13.1 for R

(
G(m, 1,∞)

)
, m even, are complicated and

accordingly very interesting.

14 Limits of irreducible characters of an in-

creasing sequence of groups

Let H0 ↪→ H1 ↪→ . . . ↪→ Hn ↪→ Hn+1 ↪→ . . . be an increasing sequence of
compact groups such that the imbedding Hn ↪→ Hn+1 is continuous, and put
H∞ := limn→∞ Hn =

⋃
06n<∞Hn be its inductive limit with the inductive limit

topology. Then, H∞ is a topological group which is discrete if all Hn are �nite,
and it is no more locally compact if Hn are not �nite and not stable for n
su�ciently large (cf. [TSH], �5). We summarize in this section results on limiting
processes of (normalized) irreducible characters of Hn as n → ∞, and extend
them in some extent. When all Hn are �nite groups, the in�nite group H∞ is
called locally �nite in [Ker, p.5]. For this kind of groups, the study was initiated
by Vershik-Kerov [VK] for symmetric groups Sn ↗ S∞, and by [HH1]�[HH3]
and by [Boy] for the case of wreath product groups Sn(T ) with a �nite group
T , and also by [HH5], [HH6] and [HHH1] for more general case of Sn(T ) with
a compact group T . More general branching graphs, not necessarily induced
by inductive limit groups, are treated in [KOO] (Jack graph), [BO], [Ols], and
[HoHH] (more general graphs) and so on.

Even though we need here only the case of locally �nite groups, it is preferable
to discuss together the case of in�nite series of compact groups, for which we will
prove below general results (Theorems 14.2 and 14.3) and give a comment on
counter examples.

14.1. An increasing sequence of compact groups.

We assume that H0 = {e} the trivial group of the identity element e, and
Hn are strictly increasing. For the duals H ∧

n of Hn's, we introduce an adjacent
relation ↗ as follows: for α ∈ H ∧

n and β ∈ H ∧
n+1, α ↗ β means α is actually

contained in β|Hn and denote by κ(α, β) its multiplicity. We put κ(α, β) = 0 if
α ↗ β does not hold, for later conveniences. Put Gn := H ∧

n and G :=
⊔

n>0 Gn,
where the unique element in G0 is denoted by ∅.
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Let fn be a central, continuous, positive-de�nite function on Hn, normalized
as fn(e) = 1. Then it has an absolutely convergent Fourier series expansion as

fn(h) =
∑

α∈Gn

ϕn(α) χα(h) =
∑

α∈Gn

dim α · ϕn(α) · χ̃α(h) (h ∈ Hn),(14.1)

where χα is the usual trace character of α, and χ̃α = χα/ dim α is the normalized
irreducible character with dim α = dimension of α. Then

ϕn(α) ≥ 0,
∑

α∈Gn

dim α · ϕn(α) = 1,(14.2)

so that the support of ϕn, {α ∈ Gn; ϕn(α) > 0} is at most countable.

14.2. Branching graph and central measures.

A branching graph consists of the strati�ed vertex sets G =
⊔

n>0 Gn and
the edges satisfying the following conditions, where Gn is called the vertexes of
the n-th level.

(BG1) Two vertexes α, β ∈ G can be adjacent only if they belong to consec-
utive levels. If α ∈ Gn and β ∈ Gn+1 are adjacent, we express it as α ↗ β and
call (α, β) the ingoing [resp. outgoing] edge of β [resp. α].

(BG2) G0 consists of the unique element ∅ that has no ingoing edges.
(BG3) For any vertex except ∅, its ingoing [resp. outgoing] edges form a

nonempty �nite [resp. non-empty (possibly in�nite)] set.
(BG4) If α ↗ β holds, the edge (α, β) carries multiplicity κ(α, β) > 0.
For α ∈ Gn, β ∈ Gn+1, we put κ(α, β) = 0 if they are not adjacent.

A non-negative real-valued function ϕ on G is called harmonic if

ϕ(α) =
∑

β: α↗β

κ(α, β) ϕ(β) (α ∈ G),(14.3)

and normalized as ϕ(∅) = 1, and supp(ϕ) is at most countable.
Let T = T(G) denote the set of all in�nite paths on G starting at ∅, for

which t ∈ T is expressed as

t =
(
t(0) ↗ t(1) ↗ · · · ↗ t(n) ↗ · · · ), t(n) ∈ Gn.

Its truncated path up to the n-th level is tn =
(
t(0) ↗ t(1) ↗ · · · ↗ t(n)

)
. Tn

denotes the set of all �nite paths up to n-th level. For a �nite path u connecting
α ∈ Gm and β ∈ Gn (m < n) as α = u(m) ↗ · · · ↗ u(n) = β, its weight wu is
de�ned by

wu :=
∏

m≤i<n

κ
(
u(i), u(i + 1)

)
,(14.4)

and we de�ne the dimension function d on G by

d(α, β) :=
∑

path u : α↗···↗β

wu.(14.5)
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From [HoHH, �2], we quote the following assertions (1◦), (2◦) and (3◦).
(1◦) A harmonic function ϕ on G satis�es, for any m < n and α ∈ Gm,

ϕ(α) =
∑

β∈Gn

d(α, β) ϕ(β).

A subset G0 ⊂ G, with edges inherited from G, is called a subgraph if for
any β ∈ G0, any path in G connecting ∅ to β is also a path in G0. For each
u =

(
u(0) ↗ · · · ↗ u(n)

) ∈ Tn, put

Cu := {t ∈ T ; t(k) = u(k), 0 ≤ k ≤ n},

and denote by B(T) the Borel �eld of T generated by the set of all Cu's. A prob-
ability measure on measurable space (T,B(T)) is called central if it is supported
by the path space T(G0) of some countable subgraph G0 of G, and

M(Cu)

wu

=
M(Cv)

wv

(14.6)

for all n and u, v ∈ Tn with a common terminating vertex.

(2◦) There exists a bijective correspondence between the central probabilities
M on T and the harmonic functions ϕ on G through

M(Cu) := wu · ϕ(α)(14.7)

for any α ∈ Gn and u ∈ Tn such that u(n) = α (n ≥ 0).

De�ne a random variable Xn : T → Gn by Xn(t) = t(n), then B(T) is
generated by X1, X2, . . .. Let Bn be the sub-σ-�eld generated by Xn, Xn+1, . . .
and put B∞ :=

⋂
n>0 Bn.

(3◦) Let M be an extremal central probability on T. Then M is trivial on
B∞, that is, M(B) = 0 or 1 for B ∈ B∞.

14.3. Limit of Martin kernels on a branching graph.

On the branching graph G, we regard the ratio

d(α, β)

d(∅, β)
, α, β ∈ G

as a Martin kernel on G. Let M be a central probability on T = T(G) which
is supported by T(G0) of a countable subgraph G0. Then M can be traced to
probability M0 on sub-σ-�eld B0 = B(T) ∩ T(G0).

Theorem 14.1 [HoHH, Theorem 3.2]. Let M be an extremal central prob-
ability measure on (T,B(T)), and G0 a countable subgraph associated with M
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as above. Let ϕ be an extremal harmonic function on G associated with M as
in (2◦). Then, for M-almost sure t ∈ T,

lim
n→∞

d
(
α, t(n)

)

d
(
∅, t(n)

) = ϕ(α) (α ∈ G0).(14.8)

14.4. Limits of irreducible characters.

As in 14.1, let H0 ↪→ . . . ↪→ Hn ↪→ Hn+1 ↪→ . . . be an increasing se-
quence of compact groups and de�ne, H∞ = limn→∞ Hn, G =

⊔
n>0 Gn, Gn =

H ∧
n , κ(α, β) = [β|Hn : α] for α ∈ Gn, β ∈ Gn+1, then

χβ|Hn =
∑

α∈Gn: α↗β

κ(α, β) χα .(14.9)

A character of G = H∞ is, by de�nition, an extremal element among the
continuous, positive-de�nite, central and normalized functions on G. The follow-
ing two are straight forward generalizations of Theorem 4.2 and Theorem 4.3 in
[HoHH] respectively.

Theorem 14.2. Let G = H∞ be the inductive limit of an increasing se-
quence Hn ↪→ Hn+1 of compact groups such that each imbedding is continuous.
Then there exist bijective correspondences between the following three objects:

(1) the set E(G) of characters of G,
(2) the set of extremal harmonic functions ϕ on T(G),
(3) the set of extremal central probabilities M on T(G).

To be precise, f in (1) and ϕ in (2) are connected as

f |Hn =
∑

α∈Gn

ϕ(α) χα,(14.10)

and the bijection between (2) and (3) is given in (2◦).

Under the above bijective correspondences, we apply Theorem 14.1 to obtain
the following result on limits of irreducible characters of Hn as n →∞.

Theorem 14.3. Let G = H∞ be the inductive limit of an increasing se-
quence of compact groups Hn such that each imbedding is continuous. For any
f ∈ E(G), let M be the corresponding extremal central measure in Theorem
14.2. Then, for M-almost sure t ∈ T, the convergence

lim
n→∞

χ̃t(n) = f(14.11)

is true and uniform on each Hk, k ≥ 1.
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Sketch of proof. We follow the proof of [HoHH,Theorem 4.3]. For k < n,
there holds

χγ|Hk
=

∑

β∈Gk

d
(
β, γ

)
χβ (γ ∈ Gn).(14.12)

Under the correspondence f ↔ ϕ ↔ M in Theorem 14.2, put G0 = supp ϕ.
Then G0 is a countable subgraph of G, and we see from Theorem 14.1 that, for
M -almost sure (= M -a.s.) t ∈ T,

lim
n→∞

d
(
α, t(n)

)

d
(
∅, t(n)

) = ϕ(α) (α ∈ G0).(14.13)

Take a path t ∈ T(G0) satisfying (14.13), then

α ∈ Gk and d
(
α, t(n)

)
> 0 =⇒ α ∈ G0

k = Gk ∩G0.(14.14)

Put for α ∈ Gk, k < n,

Qt(n)(α) :=
d
(
α, t(n)

)

d
(
∅, t(n)

) d(∅, α), Q(α) := ϕ(α) d(∅, α).(14.15)

Then both are probabilities supported by Gk. We estimate the di�erence of

χ̃t(n)|Hk
=

∑

α∈G0
k

Qt(n)(α)χ̃α, f |Hk
=

∑

α∈G0
k

Q(α)χ̃α,(14.16)

where the �rst equality follows from (14.12) and (14.15). For ε > 0, there exists
a �nite subset F ⊂ G0

k such that 1 − Q(F ) < ε. Equality (14.13) shows that,
for M -a.s. path t ∈ T(G0), and n su�ciently large,

|Qt(n)(F )−Q(F )| < ε, and,

Qt(n)(F
c) ≤ 1−Q(F ) + |Qt(n)(F )−Q(F )| < 2ε.

Putting them into (14.16), we have for h ∈ Hk,

|χ̃t(n)(h)− f(h)| ≤
∑
α∈F

|Qt(n)(α)−Q(α)|+ Qt(n)(G
0
k \ F ) + Q(G0

k \ F ) ≤ 4ε.

Hence, for M -a.s. path t, lim
n→∞

sup
h∈Hk

∣∣χ̃t(n)(h)− f(h)
∣∣ = 0. 2

The case of Hn = U(n), the unitary group of order n, and H∞ = U(∞) :=
limn→∞ U(n), is treated in [Ols].
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14.5. Are limits of irreducible characters always extremal ?

Under the general setting of Theorem 14.3, assume that, along with a path
t ∈ T, the pointwise limit

ft(h) := lim
n→∞

χ̃t(n)(h) (h ∈ G = H∞)(14.17)

exists on G, where χ̃t(n) denotes the normalized character of t(n) ∈ Gn = H ∧
n .

Here we are interested in paths t not picked up by any M -measure 1 subset in-
dicated in that theorem and study the following assertion:

Assertion (??). Suppose that the limit function ft in (14.17) exists point-
wise, then ft is always a character of G, or ft is continuous and extremal, i.e.,
ft ∈ E(G).

This assertion is proved for in�nite symmetric group G = S∞ by Vershik-
Kerov already in [VK]. On the other hand, Kerov gives the following general
comment in [Ker, p.11] for a locally �nite group G :

� Let us call a path t ∈ T regular if the limits (5.2) exist. The corresponding
limiting function ϕt is harmonic, though not necessarily extreme. . . . . . . �

Here for a path t = (ν1, ν2, . . . , νn, . . .), νn ∈ Γn, the limits (5.2) is

ϕt(λ) = lim
n→∞

d(λ, νn)

d(∅, νn)
, λ ∈ Γ,

with Γ =
⊔

n>0 Γn a branching graph. For a locally �nite group G, the existence
of a limit ϕt is equivalent to the existence of a pointwise limit ft of χ̃t(n) on G.
We call a limit ft a bad limit if it is not in E(G). Then Kerov's above comment
means that, for certain locally �nite groups G, there exist bad limits ft on G.

In [BO, p.5], Borodin-Olshanski give a comment as

� In all examples of the graphs G considered in the present paper
one can embed (the vertices of) G into Ω(G) in such a way that
any point ω ∈ Ω(G) can be approximated by a sequence of vertices
{λ(n) ∈ Gn}n=1,2,..., and for any such sequence

K(µ, ω) = lim
n→∞

dimG(µ, λ(n))

dimG λ(n)
. �

not referring an assertion like Assertion (??). Here Ω(G) denotes the set of ex-
treme points in the set of normalized, non-negative, harmonic functions on G.

For wreath product groups G = S∞(T ) = H∞ with Hn = Sn(T ) and T a
�nite group, Assertion (??) is a�rmed by [HH1]�[HH3], and also by [Boy] by
reducing it to the case of S∞(Zp) (see [Boy] �2, especially Theorem 2). For the
original case of S∞, see [VK], �1-4, especially Eqs (2) and (6).

For the general case of series of in�nite compact group Hn, the following as-
sertion, weaker than Assertion (??), is more natural :
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Assertion (????). If the limit function ft in (14.17) exists compact uni-
formly, then ft is always a character of G, or ft is continuous and extremal,
i.e., ft ∈ E(G).

For the case of unitary groups U(n) ↗ U(∞), this assertion is a�rmed in
[Ols] (Proposition 10.9). For the case of wreath product groups Sn(T ) ↗ S∞(T )
with any compact group T , we gave all the characters of G in [HH6], and studied
limit process χ̃t(n) → ft in [HHH1] and [HoHH]. In [HHH1], it is proved that,
if T is not �nite, then Assertion (??) never holds since we can give explicitly
pointwise limits ft in (14.17), along paths t ∈ T, which are discontinuous, and
so do not belong to E(G) (bad limits). A necessary and su�cient condition on
the path t ∈ T is given for that ft is actually a character (cf. Theorems 6.1 and
7.1, ibid.), and Assertion (????) is a�rmed by Theorem 7.1, ibid.

As far as we know, a general a�rmation to Assertion (??) has not yet been
given for locally �nite groups G = H∞, except the above mentioned case of
wreath products G = S∞(T ) with T �nite. In this connection, we are very much
careful at this point for the covering groups Hn = R

(
Sn(Zm)

)
of G(m, 1, n) =

Sn(Zn) and H∞ = R
(
G(m, 1,∞)

)
(and also for Hn = Sn(Tn) with �nite groups

Tn growing up to T∞).



Part II

Detailed study in Case VII

15 Explicit formula for characters of G(m, p,∞)

in Case VIII

Our results for characters of G(m, p, n) = Sn(Zm)S(p) and G(m, p,∞) = S∞(Zm)S(p)

in [HH1] prepare a background of the spin case at present. We review them
brie�y. Recall the de�nition of SI(T ) in �2.1: for a �nite abelian group T and
its subgroup S ,

SI(T ) = DI(T )oSI , DI(T ) :=
∏′

i∈I
Ti , Ti = T (i ∈ I),

SI(T )S = DI(T )S oSI , DI(T )S :=
{
d = (ti)i∈I ; P (d) :=

∏
i∈I

ti ∈ S
}
.(15.1)

Let T̂ be the dual of T , and χε be the one-dimensional characters of S∞ given
by χε(σ) = sgnS∞(σ)ε (σ ∈ S∞ ; ε = 0, 1). For the parameter of characters,

we prepare a set A :=
(
(αζ,ε)(ζ,ε)∈T̂×{0,1}; µ

)
satisfying the condition





αζ,ε (ζ ∈ T̂ , ε ∈ {0, 1})
{

αζ,ε = (αζ,ε;p)p∈N ,

αζ,ε;1 ≥ αζ,ε;2 ≥ αζ,ε;3 ≥ · · · ≥ 0,

µ = (µζ)ζ∈T̂ , µζ ≥ 0 (ζ ∈ T̂ ), ‖µ‖ :=
∑

ζ∈T̂ µζ ,

∑
ζ∈T̂

∑
ε∈{0,1} ‖αζ,ε‖+ ‖µ‖ = 1, ‖αζ,ε‖ :=

∑
p∈N αζ,ε;p ,

(15.2)

and the set of all such A's is denoted by A(
T̂

)
.

Theorem 15.1 (cf. [HH2, Theorem 2]). Let G = S∞(T ) be the wreath
product of the in�nite symmetric group S∞ with a �nite abelian group T . Every
normalized character of G is factorizable and is parametrized by a set A ∈ A(

T̂
)

as fA. For a g ∈ G, let its standard decomposition be

g = ξqi
ξq2 · · · ξqrg1g2 · · · gs, ξqi

= (tqi
, (qi)), gj = (dj, σj).(15.3)

Then the value fA(g) is given by the product of

fA(ξq) =
∑

ζ∈T̂

( ∑

ε∈{0,1}

∑
p∈N

αζ,ε;p + µζ

)
χζ(tq),(15.4)

fA(gj) =
∑

ζ∈T̂

( ∑

ε∈{0,1}

∑
p∈N

(αζ,ε;p)
`(σj) χε(σj)

)
χζ

(
P (dj)

)
.(15.5)

97
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Theorem 15.2 ([HH2, Theorem 4], [HH6, Theorem 7.1]). Let S ⊂ T be a
subgroup of a �nite abelian group T , and GS = S∞(T )S be the normal subgroup
of G = S∞(T ) given in (15.1). Then the restriction of a character of G onto GS

is a character of GS. Conversely any character of GS is obtained by restriction
from G.

About the condition on the indices A that the restrictions fA|GS coincide with
each other, see [HH6, Proposition 7.2].

In the case of T = Zm, as seen in �2.1, we have S(p) = {tp ; t ∈ T} ∼=
Zm/p, p|m, and

S∞(T ) = G(m, 1,∞), S∞(T )S(p) = G(m, p,∞), T̂ =
{
ζk ; 0 ≤ k ≤ m− 1

}
.

16 Formula for spin characters of G(m, 1,∞) in

Case VII

16.1 Correspondence between (non-spin) characters of
A∞(Zm)S(2) and spin characters of G(m, 1,∞)

Let m be even, and π2,ζk
2-dimensional irreducible spin representation of R

(
G(m, 1,∞)

)
of Case VII, Type β = (1, 1,−1), given in Theorem 12.1. Put for Y = VII,

G̃ := G̃Y = R
(
G(m, 1,∞)

)
/Ker(χY) = R

(
G(m, 1,∞)

)
/〈z1, z2〉,

= D̃∞ oS∞, D̃∞ = 〈z3, ηj (j ∈ N)〉, S∞ = 〈si (i ∈ N )〉,

{e} → 〈z3〉 → G̃
ΦY→ G(m, 1,∞) → {e}, ΦY(ηj) = yj (1 ≤ j < ∞),(16.1)

with fundamental relations :

(i) z 2
3 = e , z3 central element ;

(ii)

{
s 2

i = e (1 ≤ i < ∞), (sisi+1)
3 = e (1 ≤ i < ∞),

sisj = sjsi (|i− j| ≥ 2),

(iii) η m
j = e (1 ≤ j < ∞),

(iv) ηjηk = ηkηj (j 6= k),

(v)

{
siηis

−1
i = ηi+1, siηi+1s

−1
i = ηi (1 ≤ i < ∞),

siηjs
−1
i = z3ηj (j 6= i, i + 1) .

The trace character χπ2,ζk
is a function on G̃ given in (12.11) for g̃ = (d′, σ) ∈

G̃ with

d′ = z a
3

∏
j∈N

η′j
aj ∈ D̃∞, η′j = z j−1

3 ηj (j ∈ N ), σ ∈ S∞ ,(16.2)



[I] 16 Formula for spin characters of G(m, 1,∞) in Case VII 99

χπ2,ζk
(g̃) =





2 · (−1)a ωk ord(d′) if L(σ) ≡ 0, ord(d′) ≡ 0 ,

0 otherwise.
(16.3)

We denote by χ̃π2,ζk
the normalized character χπ2,ζk

/2.
Consider the tensor product π4,ζk,ζ`

:= π2,ζk
⊗ π2,ζ`

. Then it is a (non-spin)
linear representation of G = G(m, 1,∞).

Lemma 16.1. The tensor product representation π4,ζk,ζ`
= π2,ζk

⊗ π2,ζ`

splits into 4 one-dimensional characters of G = G(m, 1,∞) = S∞(Zm) as

π4,ζk,ζ`
= π2,ζk

⊗ π2,ζ`
=

∑⊕

ε=0,1

(
χk+` · sgnε

⊕
χk+`+m′ · sgnε

)
,(16.4)

where the characters χk (0 ≤ k < m) and sgnε on G is de�ned as

χk

(
(d, σ)

)
:= ζk

(
P (d)

)
, sgnε

(
(d, σ)

)
:= sgnε(σ)

(
(d, σ) ∈ G

)
.(16.5)

The character of π4,ζk,ζ`
is given as: for g = (d, σ) ∈ G = S∞(Zm),

χπ4,ζk,ζ`
(g) =

{
4 · ω(k+`)ord(d) if L(σ) ≡ 0, ord(d) ≡ 0 ,

0 otherwise.
(16.6)

In particular, in case k = ` = 0, the normalized character χ̃π4,ζ0,ζ0
=

(
χ̃π2,ζ0

)2

is the indicator function of the normal subgroup N = A∞(Zm)S(2) of G =
S∞(Zm).

Let f be a spin character of G(m, 1,∞) of Case VII. Then, as seen from Table
10.1, supp(f) ⊂ O(VII) = Φ−1(N), N = A∞(Zm)S(2), and f can be considered
as a function on G̃. Let EVII := EVII

(
R

(
G(m, 1,∞)

))
be the set of all spin

characters of G(m, 1,∞) of Case VII, Type (1, 1,−1).

De�nition 16.1 (Maps M and N ). Between the set of normalized central
positive de�nite functions K1(N) on N = A∞(Zm)S(2) and the set of such func-
tions KVII

1

(
R

(
G(m, 1,∞)

))
of Case VII, we de�ne maps M and N as follows:

for F ∈ K1

(
A∞(Zm)S(2)

)
and f ∈ KVII

1

(
R

(
G(m, 1,∞)

))
, put

{
M(F )(g′) := χ̃π2,ζ0

(g′) · F (g), with g = Φ(g′),

N (f)(g) := χ̃π2,ζ0
(g′) · f(g′), with g = Φ(g′).

(16.7)

Recall that KVII
1

(
R

(
G(m, 1,∞)

))
is the set of normalized central positive de�-

nite functions f on R
(
G(m, 1,∞)

)
with the homogeneity f(zig

′) = χVII(zi)f(g′),
g′ ∈ R

(
G(m, 1,∞)

)
, where χVII(zi) = 1, 1,−1 for i = 1, 2, 3 respectively.

Note that similarly as for a spin character of Case VII,
for any f ∈ KVII

1

(
R

(
G(m, 1,∞)

))
, its supports supp(f) is contained in the
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subset O(VII) = Φ−1(N), N = A∞(Zm)S(2).
Moreover note that

(
χ̃π2,ζ0

)2 is the indicator function of N ⊂ G(m, 1,∞) if
considered as a function of g = Φ(g′) through modulo Z, and is the indicator
function of the subset O(VII) = Φ−1(N) as a function in g′ ∈ R

(
G(m, 1,∞)

)
.

These facts guarantee that M and N are mutually the inverse of the other
and so both are bijective. Moreover since they are both linear, they map the sets
of extremal points E(N) and EVII

(
R

(
G(m, 1,∞)

))
mutually each other. Thus

we obtain the following.

Theorem 16.2. The mapM from K1

(
A∞(Zm)S(2)

)
to KVII

1

(
R

(
G(m, 1,∞)

))
maps characters of A∞(Zm)S(2) to spin characters of G(m, 1,∞) of Case VII,
Type (1, 1,−1), bijectively :

E
(
A∞(Zm)S(2)

) M−→
←−
N

EVII
(
R

(
G(m, 1,∞)

))
.(16.8)

16.2 Character formula for spin characters of G(m, 1,∞)
of Case VII

Theorem 16.3 ([HH2, Theorem 15], [HH6, Theorem 15.1]). Let T be a
�nite abelian group and S a subgroup of T . For G = S∞(T ), de�ne a normal
subgroup N := A∞(T )S of G as

A∞(T )S =
{
g = (d, σ) ∈ S∞(T ) = D∞(T )oS∞ ; σ ∈ A∞, P (d) ∈ S

}
.

Then, for a character f of G, its restriction f |N onto N is a character of N ,
and the map E(G) 3 f → f |N ∈ E(N) is surjective.

We apply this theorem to the case where T = Zm, m = 2m′ even, and
S = S(2) = {t2 ; t ∈ T} ∼= Zm′ . Let y be a generator of the cyclic group Zm for
which the product is multiplicatively written. Then

T̂ =
{
ζk ; 0 ≤ k ≤ m− 1

}
, ζk(y) = ωk, ω = e2πi/m.(16.9)

Let A =
(
(αζ,ε)(ζ,ε)∈T̂×{0,1}; µ

)
∈ A(

T̂
)
and fA be as in Theorem 15.1. We

have two involutive actions τ : A → tA and κ : A → R(ζm′)A on the parameter
space A(

T̂
)
as

tA :=
(
(α′ζ,ε)(ζ,ε)∈T̂×{0,1}; µ

′
)

with α′ζ,ε = αζ,ε+1, µ′ζ = µζ ;(16.10)

R(ζm′)A :=
(
(α′ζ,ε)(ζ,ε)∈T̂×{0,1}; µ

′
)

with α′ζ,ε = αζm′ζ,ε, µ′ζ = µζm′ζ ,(16.11)

where ε + 1 is calculated modulo 2. Then τ 2 = 1, κ2 = 1, τκ = κτ . The
following is a part of [HH6, Theorem 16.2] but we add here a rather detailed
proof.
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Theorem 16.4. Let m = 2m′ be even, and N = A∞(Zm)S(2) the normal
subgroup of S∞(Zm) = G(m, 1,∞). Then fA

∣∣
N

= fA′
∣∣
N

for another parameter

A′ =
(
(α′ζ,ε)(ζ,ε)∈T̂×{0,1}; µ

′
)
if and only if

A′ ∈ {
A, τA, κA, τκA = κτA

}
.(16.12)

Proof. For a g ∈ N , let its standard decomposition be g = (d, σ) =
ξqi

ξq2 · · · ξqr ·
g1g2 · · · gs, ξqi

= (tqi
, (qi)), gj = (dj, σj). Put tqi

= ybi , P (dj) = ycj . Note that
χ1(σj) = sgn(σj) = (−1)`(σj)−1 and ζk(y

bi) = ωbik, ζk(y
cj) = ωcjk. Then

∏
1≤j≤s

(−1)`(σj)−1 = 1,
∑

1≤i≤r

bi +
∑

1≤j≤s

cj ≡ 0 (mod 2) ;(16.13)

fA(g) =
∏

1≤i≤r

{ ∑

0≤ki<m−1

( ∑
p∈N

(
αζki

,0;p + αζki
,1;p

)
+ µζki

)
ζki

(ybi)

}
×

×
∏

1≤j≤s

{ ∑

0≤k′j≤m−1

( ∑
p∈N

(
(αζk′

j
,0;p)

`(σj) − (−αζk′
j
,1;p)

`(σj)
))

ζk′j(y
cj)

}
.

Then the equality fA(g) = f tA(g) (g ∈ N) on N follows from
∏

1≤j≤s

(
(αζk′

j
,0;p)

`(σj) − (−αζk′
j
,1;p)

`(σj)
)

=
∏

1≤j≤s

(
(αζk′

j
,1;p)

`(σj) − (−αζk′
j
,0;p)

`(σj)
)
.

Now consider a transformation R(ζm′) on T̂ given by ζ → ζm′ζ or ζk →
ζk+m′ (0 ≤ k ≤ m− 1) (k + m′ is counted modulo m). Then

ζk(y) = ωk → ζk+m′(y) = ωk+m′
= −ωk = −ζk(y),

∴
∏

1≤i≤r

ζki
(ybi) ·

∏
1≤j≤s

ζk′j(y
cj) →

∏
1≤i≤r

ζki+m′(ybi) ·
∏

1≤j≤s

ζk′j+m′(ycj)

=
∏

1≤i≤r

ζki
(ybi) ·

∏
1≤j≤s

ζk′j(y
cj).

This proves that fA(g) = fR(ζm′ )A(g) for any g ∈ N .
To prove the converse, that is, fA|N = fA′|N gives necessarily A′ = A, tA, R(ζm′)A,

or R(ζm′)(tA), we can discuss using the expansion of fA(g) into the sum of the
product terms above, so-called monomial terms, for instance as in [HH4, �14.2].
We omit the details. 2

Theorem 16.5. Let m = 2m′ be even.
(i) Any spin character f of G(m, 1,∞) of Case VII, Type β = (1, 1,−1),

is obtained as

f = M(F ) = χ̃π2,ζ0
· F, F ∈ E

(
A∞(Zm)S(2)

)
.(16.14)
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(ii) In turn, any character F of the group N = A∞(Zm)S(2) is obtained by
restriction of a character

fA ∈ E
(
S∞(Zm)

)
, A =

(
(αζ,ε)(ζ,ε)∈Ẑm×{0,1}; µ

)
, µ = (µζ)ζ∈Ẑm

,(16.15)

where fA is given in Theorem 15.1 by (15.4)�(15.5). Moreover fA|N = fA′ |N if
and only if A′ = A, tA, R(ζm′)A, or R(ζm′)(tA).

Note 16.1. The above theorem gives a parametrization of spin characters
of type (1, 1,−1) of G(m, 1,∞), and the relation to the work [DuNe] is direct as
is reviewed in �25 of the paper [II].

Example 16.1. We have normalized characters of two-dimensional irre-
ducible representations fk = χ̃π2,ζk

in EVII
(
R

(
G(m, 1,∞)

))
, 0 ≤ k ≤ m′ − 1.

The inverse image of fk under M is Fk = N (fk) ∈ E(N) a one-dimensional
character given as follows: for g = (d, σ) ∈ N = A∞(Zm)S(2), we have ord(d) ≡
0, L(σ) ≡ 0, and

Fk(g) = ωk ord(d) = ζk

(
P (d)

)
.(16.16)

The characters fA ∈ E
(
G(m, 1,∞)

)
, which gives Fk by restriction on N ,

are 4 one-dimensional characters Xε,k′ given as : for g = (d, σ) ∈ G(m, 1,∞) =
S∞(Zm)

Xε,k′(g) = ζk′
(
P (d)

)
sgn(σ)ε (k′ = k, k + m′ ; ε = 0, 1),(16.17)

which correspond to A =
(
(αζ,ε)(ζ,ε)∈T̂×{0,1}; µ

)
with αζk′ ,ε = (1, 0, 0, , . . .) and

all other components in A are trivial, i.e., αζ′,ε′ = 0, µ = 0.

17 Projective IRs of G(m, 1, n) in Case VII

From now on we study �nite generalized symmetric groups G(m, 1, n). Projective
representations of these groups have been studied by Read [Rea2], Ho�man and
Humphrey [HoHu1] and Morris and Jones [MoJo]. Here we give a construction
of projective IRs as induced representations using the semidirect product struc-
ture (17.1) below of their covering groups G̃(m, 1, n) so that we can calculate
completely their characters.

Let n ≥ 4. De�ne a covering group G̃(m, 1, n) = G̃VII(m, 1, n) of G(m, 1, n)
by the set of generators and the set of fundamental relations as follows (cf. �16.1):

G̃(m, 1, n) := R
(
G(m, 1, n)

)
/〈z1, z2〉 = D̃(m, 1, n)oSn,(17.1)

D̃(m, 1, n) := 〈z3, ηj (1 ≤ j ≤ n)〉, Sn = 〈si (1 ≤ i ≤ n− 1)〉,(17.2)
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(i) z 2
3 = e , z3 central element ;

(ii)

{
s 2

i = e (1 ≤ i ≤ n− 1), (sisi+1)
3 = e (1 ≤ i ≤ n− 2),

sisj = sjsi (|i− j| ≥ 2),

(iii) η m
j = e (1 ≤ j ≤ n),

(iv) ηjηk = ηkηj (j 6= k),

(v)

{
siηis

−1
i = ηi+1, siηi+1s

−1
i = ηi (1 ≤ i ≤ n− 1),

siηjs
−1
i = z3ηj (j 6= i, i + 1) .

Then G̃(m, 1,∞) = limn→∞ G̃(m, 1, n) is the covering group of G(m, 1,∞) of
Case VII.

In this section we construct IRs, and then in the next section (�17) we cal-
culate their characters, and in the last section (�18) we study limiting process of
characters as n →∞.

17.1 Sn-orbits in the dual of the abelian group D̃n :=
D̃(m, 1, n)

To construct IRs of G̃(m, 1, n), we apply the standard method of induced repre-
sentations for semidirect product groups (for a detailed account of the method,
cf. e.g., [HHH1, �3.2]).

First we take the dual group D̃(m, 1, n)∧ of the abelian group D̃(m, 1, n) =:

D̃n = 〈z3〉 × 〈η1, . . . , ηn〉. Then, consider a complete system of representatives of
its Sn-orbits for spin characters Y , or characters Y such that Y (z3) = −1. Let

Y (z3) = −1, Y (ηj) = ωbj (0 ≤ bj ≤ m− 1, 1 ≤ j ≤ n).(17.3)

Denote this character by Y = Yb with b = (b1, b2, . . . , bn).

Lemma 17.1. The action of si ∈ Sn on D̃(m, 1, n)∧ is given by

si : Yb(·) → Yb′(·), b′ = (b′1, b
′
2, . . . , b

′
n) :

{
b′i = bi+1, b′i+1 = bi,

b′j = bj + m′ (j 6= i, i + 1).

Proof. From the above fundamental relations we have

si

(
Yb

)
(ηi) = Yb(s

−1
i ηisi) = Yb(ηi+1) = ωbi+1 ,

si

(
Yb

)
(ηi+1) = Yb(s

−1
i ηi+1si) = Yb(ηi) = ωbi ,

si

(
Yb

)
(ηj) = Yb(s

−1
i ηjsi) = Yb(z3ηj) = −ωbi = ωbi+m′

(j 6= i, i + 1). 2

For convenience of calculations, choose another set of generators of D̃n as
{

z3, η′j = z j−1
3 ηj (1 ≤ j ≤ n)

}
,(17.4)

then the fundamental relations becomes
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(iii′) η′j
m = e (1 ≤ j ≤ n),

(iv′) η′jη
′
k = η′kη

′
j (j 6= k),

(v′)
{

siη
′
is
−1
i = z3 η′i+1, siη

′
i+1s

−1
i = z3 η′i (1 ≤ i ≤ n− 1),

siη
′
js

−1
i = z3 η′j (j 6= i, i + 1) .

Accordingly Yb(η
′
j) = Yb(z

j−1
3 ηj) = (−1)j−1ωbj = ωbj+(j−1)m′

, and we change
the parameter b to γ = (γ1, γ2, . . . , γn), γj := bj + (j − 1)m′ (mod m), and put
Y γ := Yb. Then the transformation by si is described as

si : Y γ(·) → Y γ′(·), γ′ = (γ′1, γ
′
2, . . . , γ

′
n) :(17.5)

with

{
γ′i = γi+1 + m′, γ′i+1 = γi + m′,

γ′j = γj + m′ (j 6= i, i + 1).

Note that every permutation in An acts on γ naturally (without adding m′'s),
then we can obtain a set Γ of γ representing all Sn-orbits of D̃(m, 1, n)∧ as
follows. First we prepare a set of integers mutually di�erent from each other
modulo m′ such that

{
0 ≤ c1 < c2 < . . . < cK < m′ ,

0 ≤ cK+1, . . . , cK′ < m ,
for 1 ≤ K ≤ K ′ ≤ m,(17.6)

and a partition of the interval In = {1, 2, . . . , n} ⊂ N into disjoint consecutive
intervals as





In =
(
I1 t I2 t · · · t IK

) ⊔ (
IK+1 t · · · t IK′

)
,

|Ik| ≥ 2 (1 ≤ k ≤ K), |Ik| = 1 (K < k ≤ K ′),

Ik = Ik,+ t Ik,− (empty set admitted) (1 ≤ k ≤ K),

such that j < j′ for j ∈ Ik,+, j′ ∈ Ik,− ,

(17.7)

with only one possible exception IK = IK,− t IK,+ when |IK | = 2 (the order
between IK,+ and IK,− is reversed).

Then consider γ = (γ1, γ2, . . . γn) satisfying a condition

(Γ-1)

{
γj = ck (j ∈ Ik,+), γj = ck + m′ (j ∈ Ik,−) for 1 ≤ k ≤ K,

γj = ck (Ik = {j}) for K < k ≤ K ′.

This condition on γ means that, on each interval Ik, γj (j ∈ Ik) are ranged
as

{
[ck, . . . , ck, ck + m′, . . . , ck + m′],

with one possible exception [cK + m′, cK ] when |IK | = 2.
(17.8)

Furthermore we put the following condition :

(Γ-2)

{
one possible exception can occur only when

|Ik,+| = |Ik,−| = 1 (1 ≤ k ≤ K), K ′ −K ≤ 1.
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Denote by Γ the set of γ satisfying the conditions (Γ-1)∼ (Γ-2).

Lemma 17.2. Any γ = (γ1, γ2, . . . , γn), 0 ≤ γj ≤ m − 1 (1 ≤ j ≤ n), is
conjugate under Sn to one of γ′ ∈ Γ. This means that any spin character Y of
D̃(m, 1, n) is conjugate under Sn to some Y γ′ , γ′ ∈ Γ.

Example 17.1. A general γ ∈ Γ looks like

(c1, . . . , c1, c1+m′, . . . , c1+m′ ; . . . ; cK , . . . , cK ,

cK +m′, . . . , cK +m′ ; cK+1, . . . , cK′),
(17.9)

and exceptional γ's are
{

(c1, c1+m′ ; . . . ; cK−1, cK−1+m′ ; cK +m′, cK ; cK+1) when n = 2K + 1;

(c1, c1+m′ ; . . . ; cK−1, cK−1+m′ ; cK +m′, cK) when n = 2K.

Note 17.1. There remain still some more conjugacies among elements in Γ.
To give exactly a complete set of representatives of conjugacy classes as a subset
of Γ, the calculations are elementary but cumbersome and so omitted here.

17.2 Stationary subgroups of a character Y γ of D̃(m, 1, n)

Let Y γ be a character of D̃(m, 1, n) with γ ∈ Γ in (17.6)�(17.8) together with
(Γ-1)∼ (Γ-2) (cf. Example 17.1). Let us determine the stationary subgroup
S(Y γ) ⊂ Sn of Y γ.

Let σ ∈ S(Y γ). Since the integers c1, . . . , cK′ are assumed to be di�erent
from each other modulo m′, we see that

σ ∈
∏

1≤k≤K′
SIk

=
∏

1≤k≤K

SIk
.(17.10)

We see from (17.5) the following.
In case sgn(σ) = 1, we have σ ∈ ∏

1≤k≤K

(
SIk,+

×SIk,−

)
.

In case sgn(σ) = −1, we have K ′ = K and In =
⊔

1≤k≤K

(
Ik,+ t Ik,−

)
, and

σ(Ik,±) = Ik,∓ (1 ≤ k ≤ K), and so(17.11)

|Ik,+| = |Ik,−| ≥ 1 (1 ≤ k ≤ K).(17.12)

Such a σ exists if |Ik,±| ≥ 2 for some k. Suppose contrarily that |Ik,±| = 1 for
any k, or

γ =

{
(c1, c1 + m′ ; . . . ; cK−1, cK−1 + m′ ; cK , cK + m′), or

(c1, c1 + m′ ; . . . ; cK−1, cK−1 + m′ ; cK + m′, cK).
(17.13)

Then, if K is odd, σ = (1 2)(3 4) · · · (2K−1 2K), and if K is even, no such σ
exists.



106 T. Hirai, E. Hirai and A. Hora

With these results, we obtain the next proposition. Put, for disjoint subsets
Jp (1 ≤ p ≤ N) of In ,

A
(∏

1≤p≤N
SJp

)
:= An

⋂ ∏
1≤p≤N

SJp .(17.14)

Proposition 17.3.

(Case S-1) S(Y γ) = Hγ := A
(∏

1≤k≤K

(
SIk,+

×SIk,−

))
,

if (a) K ′ > K, or

(b) K ′ = K and




|Ik,+| 6= |Ik,−| for some k, or,

|Ik,±| = 1 (1 ≤ k ≤ K), K even
(n = 2K ≤ m).

(Case S-2) S(Y γ) = Hγ
⊔

σ Hγ, Hγ = A
(∏

1≤k≤K

(
SIk,+

×SIk,−

))
,

if K ′ = K, |Ik,+| = |Ik,−| (1 ≤ k ≤ K), and |Ik,±| ≥ 2 for some k, where

{
σ = σ1σ2 · · · σK , σk ∈ SIk

(≤ k ≤ K),

σk(Ik,±) = Ik,∓ (1 ≤ k ≤ K), sgn(σ) = −1.
(17.15)

In this case n = 2n′. When n′ is odd, s can be taken as s2 = e, and when n′

is even, s can be taken as s = τs′ with s′2 = e, τ = ` a transposition in one of
Ik,±'.

(Case S-3) S(Y γ) = {e, σ} = Hγ
⊔

σ Hγ, Hγ = {e},

if K ′ = K, |Ik,+| = |Ik,−| = 1 (1 ≤ k ≤ K), with K odd, where

σ =
∏

1≤k≤K(ik,+ ik,−), Ik,± = {ik,±} (1 ≤ k ≤ K), and n = 2K ≤ m.

In this case σ2 = e, sgn(σ) = −1.

17.3 Relations between IRs of G and H, in case G ⊃ H

with |G/H| = 2

Let G be a �nite group and H its subgroup with |G/H| = 2. Take an element
s 6∈ H, then G = H t sH. Then, G = sH t s2H, and so s2H = H and
s2 ∈ H, sH = s−1H. Moreover G = sHs−1 t sH, and so sHs−1 = H whence
the subgroup H is normal. Then we can de�ne a sign character ε on G as
ε : G → G/H ∼= Z2

sgn→ {±1}.
Take an IR ρ ∈ Ĥ of H and consider the induced representation Π = IndG

Hρ.
The representation space V (Π) of Π consists of V (ρ)-valued functions ϕ on G
satisfying

ϕ(hg) = ρ(h)ϕ(g) (h ∈ H, g ∈ G).
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Take a system of representatives {e, s}, then the map V (Π) 3 ϕ → (ϕ(e), ϕ(s)) ∈
V (ρ)× V (ρ) gives an isomorphism. On the latter space, Π is realized as follows:

Π(h) =

(
ρ(h) 0

0 ρs(h)

)
, Π(s) =

(
0 I

ρ(s2) 0

)
,(17.16)

where ρs(h) := ρ(shs−1) (h ∈ H).
The following lemma gives relations between IRs of H and IRs of G, through

inducing up from H to G and restricting from G onto H.

Lemma 17.4. Let |G/H| = 2, and the notations be as above.
(Case P-1). Assume ρs ∼= ρ. Then, for any τ ∈ G, ρτ ∼= ρ. Let S be an

intertwining operator such as ρs(h) = S ρ(h)S−1 (h ∈ H), then S can be chosen
such that ρ(s2) = S2. The induced representation Π = indG

Hρ splits as

Π ∼= Π′ ⊕ ε · Π′,
{

Π′(h) =
(
ε · Π′)(h) = ρ(h) (h ∈ H),

Π′(s) = S,
(
ε · Π′)(s) = −S.

(17.17)

Π′ 6∼= ε · Π′, Π′∣∣
H
∼= (ε · Π′)

∣∣
H
∼= ρ ∼= ρs.(17.18)

the character χΠ(g) =

{
2 χρ(g) if g ∈ H,

0 if g ∈ sH.
(17.19)

(Case P-2). Assume ρ 6∼= ρs. Then Π = IndG
Hρ is irreducible and

Π ∼= ε · Π, Π
∣∣
H

= (ε · Π)
∣∣
H
∼= ρ⊕ ρs.(17.20)

the character χΠ(g) =

{
χρ(g) + χρ(sgs−1) if g ∈ H,

0 if g ∈ sH.
(17.21)

17.4 IRs of H = Hγ = A
( ∏

1≤k≤K

(
SIk,+

×SIk,−

))

Take a γ ∈ Γ in (Case S-2) or in (Case S-3), and put K = Kγ := {1, 2, . . . , K}.
We apply Lemma 17.4 to

G =
∏

k∈K

(
SIk,+

×SIk,−

)
and H = A

( ∏

k∈K

(
SIk,+

×SIk,−

))
.(17.22)

Take any s ∈ G \H. Then, sgn(s) = −1 and ε(g) = sgn(g) (g ∈ G).
For a �nite subset I ⊂ N , let SI be the symmetric group acting on I. Then

the set ŜI of equivalence classes of its IRs is parametrized by Young diagrams
of size |I|. An IR π of G =

∏
k∈K

(
SIk,+

×SIk,−

)
, identi�ed with its equivalence

class, is parametrized as πΛ by a set Λ of Young diagrams as

πΛ := £
k∈K

(
πΛk,+

£ πΛk,−

)
,(17.23)

Λ =
(
Λk,ε

)
k∈K,ε=±, Λk,ε parametrizes ŜIk,ε

(ε = ±).
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Moreover, denoting by tΛk,ε the transposed of Λk,ε, we have

sgn · πΛ
∼= πtΛ, tΛ :=

(
tΛk,ε

)
k∈K,ε=± .(17.24)

Lemma 17.5 (cf. [Fro4, �2]).
Let G =

∏
k∈K

(
SIk,+

× SIk,−

)
, H = A

( ∏
k∈K

(
SIk,+

× SIk,−

))
, and put

ρΛ := πΛ

∣∣
H
.

(Case TΛ-1). Assume tΛ 6= Λ. Then





ρtΛ
∼= ρΛ irreducible,

(
ρΛ

)s ∼= ρΛ,

IndG
HρΛ

∼= πΛ ⊕ πtΛ.

(Case TΛ-2). Assume tΛ = Λ. Then




ρΛ
∼= ρ

(0)
Λ ⊕ ρ

(1)
Λ , ρ

(0)
Λ 6∼= ρ

(1)
Λ irreducible,

(
ρ

(0)
Λ

)s ∼= ρ
(1)
Λ ,

IndG
Hρ

(α)
Λ

∼= πΛ = πtΛ (α = 0, 1).

17.5 Restriction of IRs of A
(∏

b∈B SIb

)
onto

∏
b∈B AIb

Lemma 17.6 ([Fro4, �2]). A complete representatives of equivalence classes
of IRs for n-th alternating group An, n ≥ 4, is given as follows: let πΛ be an IR
of Sn parametrized by a Young diagram Λ of size n, then





ρΛ = πΛ

∣∣
An

, in case tΛ 6= Λ, in this case ρtΛ
∼= ρΛ ;

ρ
(0)
Λ , ρ

(1)
Λ , in case tΛ = Λ, where πΛ

∣∣
An

= ρ
(0)
Λ ⊕ ρ

(1)
Λ .

We assign an element g ∈ Sn its parity ν = ν(g) as ν = 0 or 1 depending
on g ∈ An or not, that is, sgn(g) = (−1)ν . Also, putting B = Bγ := K × {±} =
{1, 2, . . . , K}×{±}, we give a parity ν(g) for an element g ∈ G =

∏
k∈K

(
SIk,+

×
SIk,−

)
=

∏
b∈B SIb

as follows:

g = (g1,+, g1,−, . . . , gK,+, gK,−) = (gb)b∈B ∈
∏

b∈B
SIb

,(17.25)

ν = ν(g) := (νb)b∈B with νb = ν(gb) (b ∈ B).(17.26)

We call g ∈ G even or odd according as |ν| :=
∑

b∈B νb is even or odd. Then
sgn(g) :=

∏
b∈B sgn(gb) = (−1)|ν| = 1 or = −1 according as g is even or odd, and

H consists of even elements of G. According to the notation in Lemma 17.6, we
put for each component SIb

(b ∈ B) as πΛb

∣∣
AIb

= ρ
(0)
Λb
⊕ ρ

(1)
Λb

in case tΛb = Λb .

De�ne a subgroup H0 = H γ
0 of H = Hγ as

H0 = H γ
0 :=

∏

k∈K

(
AIk,+

× AIk,−

)
=

∏

b∈B
AIb

.(17.27)
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Lemma 17.7. In Case TΛ-2 in Lemma 17.5 or if tΛ = Λ, the super�ces
(0), (1) of irreducible components ρ

(0)
Λ , ρ

(1)
Λ can be adjusted so that the following

holds: for κ = 0, 1,

ρ
(κ)
Λ

∣∣
H0

∼=
∑⊕

|ε|≡κ (2)

⊗

b∈B
ρ

(εb)
Λb

, ε := (εb)b∈B, |ε| :=
∑

b∈B
εb ,(17.28)

where the orthogonal direct sum runs over all components satisfying |ε| ≡
κ (mod 2).

17.6 IRs of S(Y γ) = Hγ
⊔

σ Hγ in Case S-2

In Case S-2, we apply again Lemma 17.4 to the triplet (G′, H, σ) with

G′ := S(Y γ) = Hγ
⊔

σ Hγ, H = Hγ = A
( ∏

b∈B
SIb

)
, B = Bγ = K × {±},

and refer to Diagrams 17.1 and 17.2 below to see inclusion relations of groups
which interplay, and also refer rows of (Case S-2) in Table 17.1 below. Here γ ∈ Γ
satis�es with K = {1, 2, . . . , K}

K ′ = K , |Ik,+| = |Ik,−| (k ∈ K), |Ik,±| ≥ 2 for some k ∈ K,(17.29)

and

{
σ = σ1σ2 · · · σK , σk ∈ SIk

(k ∈ K),

σk(Ik,±) = Ik,∓ (k ∈ K), sgn(σ) = −1.

We know IRs of H in Lemma 17.5. For an IR ρ of H, we study the symmetry
ρ → ρσ with ρσ(h) = ρ(σhσ−1) (h ∈ H). Let Λ =

(
(Λk,+, Λk,−)

)
k∈K. Then, for

G =
∏

k∈K
(
SIk,+

×SIk,−

)
,

πΛ = £
k∈K

(
πΛk,+

£ πΛk,−

)
,

(
πΛ

)σ ∼= £
k∈K

(
πΛk,− £ πΛk,+

)
=: πΛσ ,(17.30)

with Λσ :=
((

Λ1,−, Λ1,+

)
, . . . ,

(
ΛK,−, ΛK,+

))
(exchange of Λk,+, Λk,−).

For Λ =
(
(Λk,+, Λk,−)

)
k∈K , we call{

(Case ΛΣ-1) if Λσ 6= Λ and Λσ 6= tΛ,

(Case ΛΣ-2) if Λσ = Λ or Λσ = tΛ.

Case TΛ-1: tΛ 6= Λ.
Since t(Λσ) = (tΛ)σ 6= Λσ, both ρΛ = πΛ

∣∣
Hγ and ρΛσ ∼=

(
ρΛ

)σ ∼=
(
πΛ

)σ∣∣
Hγ are

irreducible.

• (Case ΛΣ-1) In this case,
(
ρΛ

)σ ∼= ρΛσ 6∼= ρΛ. By Lemma 17.4 (Case P-2)
for (G′, H) =

(S(Y γ), Hγ), we obtain an IR Π(Λ) of the stationary subgroup
S(Y γ) through

Π(Λ) := Ind
S(Y γ)
Hγ ρΛ , Λ =

(
Λk,ε

)
(k,ε)∈B ,(17.31)
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and Π(tΛ) ∼= Π(Λ) 6∼= Π(Λσ).

• (Case ΛΣ-2) In this case,
(
ρΛ

)σ ∼= ρΛ. By Lemma 17.4 (Case P-1) for
(G′, H) =

(S(Y γ), Hγ), we obtain two non-equivalent IRs Π(Λ, 0), Π(Λ, 1) of the
stationary subgroup S(Y γ) as the irreducible components of Π(Λ) ∼= Π(tΛ) ∼=
Π(Λσ) as

Π(Λ) := Ind
S(Y γ)
Hγ ρΛ = Π(Λ)(0) ⊕ Π(Λ)(1), Π(Λ)(1) ∼= sgn · Π(Λ)(1).(17.32)

Case TΛ-2: tΛ = Λ.
In this case, tΛb = Λb for any b = (k, ε) ∈ B = K × {±}, and we have non-

equivalent IRs ρ
(0)
Λ , ρ

(1)
Λ of Hγ ⊂ G by restriction from G as πΛ

∣∣
Hγ
∼= ρ

(0)
Λ ⊕ ρ

(1)
Λ .

• (Case ΛΣ-1) In this case, Λσ 6= Λ = tΛ and so by Lemma 17.6

(
ρ

(κ)
Λ

)σ 6∼= ρ
(κ)
Λ (κ = 0, 1),

because πΛ|Hγ ∼= ρ
(0)
Λ ⊕ ρ

(1)
Λ , (πΛ)σ ∼= πΛσ , πΛσ |Hγ ∼= ρ

(0)
Λσ ⊕ ρ

(1)
Λσ . Therefore,

by Lemma 17.4 (Case P-2), we get, for each κ = 0, 1, an IR Π
(
Λ; (κ)

)
of the

stationary subgroup G′ = S(Y γ) as

Π
(
Λ; (κ)

)
:= IndG′

Hγρ
(κ)
Λ , Π

(
Λ; (κ)

) ∼= sgn · Π(
Λ; (κ)

)
(κ = 0, 1),(17.33)

each of which is equivalent to one of Π
(
Λσ; (κ′)

)
(κ′ = 0, 1) respectively.

Note 17.2. In (Case TΛ-2)+(Case ΛΣ-1), since (πΛ)σ 6∼= πΛ for G =∏
b∈B SIb

, we see

from Lemma 17.4 (Case P-2), applied for inducing up πΛ of G to G̃ := G t σG,

that Π̃(Λ) := IndG̃
GπΛ is irreducible. Moreover, since IndG

Hγρ
(κ)
Λ
∼= πΛ (κ = 0, 1),

we have IndG̃
G′Π(Λ, (κ)) ∼= IndG̃

Hγρ
(κ)
Λ
∼= Π̃(Λ) irreducible for both κ = 0, 1.

Diagram 17.1. Relations among IRs
in (Case TΛ-2)+(Case ΛΣ-1) : Λσ 6= Λ = tΛ.

G̃ = G t σG Π̃(Λ) := IndG̃
GπΛ

∼= IndG̃
GπΛσ

↗ ↖
πΛ G=

∏
b∈B

SIb
G′=S(Y γ)=HγtσHγ Π

(
Λ; (0)

)
, Π

(
Λ; (1)

)

↖ ↗
Hγ = A

(∏
b∈B

SIb

)
ρ

(0)
Λ , ρ

(1)
Λ : πΛ

∣∣
Hγ = ρ

(0)
Λ ⊕ ρ

(1)
Λ

• (Case ΛΣ-2)
In this case, Λ = tΛ = Λσ and so Λk,+ = tΛk,+ = Λk,− (k ∈ K). For

H = Hγ = A
( ∏

b∈B SIb

) ⊂ G, we have two IRs ρ
(κ)
Λ , κ = 0, 1, through πΛ

∣∣
Hγ
∼=
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ρ
(0)
Λ ⊕ρ

(1)
Λ . To get IRs of G′ = S(Y γ) = HtσH, we need to study if

(
ρ

(κ)
Λ

)σ ∼= ρ
(κ)
Λ

or not, for each κ = 0, 1. For that, we apply Lemma 17.7. If
(
ρ

(κ)
Λ

)σ 6∼= ρ
(κ)
Λ , then

IndG′
H ρ

(κ)
Λ is irreducible, and vice versa.

For any Λb, b = (k, ε) ∈ B, we have tΛb = Λb, and πΛb

∣∣
AIb

= ρ
(0)
Λb
⊕ ρ

(1)
Λb

,

and the IRs ρ
(κ)
Λ (κ = 0, 1) are de�ned by (17.28) using the normal subgroup

H0 =
∏

b∈B AIb
of H. We adjust the super�ces (0), (1) of ρ

(0)
Λk,− , ρ

(1)
Λk,− so that the

representation
(
ρ

(ε)
Λk,−

)σk(h) := ρ
(ε)
Λk,−(σkhσ −1

k ) (h ∈ AIk,+
) is equivalent to ρ

(ε)
Λk,+

.

For an IR T (ε) := ⊗b∈Bρ
(εb)
Λb

with ε := (εb)b∈B, of H0, put

T (ε)σ(h) := T (ε)(σhσ−1) (h ∈ H0).(17.34)

Then, since Λk,+ = Λk,− in the present case, we have exchanges of εk,+, εk,− (k ∈
K) as

T (ε)σ ∼= T (εσ) with εσ :=
(
(εk,−, εk,+)

)
k∈K for ε =

(
(εk,+, εk,−)

)
k∈K.

For a g = (gb)b∈B ∈ H = A
( ∏

b∈B SIb

)
, let its parity be ν = (νb)b∈B, then

σgσ−1 is an exchange of components of g for (k, +), (k,−) for k ∈ K as

σgσ−1 =
(
(σkgk,−σ −1

k , σkgk,+σ −1
k )

)
k∈K with parity νσ,(17.35)

where νσ is de�ned similarly as εσ. Denote by V
(
T (ε)

)
the representation space of

T (ε). Then the operator
(
ρ

(κ)
Λ

)σ
(g) = ρ

(κ)
Λ (σgσ−1) sends V

(
T (ε)

)
onto V

(
T

(
ε+

νσ
))
, where ε + νσ is calculated componentwise modulo 2. In fact, for h =∏

b∈B hb ∈ H0, hb ∈ AIb
, we have

h′ := g−1hg =
∏

b∈B
h′b, h′b := g −1

b hbgb ∈ AIb
,

ρ
(εb)
Λb

(h′b) =
(
ρ

(εb)
Λb

)g −1
b (h),

(
ρ

(εb)
Λb

)g −1
b ∼= ρ

(εb+νb)
Λb

with νb = ν(gb).

Lemma 17.8. Let g ∈ H = A
( ∏

b∈B SIb

)
and ν be its parity.

(i) Under the action of H0 =
∏

b∈B AIb
through

(
ρ

(κ)
Λ

)σ
(h) (h ∈ H0), the op-

erator
(
ρ

(κ)
Λ

)σ
(g) = ρ

(κ)
Λ (σgσ−1) sends the subspace V

(
T (ε)

)
onto the subspace

V
(
T

(
εσ + ν

))
in the space of ρ

(κ)
Λ decomposed as

V
(
ρ

(κ)
Λ

)
=

∑⊕

|ε|≡κ (2)

V
(
T (ε)

)
.(17.36)

(ii) Under the action of H0 through ρ
(κ)
Λ (h) (h ∈ H0), the operator ρ

(κ)
Λ (g)

sends the subspace V
(
T (ε)

)
onto the subspace V

(
T

(
ε + ν

))
in V

(
ρ

(κ)
Λ

)
.

Lemma 17.9. In (Case TΛ-2)+(Case ΛΣ-2), the representation
(
ρ

(κ)
Λ

)σ

of H = Hγ = A
( ∏

b∈B SIb

)
is not equivalent to ρ

(κ)
Λ . Accordingly, for each
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κ = 0, 1, the representation of G′ = S(Y γ) = H t σH induced from H = Hγ is
irreducible:

Π
(
Λ; (κ)

)
:= Ind

S(Y γ)
Hγ ρ

(κ)
Λ , sgn · Π(

Λ; (κ)
) ∼= Π

(
Λ; (κ)

)
(κ = 0, 1),

and Π
(
Λ; (0)

) 6∼= Π
(
Λ; (1)

)
, Π

(
Λ; (κ)

)∣∣
Hγ
∼= ρ

(κ)
Λ ⊕ (

ρ
(κ)
Λ

)σ
.

Proof. The �rst assertion is obtained by comparing (i) and (ii) in Lemma
17.8.

The assertion for non-equivalency is obtained by comparing irreducible com-
ponents of Π(Λ)(κ)

∣∣
H0

∼= ρ
(κ)
Λ

∣∣
H0
⊕(

ρ
(κ)
Λ

)σ∣∣
H0

(κ = 0, 1). 2

Note 17.3. In (Case TΛ-2)+(Case ΛΣ-2), since π(Λ)σ ∼= π(Λ) for G =∏
b∈B SIb

, there exist, by Lemma 17.4 (Case P-1), two non-equivalent IRs

Π̃(Λ)(0), Π̃(Λ)(1)

of G̃ := G t σG as Π̃(Λ) = IndG̃
GπΛ = Π̃(Λ)(0) ⊕ Π̃(Λ)(1). So we have the

following diagram :

Diagram 17.2. Relations among IRs
in (Case TΛ-2)+(Case ΛΣ-2) : Λσ = Λ = tΛ.

G̃ = G t σG Π̃(Λ)(0), Π̃(Λ)(1) : Π̃(Λ) = Π̃(Λ)(0) ⊕ Π̃(Λ)(1)

↗ ↖
πΛ G=

∏
b∈B

SIb
G′=S(Y γ)=HγtσHγ Π

(
Λ; (0)

)
, Π

(
Λ; (1)

)

↖ ↗
Hγ = A

(∏
b∈B

SIb

)
ρ

(0)
Λ , ρ

(1)
Λ : πΛ

∣∣
Hγ = ρ

(0)
Λ ⊕ ρ

(1)
Λ

17.7 Projective IRs of G(m, 1, n) of Case VII, Type (1, 1,−1)

By the similar method as in [HHH1, �3], we are now on the last step of con-
structing all irreducible projective representations of G(m, 1, n) of Case VII,
Type (1, 1,−1), by inducing up from D̃n o S(Y γ) to D̃n o Sn = G̃(m, 1, n)

with D̃n := D̃(m, 1, n).
Let us recall some notations. We have chosen a new set of generators

{
z3, η̃j :=

z j−1
3 ηj (1 ≤ j ≤ n

}
for the abelian normal subgroup D̃n. The set Γ consists of

γ satisfying the conditions (Γ-1)∼ (Γ-2). For a γ = (γ1, γ2, . . . , γn) ∈ Γ, a one-
dimensional character Y γ of D̃n is de�ned as Y γ(z3) = −1, Y γ(η̃j) = ωγj (1 ≤
j ≤ n), and S(Y γ) denotes the set of τ ∈ Sn which preserves Y γ.

Let Π be an IR of S(Y γ), and consider an IR of D̃n o S(Y γ) as

Y γ ¡ Π : D̃n o S(Y γ) 3 (d′, τ) −→ Y γ(d′) · Π(τ).(17.37)



[I] 17 Projective IRs of G(m, 1, n) in Case VII 113

Then, by inducing up, we get an IR of G̃(m, 1, n) as

Ind Y γ ¡ Π := Ind
G̃(m,1,n)

D̃noS(Y γ)
Y γ ¡ Π .(17.38)

For IRs Ind Y γ ¡ Π in the table below, recall Conditions (Γ-1), (Γ-2) and Ex-
ample 17.1.

Table 17.1. IRs Ind Y γ¡Π of G̃(m, 1, n) in Case VII, Type (1, 1,−1).

γ = (γ1, γ2, . . . , γn), 0 ≤ K ≤ K ′, K = Kγ := {1, 2, . . . , K},
b = (k, ε) ∈ B = Bγ := K × {±}, Λ =

(
Λb

)
b∈B .

Structure of γ ∈ Γ
for a character

Y γ of D̃(m, 1, n)

Stationary

subgroup

S(Y γ) ⊂ Sn

Relations of the set

of Young diagrams
Λ with tΛ and Λσ

IRs of

G′=S(Y γ)

Name of

IRs of

G̃(m, 1, n)

(Case S-1)

(a) K ′ > K, or

(b) K ′ = K, and
S(Y γ) =

Hγ =

(Case TΛ-1)

tΛ 6= Λ

ρΛ

(ρtΛ
∼= ρΛ)

T (γ; Λ)

(∃k) |Ik,+| 6= |Ik,−|, or{
|Ik,±| = 1 (k ∈ K)
K even (n=2K 6m)

A
( ∏

b∈B SIb

)
(Case TΛ-2)

tΛ = Λ

ρ
(κ)
Λ

(κ = 0, 1)

T
(
γ; Λ; (κ)

)

(κ = 0, 1)

(Case S-2)

(Case TΛ-1; ΛΣ-1)
tΛ 6= Λ,

Λσ 6= Λ, tΛ

Π(Λ) =
IndG′

Hγ ρΛ
T (γ; Λ)

K ′ = K, and


|Ik,+| = |Ik,−|

(k ∈ K),
(∃k) |Ik,±| > 2

S(Y γ) =
Hγ t σ Hγ

(
sgn(σ)=−1

)
(Case TΛ-1;ΛΣ-2)

tΛ 6= Λ,
Λσ = Λ or tΛ

Π(Λ)(κ)

(κ = 0, 1)
T (γ; Λ)(κ)

(κ = 0, 1)

(Case TΛ-2)
tΛ = Λ

Π(Λ; (κ))

=IndG′
Hγ ρ

(κ)
Λ

(κ = 0, 1)

T
(
γ; Λ; (κ)

)

(κ = 0, 1)

(Case S-3)

K ′ = K,


|Ik,+| = |Ik,−| = 1

(k ∈ K), K odd
(n = 2K 6 m)

S(Y γ) = {e, σ}
(Hγ = {e} )

Λ = ∅
sgnµ

(µ = 0, 1)

(sgn(σ)=−1)

T (γ; sgnµ)

(µ = 0, 1)

Theorem 17.10. For every γ ∈ Γ, take IRs Π of the stationary subgroup
S(Y γ) ⊂ Sn which are listed in �17.4 and �17.6, and consider IRs of

G̃(m, 1, n) = R
(
G(m, 1, n)

)
/〈z1, z2〉

obtained as Ind Y γ ¡ Π. Then any irreducible projective representations of
G(m, 1, n) in Case VII, Type (1, 1,−1), is equivalent to one of the above IRs.

Example 17.2. Consider a special case of (Case S-1) (b), where K ′ = K =
1 and (I1,+, I1,−) = (In, ∅) or (I1,+, I1,−) = (∅, In) for γ. Put ` = γ1 = c1 or
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` = γ1 = c1 + m′ accordingly, and ζ`(y) := ω`, ζ` ∈ Ẑm a character of Zm = 〈y〉.
Then Y γ(η′j) = ω`, η′j = z j−1

3 ηj, or

Y γ(ηj) = (−1)j−1ω` = (−1)j−1ζ`(ηj) under Tj 3 ηj → y ∈ Zm,

and Hγ = An. Take Λ = ∅ and Π = 1An the trivial representation of An = Hγ.

Then the IR π2,ζ`,n := Ind
G̃(m,1,n)
Hγ Y γ ¡ Π is a two-dimensional representation

given by

π2,ζ`,n(η′j) =

(
ω` 0
0 −ω`

)
, π2,ζ`,n(si) =

(
0 1
1 0

)
,(17.39)

for 1 ≤ j ≤ n and 1 ≤ i ≤ n − 1. As the limit under n → ∞, we get two-
dimensional IR π2,ζ`

= limn→∞ π2,ζ`,n of G̃(m, 1,∞), and π2,ζ`
∼= π2,ζ`+m′ . These

are nothing but the spin IRs π2,ζk
of G(m, 1,∞) of Type (1, 1,−1) given in

Theorem 12.1.

18 Irreducible spin characters of G(m, 1, n),m

even, Case VII, Type (1, 1,−1)

18.1 Irreducible spin characters of G(m, 1, n) of Type
(1, 1,−1)

We can give explicitly all irreducible spin characters of G(m, 1, n) of Case VII,
Type (1, 1,−1), as induced characters from D̃noS(Y γ) to D̃noSn = G̃(m, 1, n)
for γ ∈ Γ.

We quote a general formula for the character of an induced representations
with which our calculations are going on. For this, we set up newly some no-
tations only for this subsection. Put H̃n = D̃n o S(Y γ), G̃n := D̃n o Sn =

G̃(m, 1, n), πn := Y γ ¡Π and Πn := IndG̃n

H̃n
πn. The normalized characters of πn

and Πn are denoted respectively by χ̃πn and χ̃Πn .
Then, for g′ ∈ G̃n not conjugate to an element in H̃n, χ̃Πn(g′) = 0 ; and for

h′ ∈ H̃n,

χ̃Πn(h′) =
1∣∣G̃n

∣∣
∑

g′′∈G̃n

χ̃πn

(
g′′h′g′′−1)

,(18.1)

where χ̃πn is extended from H̃n to G̃n by putting = 0 outside H̃n.
Let h′ = (d′, σ) ∈ H̃n = D̃n o S(Y γ). For g′′ = (d′′, τ) ∈ G̃n = D̃n oSn, we

have

g′′h′g′′−1
= d′′τ · d′σ · τ−1d′′−1 =

(
d′′ · τd′τ−1 · κ d′′−1κ−1, τστ−1

)
,
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where κ := τστ−1. Suppose g′′h′g′′−1 ∈ H̃n. Then κ = τστ−1 ∈ S(Y γ), and so

Y γ
(
κd′′κ−1

)
= Y γ

(
d′′

)
,

∴ Πn(g′′h′g′′−1
) = Y γ

(
τd′τ−1

) · Π(τστ−1).(18.2)

Moreover, let d′ = η′1
a1η′2

a2 · · · η′nan , then

τd′τ−1 = z
ord(d′)L(τ)

3 · η′τ(1)
a1η′τ(2)

a2 · · · η′τ(n)
an ,(18.3)

∴ Y γ
(
τd′τ−1

)
= (−1) ord(d′)L(τ) · ωγτ(1)a1+γτ(2)a2+···+γτ(n)an .(18.4)

Theorem 18.1. For IR Πn = IndG̃n

H̃n
πn, πn = Y γ ¡ Π, of G̃n = G̃(m, 1, n),

its normalized character is given for h′ ∈ H̃n = D̃n o S(Y γ) by

χ̃Πn(h′) =
1∣∣Sn

∣∣
∑

τ∈Sn ;
τστ−1∈S(Y γ)

Y γ
(
τd′τ−1

) · χ̃Π(τστ−1),

and χ̃Πn(g′) = 0 if g′ ∈ G̃n is not conjugate to any element in H̃n. Moreover
the character value Y γ

(
τd′τ−1

)
is given by (18.3)�(18.4).

In the case where ord(d′) ≡ 0 (mod 2), explicit calculations of the sum in
the right hand side are similar as, and simpler than those in [HHH1, �4]. The
character formula itself in this case is also similar to that in loc. cit. (cf. �19.1),
and is omitted here since to write it down we should prepare still more some
notations.

Except the above case we see from Table 9.1 that χ̃Πn(g′) 6= 0 =⇒ |supp(g′)| ≥
n − 1, and so it has no in�uence to analyse the limit process of the normalized
character χ̃Πn as n → ∞. The explicit calculation of the value χ̃Πn(g′) is ele-
mentary but rather cumbersome paying attention on the sign factor coming from
Y γ(z3) = −1, and omitted here.

18.2 Tensor products of two-dimensional IRs of G̃(m, 1, n)
with an IR π of G(m, 1, n)

We prove here a relation between irreducible spin characters of G(m, 1, n) of
Type (1, 1,−1) and irreducible characters of G(m, 1, n). Using this relation we
can translate the results for the latter to that for the former or for the covering
group G̃(m, 1, n) (see e.g., �19.2).

Let {η′j = z j−1
3 ηj (1 ≤ j ≤ n)} be new generators of D̃n = D̃(m, 1, n) =

〈z3, η1, η2, . . . , ηn〉, then we have, for two-dimensional IR π2,ζ0,n of G̃(m, 1, n),

π2,ζ0,n(η′j) =

(
1 0
0 −1

)
(j ∈ In), π2,ζ0,n(σ) =

(
0 1
1 0

)L(σ)

(σ ∈ Sn).(18.5)
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De�nition 18.1. A character sgn(·) of the abelian group D̃n = 〈z3, η
′
j (1 ≤

j ≤ n)〉 is de�ned for d′ = z b
3 η′1

a1η′2
a2 · · · η′nan ∈ D̃n ,

sgn(d′) := (−1)b (−1)ord(d′), ord(d′) = a1 + a2 + · · ·+ an.(18.6)

Let π be an IR of G := G(m, 1, n), and we study its tensor product Π′ :=

π2,ζ0,n ⊗ π which is a representation of the covering group G̃ := G̃(m, 1, n).
From (18.5), we see that Π′ is expressed as follows. Put H := Dn(Zm)o An

and take s ∈ Sn such that sgn(s) = −1, s2 = e, then G = H t sH. For
h′ = (d′, σ) ∈ G̃, d′ = z b

3 η′1
a1η′2

a2 · · · η′nan , put h = Φ(h′) ∈ H and ρ := π|H , then
π(h) = ρ(h), and

Π′(h′) =

(
(−1)bρ(h) O

O sgn(d′)ρ(h)

)
, Π′(s) =

(
O I
I O

)
.(18.7)

The character of Π′ is given for g′ = (d′, σ) ∈ D̃n oSn, g = Φ(g′), as

χΠ′(g
′) = χπ2,ζ0,n

(g′) · χπ(g) =





(−1)b 2 χπ(g)

if ord(d′) ≡ 0, L(σ) ≡ 0 (mod 2) ;

0 otherwise.

(18.8)

Lemma 18.2. (i) Let ρ be an IR of H = Dn o An . Then we have two

IRs of H̃ := D̃n o An as follows: for h′ = (d′, σ) ∈ H̃, d′ = z b
3

∏
1≤j≤n η′j

aj ∈
D̃n, h = Φ(h′) = (d, σ) ∈ H,

h′ → (−1)bρ(h), h′ → sgn(d′)ρ(h) = (−1)b (−1)ord(d′)ρ(h).

These are not mutually equivalent.
(ii) Let ρ be an IR of H such that ρs 6∼= ρ for an s ∈ Sn, sgn(s) = −1, s2 = e.

Then any two of the following four IRs of H̃ are not mutually equivalent:

h′ → (−1)bρ(h), h′ → (−1)bρs(h), h′ → sgn(d′)ρ(h), h′ → sgn(d′)ρs(h).

We give the proof in the Appendix and here we apply it.

Let π be an IR of G := G(m, 1, n) = Dn oSn.

(Case 18.2.1) If ρ := π|H is irreducible. Then ρs ∼= ρ, ρs(h) := ρ(shs−1).
As is seen from (18.7), the tensor product Π′ = π2,ζ0,n ⊗ π is irreducible.

(Case 18.2.2) If ρ = π|H is reducible. Then ρ = ρ1⊕ ρ s
1 , ρ s

1 6∼= ρ1 with an
IR ρ1, and

π(h) =

(
ρ1(h) 0

0 ρ s
1 (h)

)
, π(s) =

(
0 I
I 0

)
.(18.9)
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For h′ = (d′, σ) ∈ H̃ := D̃n o An, d′ = z b
3

∏
1≤j≤n η′j

aj ∈ D̃n, h = Φ(h′) =
(d, σ) ∈ H = Dn o An ,

Π′(h′) =

(
(−1)bπ(h) 0

0 sgn(d′)π(h)

)

=




(−1)bρ1(h) 0 0 0
0 (−1)bρ s

1 (h) 0 0
0 0 sgn(d′)ρ1(h) 0
0 0 0 sgn(d′)ρ s

1 (h)


 ,

Π′(s) =

(
0 π(s)

π(s) 0

)
=




0 0 0 I
0 0 I 0
0 I 0 0
I 0 0 0


 .

An intertwining operator U of Π′ = π2,ζ0,n⊗π is of the form U = diag(aI, bI, cI, dI),
and U Π′(s) = Π′(s) U gives us (d, c, b, a) = (a, b, c, d), or d = a, c = b. Hence
U1 = diag(I, O,O, I), U2 = diag(O, I, I, O) are intertwining projections. The
IRs Π′

k := UkΠ
′Uk (k = 1, 2) and their characters are given as follows:

Π′
1(h

′) =

(
(−1)bρ1(h) 0

0 sgn(d′)ρ s
1 (h)

)
, Π′

1(s) =

(
0 I
I 0

)
;(18.10)

Π′
2(h

′) =

(
(−1)bρ s

1 (h) 0
0 sgn(d′)ρ1(h)

)
, Π′

2(s) =

(
0 I
I 0

)
.(18.11)

{
χΠ′1(h

′) = (−1)bχρ1(h) + sgn(d′)χρ1(shs−1),

χΠ′1(sh
′) = 0 on sH̃ = D̃n o sAn ;

(18.12)

{
χΠ′2(h

′) = (−1)bχρ1(shs−1) + sgn(d′)χρ1(h),

χΠ′2(sh
′) = 0 on sH̃ = D̃n o sAn .

(18.13)

∴ χΠ′2(h
′) = χΠ′1(sh

′s−1) = (−1)ord(d′) χΠ′1(h
′)(18.14)

for h′ = (d′, σ) ∈ D̃n oSn = G̃(m, 1, n).

Theorem 18.3. Let π be an IR of G(m, 1, n) = DnoSn and Π′ = π2,ζ0,n⊗π

the tensor product representation of G̃(m, 1, n).
(i) Assume π|H be irreducible. Then Π′ is irreducible and its character is

given by (18.8).
(ii) Assume π|H be reducible. Then π|H ∼= ρ1 ⊕ ρ s

1 , and

Π′ ∼= Π′
1 ⊕ Π′

2, Π′
2(h

′) ∼= (−1)ord(d′) Π′
1(h

′),

for h′ = (d′, σ) ∈ D̃n o Sn = G̃(m, 1, n), d′ = z b
3

∏
1≤j≤n η′j

aj ∈ D̃n. Their
characters are given as in (18.12)�(18.13) with h = Φ(h′). Moreover,
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if ord(d′) ≡ 0 (mod 2), then χΠ′1(h
′) = χΠ′2(h

′) = (−1)bχπ(h) ;

if L(σ) ≡ 1 (mod 2), then χΠ′1(h
′) = χΠ′2(h

′) = 0 ;

if ord(d′) ≡ 1 (mod 2) and |supp(h′)| ≤ n−2, then χΠ′1(h
′) = χΠ′2(h

′) = 0 .

Proof. For the last assertion in (ii), if |supp(h′)| ≤ n − 2, take p, q ∈
In \ supp(h′). Then s0 = s · (p q) ∈ An and

shs−1 = s0hs −1
0 (or more exactly sh′s−1 = z

ord(d′)
3 s0h

′s −1
0 ),

and therefore χρ1(shs−1) = χρ1(s0hs −1
0 ) = χρ1(h) (h ∈ H = Φ(H̃) ). 2

Note 18.1. In case of in�nite group G(m, 1,∞), n = ∞, for a spin character
f of Case VII, Type (1, 1,−1), we see from Table 13.1 that, if g′ ∈ supp(f),
then g = Φ(g′) = (d, σ) ∈ A∞(Zm)S(2), or

ord(d′) ≡ 0, L(σ) ≡ 0 (mod 2).(18.15)

19 Limits of irreducible spin characters of

G(m, 1, n) as n →∞, in Case VII

19.1 Limits of irreducible spin characters of G(m, 1, n)

Let Πn, n À 0, be a series of spin IRs of G(m, 1, n) of Type (1, 1,−1), and
denote by χ̃Πn their normalized characters χΠn/ dim Πn. Using the explicit form
of χ̃Πn on G̃(m, 1, n) calculated by means of Theorem 18.1, we can determine
their limits on G̃(m, 1,∞) = limn→∞ G̃(m, 1, n), and analyse the limit process.
The method and the result are similar to those in [HH4, ��11∼ 14] and [HHH1,
��5∼ 8].

Here we note that, to analyse the limits, only the values χ̃Πn(h′), h′ = (d′, σ) ∈
D̃n o S(Y γ), in the case where ord(d′) ≡ 0, L(σ) ≡ 0 (mod 2), should be taken
into account. Because in other cases, χ̃Πn(h′) 6= 0 only when |supp(h′)| ≥ n− 1.
Thus there is no special a�ection caused by Y γ(z3) = −1, to carry out the
calculations.

Comparing with the result in Theorem 16.5, we get the following theorem.

Theorem 19.1. Let m be even. Any normalized spin character f of
G(m, 1,∞) of Type (1, 1,−1) is a pointwise limit of a series of normalized irre-

ducible characters χ̃Πn of G(m, 1, n) of the same type, i. e., for g′ ∈ G̃(m, 1,∞) =
R

(
G(m, 1, n)

)
/〈z1, z2〉,

f(g′) = lim
n→∞

χ̃Πn(g′).(19.1)
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19.2 Second proof for limits of irreducible spin charac-
ters of Type (1, 1,−1)

By means of Theorem 18.3, we can give another proof of Theorem 19.1 and also
clarify a criterion on the convergence. Let f be a spin character of G(m, 1,∞) =
S∞(Zm) in Case VII, Type (1, 1,−1), or f ∈ EVII

(
R(G(m, 1,∞)

)
. Put

F (g) = χ̃π2,ζ0
(g′) · f(g′)

(
g = Φ(g′), g′ ∈ G̃(m, 1,∞)

)
.(19.2)

Then F (g) = 0 outside A∞(Zm)S(2), and by Theorem 16.5, its restriction F ′ :=
F |A∞(Zm)S(2) is a character of A∞(Zm)S(2). Moreover, by Theorem 16.3, F ′ is in
turn a restriction of a character F ′′ of S∞(Zm).

For the wreath product group S∞(Zm), which is an inductive limit of Sn(Zm),
the limits of normalized irreducible characters χ̃πn of Sn(Zm) are well studied,
where πn denotes an IR of Sn(Zm) (cf. [HH1]�[HH4], [Boy] and more generally
[HHH1] and [HoHH]). We know the following:

(19.2.1) any character of S∞(Zm) is a pointwise limit of some series χ̃πn as
n →∞ ;

(19.2.2) a criterion is given for a series of irreducible characters χ̃πn to be
convergent.

By (19.2.1), we can take for F ′′ a series of irreducible characters χπn such
that F ′′ = limn→∞ χ̃πn pointwise, where πn is an IR of Sn(Zm) for each n À 0.

(Case 19.2.3) If πn is in Case 18.2.1, put Πn := π2,ζ0,n ⊗ πn, a spin IR of
G̃(m, 1, n).

(Case 19.2.4) If πn is in Case 18.2.2, put Πn be any of two irreducible
components

Π′
1, Π′

2 of π2,ζ0,n ⊗ πn of G̃(m, 1, n).

Then, by (18.8) and by Theorem 18.2 (ii) respectively, we have for g′ = (d′, σ) ∈
D̃n oSn = G̃(m, 1, n), d′ = z b

3

∏
1≤j≤n η′j

aj ∈ D̃n, g = Φ(g′),

In Case 19.2.3, χ̃Πn(g′) =

{
(−1)b χ̃πn(g) if ord(d′) ≡ 0, L(σ) ≡ 0 (mod 2),

0 otherwise ;

In Case 19.2.4, χ̃Πn(g′) =

{
(−1)b χ̃πn(g) if ord(d′) ≡ 0, L(σ) ≡ 0 (mod 2),

0 if |supp(g′)| ≤ n− 2, in other cases.

Hence limn→∞ χ̃Πn(g′) = (−1)bF ′′(g) = (−1)bF ′(g) = (−1)bF (g) = χ̃π2,ζ0
(g′) ·

F (g) = f(g′). Thus we obtain for g′ ∈ G̃(m, 1,∞) = limn→∞ G̃(m, 1, n),

f(g′) = lim
n→∞

χ̃Πn(g′) pointwise.
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20 Appendix. Proof of Lemma 18.2

Proof of (i). Two IRs are mutually equivalent if and only if

χρ(h) = (−1)ord(d) χρ(h), h = (d, σ) ∈ Dn o An ,

and, in turn, this condition is equivalent to χρ

(
(d, σ)

)
= 0 if ord(d) ≡ 1 (mod 2).

But this is not the case. In fact we can prove it by constructing IR ρ by Mackey
type method as induced representations using semidirect product structure H =
DnoAn and then calculating χρ explicitly as in [HH1]. Let us give the realization
of IRs more in detail. A character of Dn = 〈y1, y2, . . . , yn〉 is given as

χγ(yj) = ωγj (j ∈ In), ω = e2π/m, γ := (γ1, γ2, . . . , γn), 0 ≤ γj < m.

The action of σ ∈ An on D̂n is given by σ(χγ) = χσγ, where (σγ)j = γσ−1(j). Take

the stationary subgroup Aγ ⊂ An of χγ ∈ D̂n and then take its IR πγ. Consider
an IR χγ ¡ πγ of Dn oAγ as

(
χγ ¡ πγ

)
(d, σ) := χγ(d) · πγ(σ), and induce it up

as

Π(γ, πγ) := IndH
DnoAγ

(
χγ ¡ πγ

)
, H = Dn o An .(20.1)

Then we get an IR of H and any IR of H is equivalent to such a one. The mutual
equivalences among Π(γ, πγ)'s are all given by conjugations of the parameter
(γ, πγ) under the action of An. Thus the pair (γ, πγ), modulo the conjugation
under An, can be taken as a parameter of the dual Ĥ of H.

Note that the character d → (−1)ord(d) of Dn is given by γ(0) := (m′,m′, . . . , m′),
m′ = m/2, and that χγ(0) is An-invariant. Then we see that if ρ ∼= Π(γ, πγ), then

(−1)ord(·)ρ ∼= Π(γ + γ(0), πγ),

Since γ and γ +γ(0) = (γ1 +m′, γ2 +m′, . . . , γn +m′) are not conjugate under An,
we have ρ 6∼= (−1)ord(·)ρ. 2

Proof of (ii). For ρ = Π(γ, πγ), let us determine the parameter of ρs. The
representation space V (ρ) for ρ = Π(γ, πγ) consists of V (πγ)-valued function ϕ
on H satisfying

ϕ(dτh) = χγ(d)πγ(τ)ϕ(h) (d ∈ Dn, τ ∈ Aγ, h ∈ H),

and the representation is given by ρ(h0)ϕ(h) = ϕ(hh0) (h0, h ∈ H). Then ρs is
given on the same space V (ρ) as

ρs(h0)ϕ(h) = ϕ(h · sh0s
−1) (h0, h ∈ H).(20.2)

Put ψ(h) := ϕ(shs−1) (h ∈ H). Then,

ψ(d1τ1h) = χγ

(
s(d1)

)
πγ(sτ1s

−1)ϕ(shs−1)(20.3)
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= s−1(χγ)(d1)π
s

γ (τ1) ψ(h) = χs−1γ(d1)π
s

γ (τ1) ψ(h).

Here τ1 ∈ s−1Aγs = As−1γ, and π s
γ is an IR of As−1γ and so can be denoted as

πs−1γ.
Moreover, through the map Ψ : ϕ → ψ, de�ne a representation of H on the

space of ψ as P (h) := Ψ · ρs(h) ·Ψ−1. Then the formula (20.2) takes the form

P (h0)ψ(h) = ψ(hh0) (h0, h ∈ H).

Thus the representation P is identi�ed as

P = Π(s−1γ, πs−1γ), P (h) = Ψ · ρs(h) ·Ψ−1.

Now returning to the assertion (ii), ρ 6∼= ρs means that the parameters (γ, πγ)
and (s−1γ, πs−1γ) are not mutually conjugate under An. Four IRs under question
have respectively the following parameters:

(γ, πγ), (s−1γ, πs−1γ), (γ + γ(0), πγ), (s−1γ + γ(0), πs−1γ).

We can choose s as s = s1 = (1 2). Then it can be seen easily that γ and
s−1γ + γ(0) cannot be conjugate under An.

This completes the proof of the assertion (ii). 2
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List of de�nitions and symbols for [I] :

De�nitions:

basic element g : 7.1 length `(σ) of a cycle : Notation 7.1
criterion (EF) : 6.6 (weakly) multiplicative : Def. 10.1
CASE OO, OE, EO, EE : Table 3.1 spin type (type) of a projective IR: Def. 1.1
Condition Y : just before Th. 10.1 standard decomposition of g : (7.2)
Criterion (EF) : just after Def. 6.1 standard decomposition of g′ : (7.7)
factorizable for f : Def. 6.1 type χ of central function : Def. 1.1
factorizable for O : Def. 10.2 type χ, type β = (β1, β2, β3) : 6.5

Symbols:

A =
(
(αζ,ε)(ζ,ε)∈T̂×{0,1}; µ

)
: (15.2) O′(Y) : Lem. 10.3

AI(T )S : 2.1, 9.1 ord(d), ord(d′) : Def. 7.1
A∞(Zm)e : 8.2, 9.1 π2,ζk

: (12.6)
AutG(N) : 6.3 P(G) : 6.1
DI(T ), Dn(T ) : (2.1) ri (i ∈ In−1) : Th's 3.2, 3.3
DI(T )S , Dn(T )S : (2.2) R

(
G(m, p, n)

)
: just before Th. 3.5

D̃∞, D̃
S(p)
∞ : 6.4 R(Sn), R(S∞) : 1.2

E(G) : 6.1 sgn(σ′) = sgn(σ) : Notation 7.1
E(N, G) : (6.3) sgn(d′) (d′ ∈ D̃n) : Def. 18.1
EY

(
R

(
G(m, 1,∞)

))
: Notation 10.1 SI(T ), Sn(T ) : (2.1)

fA : Th. 15.1 SI(T )S , Sn(T )S : (2.2)
gj = (dj , σj) : (7.2) S̃n, S̃∞ : 1.2

G(m, p, n) = Sn(Zm)S(p) : 2.1 supp(d), supp(σ), supp(g) : (6.12)
G(m, p,∞) : 2.1 Φ on R

(
G(m, 1, n)

)
: Th's 3.2, 3.3

G̃Y(m, 1,∞) : Notation 10.1 ΦY on R
(
G(m, 1,∞)

)
: (10.7)

H ′ ⊂ R
(
G(m, 1, n)

)
: Th. 4.3 wj (j ∈ In) : Th's 3.5�3.8

ηj (j ∈ In) : Th's 3.2, 3.3 w′j (j ∈ In) : Th's 4.1�4.3

In = {1, 2, . . . , n} χY : Notation 10.1
K(G), K1(G) : 6.1 Ω : just after Th. 7.1
K(N,G), K1(N,G) : (6.3) xj (j ∈ In) : Prop. 3.4
KY

1

(
R

(
G(m, 1,∞)

))
: Notation 10.1 yj (j ∈ In) : Prop. 3.1

`j = `(σj) = |supp(σj)| : (7.3) z1, z2, z3 : Th's 3.3, 3.6, 3.8
L(σ), L(σ′) : Notation 7.1 Z(g) : just below (7.9)
M, N : Def. 15.1 Z(g′) : (7.9)
ξq = ξq(tq) = (tq, (q)) : (7.2)
O(Y) : just before Th. 10.1


