
CHAPTER 14

Further problems

14.1. Multiplicities of spectral parameters

Suppose a Fuchsian differential equation and its middle convolution are given.
Then we can analyze the corresponding transformation of a global structure of
its local solution associated with an eigenvalue of the monodromy generator at a
singular point if the eigenvalue is free of multiplicity.

When the multiplicity of the eigenvalue is larger than one, we have not a satis-
factory result for the transformation (cf. Theorem 12.5). The value of a generalized
connection coefficient defined by Definition 12.17 may be interesting. Is the proce-
dure in Remark 12.19 always valid? In particular, is there a general result assuring
Remark 12.19 (1) (cf. Remark 12.23)? Are the multiplicities of zeros of the gener-
alized connection coefficients of a rigid Fuchsian differential equation free?

14.2. Schlesinger canonical form

Can we define a natural universal Fuchsian system of Schlesinger canonical
form (1.79) with a given realizable spectral type? Here we recall Example 9.2.

Let Pm be the universal operator in Theorem 6.14. Is there a natural system of
Schlesinger canonical form which is isomorphic to the equation Pmu = 0 together
with the explicit correspondence between them?

14.3. Apparent singularities

Katz [Kz] proved that any irreducible rigid local system is constructed from
the trivial system by successive applications of middle convolutions and additions
and it is proved in this paper that the system is realized by a single differential
equation without an apparent singularity.

In general, an irreducible local system cannot be realized by a single differential
equation without an apparent singularity but it is realized by that with apparent
singularities. Hence it is expected that there exist some natural operations of
single differential equations with apparent singularities which correspond to middle
convolutions of local systems or systems of Schlesinger canonical form.

The Fuchsian ordinary differential equation satisfied by an important special
function often hasn’t an apparent singularity even if the spectral type of the equa-
tion is not rigid. Can we understand the condition that a W (x)-module has a
generator so that it satisfies a differential equation without an apparent singular-
ity? Moreover it may be interesting to study the existing of contiguous relations
among differential equations with fundamental spectral types which have no appar-
ent singularity.

14.4. Irregular singularities

Our fractional operations defined in Chapter 1 give transformations of ordinary
differential operators with polynomial coefficients, which have irregular singularities
in general. The reduction of ordinary differential equations under these operations
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is a problem to be studied. Note that versal additions and middle convolutions
construct such differential operators from the trivial equation.

A similar result as in this paper is obtained for certain classes of ordinary
differential equations with irregular singularities, namely, unramified irregular sin-
gularities (cf. [Hi], [HiO], [O10]).

A “versal” path of integral in an integral representation of the solution and
a “versal” connection coefficient and Stokes multiplier should be studied. Here
“versal” means a natural expression corresponding to the versal addition.

We define a complete model with a given spectral type as follows. For sim-
plicity we consider differential operators without singularities at the origin. For a
realizable irreducible tuple of partitions m =

(
mj,ν

)
0≤j≤p
1≤ν≤nj

of a positive integer n

Theorem 6.14 constructs the universal differential operator

(14.1) Pm =

p∏
j=1

(1− cjx)n ·
dn

dxn
+

n−1∑
k=0

ak(x, c, λ, g)
dk

dxk

with the Riemann scheme
x =∞ 1

c1
· · · 1

cp

[λ0,1](m0,1) [λ1,1](m1,1) · · · [λp,1](mp,1)

...
...

...
...

[λ0,n0 ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λp,np ](mp,np )


and the Fuchs relation

p∑
j=0

nj∑
ν=1

mj,νλj,ν = n− idxm

2
.

Here c = (c0, . . . , cp), λ = (λj,ν) and g = (g1, . . . , gN ) are parameters. We have
cicj(ci − cj) ̸= 0 for 0 ≤ i < j ≤ p. The parameters gj are called accessory

parameters and we have idxm = 2− 2N . We call the Zariski closure Pm of Pm in
W [x] the complete model of differential operators with the spectral type m, whose
dimension equals p+

∑p
j=0 nj +N − 1. It is an interesting problem to analyze the

complete model Pm.
When m = 11, 11, 11, the complete model equals

(1− c1x)2(1− c2x)2 d2

dx2 − (1− c1x)(1− c2x)(a1,1x+ a1,0)
d
dx + a0,2x

2 + a0,1x+ a0,0,

whose dimension equals 7. Any differential equation defined by the operator belong-
ing to this complete model is transformed into a Gauss hypergeometric equation,
a Kummer equation, an Hermite equation or an Airy equation by a suitable gauge
transformation and a coordinate transformation. A good understanding together
with a certain completion of our operators is required even in this fundamental
example (cf. [Yos]). It is needless to say that the good understanding is important
in the case when m is fundamental.

14.5. Special parameters

Let Pm be the universal operator of the form (14.1) for an irreducible tuple
of partition m. When a decomposition m = m′ + m′′ with realizable tuples of
partitions m′ and m′′ is given, Theorem 4.19 gives the values of the parameters of
Pm corresponding to the product Pm′Pm′′ . A W (x, ξ)-automorphism of Pmu = 0
gives a transformation of the parameters (λ, g), which is a contiguous relation and
called Schlesinger transformation in the case of systems of Schlesinger canonical
form. How can we describe the values of the parameters obtained in this way and
characterize their position in all the values of the parameters when the universal
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operator is reducible? In general, they are not all even in a rigid differential equa-
tion. A direct decomposition 32, 32, 32, 32 = 12, 12, 12, 12 ⊕ 2(10, 10, 10, 10) of a
rigid tuples 32, 32, 32, 32 gives this example (cf. (10.64)).

Analyse the reducible differential equation with an irreducibly realizable spec-
tral type. This is interesting even when m is a rigid tuple. For example, describe
the monodromy of its solutions.

Describe the characteristic exponents of the generalized Riemann scheme with
an irreducibly realizable spectral type such that there exists a differential operator
with the Riemann scheme which is outside the universal operator (cf. Example 5.6
and Remark 6.16). In particular, when the spectral type is not fundamental nor
simply reducible, does there exist such a differential operator?

The classification of rigid and simply reducible spectral types coincides with
that of indecomposable objects described in [MWZ, Theorem 2.4]. Is there some
meaning in this coincidence?

Has the condition (6.28) a similar meaning in the case of Schlesinger canonical
form? What is the condition on the local system or a (single) Fuchsian differential
equation which has a realization of a system of Schlesinger canonical form?

Give the condition so that the monodromy group is finite (cf. [BH]).
Give the condition so that the centralizer of the monodromy is the set of scalar

multiplications.
Suppose m is fundamental. Study the condition so that the connection coeffi-

cients is a quotient of the products of gamma functions as in Theorem 12.6 or the
solution has an integral representation only by using elementary functions.

14.6. Shift operators

Calculate the intertwining polynomial cm(ϵ;λ) of λ defined in Theorem 11.8.
Is it square free? See Conjecture 11.12.

Is the shift operator Rm(ϵ, λ) Fuchsian?
Is there a natural operator in Rm(ϵ, λ) +W (x;λ)Pm(λ)?
Study the shift operators given in Theorem 11.7.
Study the condition on the characteristic exponents and accessory parameters

assuring the existence of a shift operator for a Fuchsian differential operator with
a fundamental spectral type.

Study the shift operator or Schlesinger transformation of a system of Schlesinger
canonical form with a fundamental spectral type. When is it not defined or when
is it not bijective?

14.7. Isomonodromic deformations

The isomonodromic deformations of Fuchsian systems of Schlesinger canonical
form give Painlevé type equations and their degenerations correspond to confluence
of the systems (cf. §13.1.6). Can we get a nice theory for these equations? Is it
true that two Painlevé type equations corresponding to Fuchsian systems with
fundamental spectral types are not isomorphic to each other if their spectral types
are different?

14.8. Several variables

We have analyzed Appell hypergeometric equations in §13.10. What should be
the geometric structure of singularities of more general system of equations when
it has a good theory?

Describe or define operations of differential operators that are fundamental to
analyze good systems of differential equations.
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A series expansion of a local solution of a rigid ordinal differential equation
indicates that it may be natural to think that the solution is a restriction of a
solution of a system of differential equations with several variables (cf. Theorem 8.1
and §§13.3–13.4). Study the system.

14.9. Other problems

1. Given a rigid tuple m and a root α ∈ ∆re
+ with (α|αm) > 0. Is there a good

necessary and sufficient condition so that α ∈ ∆(m)? See Proposition 7.9 iv)
and Remark 7.11 i).

For example, for a rigid decomposition m = m′ ⊕m′′, can we determine
whether αm′ ∈ ∆(m) or αm′′ ∈ ∆(m)?

2. Is there a direct expression of λ(K)j,ℓ(K)j in (12.10) for a given Riemann scheme
{λm}?

3. Are there analyzable series L of rigid tuples of partitions different from the
series given in §13.9? Namely, L ⊂ P, the elements of L are rigid, the number
of isomorphic classes of L ∩ P(n) are bounded for n ∈ Z>0 and the following
condition is valid.

Let m = km′ + m′′ with k ∈ Z>0 and rigid tuples of partitions m, m′

and m′′. If m ∈ L, then m′ ∈ L and m′′ ∈ L. Moreover for any m′′ ∈ L,
this decomposition m = km′ + m′′ exists with m ∈ L, m′ ∈ L and k ∈ Z>0.
Furthermore L is indecomposable. Namely, if L = L′ ∪ L′′ so that L′ and L′′

satisfy these conditions, then L′ = L or L′′ = L.
4. Characterize the ring of automorphisms and that of endomorphisms of the lo-

calized Weyl algebra W (x). Can we find a good class of endomorphisms? These
questions are more important in the case of several variables.

5. In general, different procedures of the reduction of the universal operator Pmu =
0 give different integral representations and series expansions of its solution
(cf. Example 8.2, Remark 8.3 and the last part of §13.3). Analyze the difference.

6. Analyse the differential equation whose solutions are spanned by the Wronskians
of k independent solutions of the equation Pmu = 0 with a universal operator
Pm such that 1 < k < ordm (cf. Remark 12.18 ii)).

7. Generalize our results for differential equations on some compact complex man-
ifolds.

8. Generalize our results for difference equations (cf. [Ya]).


