
CHAPTER 6

Deligne-Simpson problem

In this chapter we give an answer for the existence and the construction of
Fuchsian differential equations with given Riemann schemes and examine the irre-
ducibility for generic spectral parameters.

6.1. Fundamental lemmas

First we prepare two lemmas to construct Fuchsian differential operators with
a given spectral type.

Definition 6.1. For m =
(
mj,ν

)
j=0,...,p
1≤ν≤nj

∈ P(n)
p+1, we put

Nν(m) := (p− 1)(ν + 1) + 1

−#{(j, i) ∈ Z2 ; i ≥ 0, 0 ≤ j ≤ p, m̃j,i ≥ n− ν},
(6.1)

m̃j,i :=

nj∑
ν=1

max
{
mj,ν − i, 0

}
.(6.2)

See the Young diagram in (6.32) and its explanation for an interpretation of
the number m̃j,i.

Lemma 6.2. We assume that m =
(
mj,ν

)
j=0,...,p
1≤ν≤nj

∈ P(n)
p+1 satisfies

(6.3) mj,1 ≥ mj,2 ≥ · · · ≥ mj,nj > 0 and n > m0,1 ≥ m1,1 ≥ · · · ≥ mp,1

and

(6.4) m0,1 + · · ·+mp,1 ≤ (p− 1)n.

Then

(6.5) Nν(m) ≥ 0 (ν = 2, 3, . . . , n− 1)

if and only if m is not any one of

(6.6)

(k, k; k, k; k, k; k, k), (k, k, k; k, k, k; k, k, k),

(2k, 2k; k, k, k, k; k, k, k, k)

and (3k, 3k; 2k, 2k, 2k; k, k, k, k, k, k) with k ≥ 2.

Proof. Put

ϕj(t) :=

nj∑
ν=1

max{mj,ν − t, 0},

ϕ̄j(t) := n
(
1− t

mj,1

)
for j = 0, . . . , p.
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Then ϕj(t) and ϕ̄j(t) are strictly decreasing continuous functions of t ∈ [0,mj,1]
and

ϕj(0) = ϕ̄j(0) = n,

ϕj(mj,1) = ϕ̄j(mj,1) = 0,

2ϕj(
t1+t2

2 ) ≤ ϕj(t1) + ϕj(t2) (0 ≤ t1 ≤ t2 ≤ mj,1),

ϕ′j(t) = −nj ≤ − n
mj,1

= ϕ̄′j(t) (0 < t < 1).

Hence we have

ϕj(t) = ϕ̄j(t) (0 < t < mj,1, n = mj,1nj),

ϕj(t) < ϕ̄j(t) (0 < t < mj,1, n < mj,1nj)

and for ν = 2, . . . , n− 1

p∑
j=0

#{i ∈ Z≥0 ; ϕj(i) ≥ n− ν} =
p∑

j=0

[
ϕ−1
j (n− ν) + 1

]
≤

p∑
j=0

(
ϕ−1
j (n− ν) + 1

)
≤

p∑
j=0

(
ϕ̄−1
j (n− ν) + 1

)
=

p∑
j=0

(νmj,1

n
+ 1
)

≤ (p− 1)ν + (p+ 1) = (p− 1)(ν + 1) + 2.

Here [r] means the largest integer which is not larger than a real number r.
Suppose there exists ν with 2 ≤ ν ≤ n− 1 such that (6.5) doesn’t hold. Then

the equality holds in the above each line, which means

(6.7)

ϕ−1
j (n− ν) ∈ Z (j = 0, . . . , p),

n = mj,1nj (j = 0, . . . , p),

(p− 1)n = m0,1 + · · ·+mp,1.

Note that n = mj,1nj implies mj,1 = · · · = mj,nj = n
nj

and p− 1 = 1
n0

+ · · ·+ 1
np
≤

p+1
2 . Hence p = 3 with n0 = n1 = n2 = n3 = 2 or p = 2 with 1 = 1

n0
+ 1

n1
+ 1

n2
. If

p = 2, {n0, n1, n2} equals {3, 3, 3} or {2, 4, 4} or {2, 3, 6}. Thus we have (6.6) with
k = 1, 2, . . .. Moreover since

ϕ−1
j (n− ν) = ϕ̄−1

j (n− ν) = νmj,1

n
=

ν

nj
∈ Z (j = 0, . . . , p),

ν is a common multiple of n0, . . . , np and thus k ≥ 2. If ν is the least common
multiple of n0, . . . , np and k ≥ 2, then (6.7) is valid and the equality holds in the
above each line and hence (6.5) is not valid. □

Corollary 6.3 (Kostov [Ko]). Let m ∈ P satisfying dmax(m) ≤ 0. When
idxm = 0, m is isomorphic to one of the tuples in (6.6) with k = 1, 2, 3, . . ..

Proof. Remark 5.9 assures that dmax(m) = 0 and n = mj,1nj . Then the
proof of the final part of Lemma 6.2 shows the corollary. □

Lemma 6.4. Let c0, . . . , cp be p+1 distinct points in C∪{∞}. Let n0, n1, . . . , np

be non-negative integers and let aj,ν be complex numbers for j = 0, . . . , p and ν =
1, . . . , nj. Put ñ := n0 + · · · + np. Then there exists a unique polynomial f(x) of
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degree ñ− 1 such that

f(x) = aj,1 + aj,2(x− cj) + · · ·+ aj,nj (x− cj)nj−1

+ o(|x− cj |nj−1) (x→ cj , cj ̸=∞),

x1−ñf(x) = aj,1 + aj,2x
−1 + aj,njx

1−nj + o(|x|1−nj )

(x→∞, cj =∞).

(6.8)

Moreover the coefficients of f(x) are linear functions of the ñ variables aj,ν .

Proof. We may assume cp =∞ with allowing np = 0. Put ñi = n0+· · ·+ni−1

and ñ0 = 0. For k = 0, . . . , ñ− 1 we define

fk(x) :=

{
(x− ci)k−ñi

∏i−1
ν=0(x− cν)nν (ñi ≤ k < ñi+1, 0 ≤ i < p),

xk−ñp
∏np−1

ν=0 (x− cν)nν (ñp ≤ k < ñ).

Since deg fk(x) = k, the polynomials f0(x), f1(x), . . . , fñ−1(x) are linearly indepen-

dent over C. Put f(x) =
∑ñ−1

k=0 ukfk(x) with ck ∈ C and

vk =

{
ai,k−ñi+1 (ñi ≤ k < ñi+1, 0 ≤ i < p),

ap,ñ−k (ñp ≤ k < ñ)

by (6.8). The correspondence which maps the column vectors u := (uk)k=0,...,ñ−1 ∈
Cñ to the column vectors v := (vk)k=0,...,ñ−1 ∈ Cñ is given by v = Au with a square
matrix A of size ñ. Then A is an upper triangular matrix of size ñ with non-zero
diagonal entries and therefore the lemma is clear. □

6.2. Existence theorem

Definition 6.5 (top term). Let

P = an(x)
dn

dxn + an−1(x)
dn−1

dxn−1 + · · ·+ a1(x)
d
dx + a0(x)

be a differential operator with polynomial coefficients. Suppose an ̸= 0. If an(x) is
a polynomial of degree k with respect to x, we define TopP := an,kx

k∂n with the
coefficient an,k of the term xk of an(x). We put TopP = 0 when P = 0.

Theorem 6.6. Suppose m ∈ P(n)
p+1 satisfies (6.3). Retain the notation in Defi-

nition 6.1.
i) We have N1(m) = p− 2 and

(6.9)

n−1∑
ν=1

Nν(m) = Pidxm.

ii) Suppose p ≥ 2 and Nν(m) ≥ 0 for ν = 2, . . . , n− 1. Put

q0ν := #{i ; m̃0,i ≥ n− ν, i ≥ 0},(6.10)

Im := {(j, ν) ∈ Z2 ; q0ν ≤ j < q0ν +Nν(m) and 1 ≤ ν ≤ n− 1}.(6.11)

Then there uniquely exists a Fuchsian differential operator P of the normal form
(4.43) which has the Riemann scheme (4.15) with c0 =∞ under the Fuchs relation
(4.16) and satisfies

(6.12)
1

(degP − j − ν)!
ddegP−j−νan−ν−1

dxdegP−j−ν
(0) = gj,ν (∀(j, ν) ∈ Im).
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Here
(
gj,ν
)
(j,ν)∈Im

∈ CPidxm is arbitrarily given. Moreover the coefficients of P

are polynomials of x, λj,ν and gj,ν and satisfy
(6.13)

xj+ν Top
( ∂P

∂gj,ν

)
∂ν+1 = TopP and

∂2P

∂gj,ν∂gj′,ν′
= 0 ((j, ν), (j′, ν′) ∈ Im).

Fix the characteristic exponents λj,ν ∈ C satisfying the Fuchs relation. Then
all the Fuchsian differential operators of the normal form with the Riemann scheme
(4.15) are parametrized by (gj,ν) ∈ CPidxm. Hence the operators are unique if and
only if Pidxm = 0.

Proof. i) Since m̃j,1 = n−nj ≤ n− 2, N1(m) = 2(p− 1)+1− (p+1) = p− 2
and

n−1∑
ν=1

#{(j, i) ∈ Z2 ; i ≥ 0, 0 ≤ j ≤ p, m̃j,i ≥ n− ν}

=

p∑
j=0

(n−1∑
ν=0

#{i ∈ Z≥0 ; m̃j,i ≥ n− ν} − 1
)

=

p∑
j=0

(mj,1∑
i=0

m̃j,i − 1
)
=

p∑
j=0

(mj,1∑
i=0

nj∑
ν=1

max{mj,ν − i, 0} − 1
)

=

p∑
j=0

( nj∑
ν=1

mj,ν(mj,ν + 1)

2
− 1
)

=
1

2

( p∑
j=0

nj∑
ν=1

m2
j,ν + (p+ 1)(n− 2)

)
,

n−1∑
ν=1

Nν(m) = (p− 1)
(n(n+ 1)

2
− 1
)
+ (n− 1)− 1

2

( p∑
j=0

nj∑
ν=1

m2
j,ν + (p+ 1)(n− 2)

)

=
1

2

(
(p− 1)n2 + 2−

p∑
j=0

nj∑
ν=1

m2
j,ν

)
= Pidxm.

ii) Put

P =

pn∑
ℓ=0

xpn−ℓpP0,ℓ(ϑ)

=

pn∑
ℓ=0

(x− cj)ℓpPj,ℓ
(
(x− cj)∂

)
(1 ≤ j ≤ p),

hj,ℓ(t) :=

{∏n0

ν=1

∏
0≤i<m0,ν−ℓ

(
t+ λ0,ν + i

)
(j = 0),∏nj

ν=1

∏
0≤i<mj,ν−ℓ

(
t− λj,ν − i

)
(1 ≤ j ≤ p),

pPj,ℓ(t) = qPj,ℓ(t)hj,ℓ(t) + rPj,ℓ(t) (deg rPj,ℓ(t) < deg hj,ℓ(t)).

Here pPj,ℓ(t), q
P
j,ℓ(t), r

P
j,ℓ(t) and hj,ℓ(t) are polynomials of t and

(6.14) deg hj,ℓ =

nj∑
ν=1

max{mj,ν − ℓ, 0}.

The condition that P of the form (4.43) have the Riemann scheme (4.15) if and
only if rPj,ℓ = 0 for any j and ℓ. Note that an−k(x) ∈ C[x] should satisfy

(6.15) deg an−k(x) ≤ pn−k and a
(ν)
n−k(cj) = 0 (0 ≤ ν ≤ n−k− 1, 1 ≤ k ≤ n),
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which is equivalent to the condition that P is of the Fuchsian type.

Put P (k) :=
(∏p

j=1(x− cj)n
)

dn

dxn + an−1(x)
dn−1

dxn−1 + · · ·+ an−k(x)
dn−k

dxn−k .

Assume that an−1(x), . . . , an−k+1(x) have already defined so that deg r
P (k−1)
j,ℓ <

n− k + 1 and we will define an−k(x) so that deg r
P (k)
j,ℓ < n− k.

When k = 1, we put

an−1(x) = −an(x)
p∑

j=1

(x− cj)−1

( nj∑
ν=1

mj,ν−1∑
i=0

(λj,ν + i)− n(n− 1)

2

)
and then we have deg r

P (1)
j,ℓ < n− 1 for j = 1, . . . , p. Moreover we have deg r

P (1)
0,ℓ <

n− 1 because of the Fuchs relation (cf. (2.21)).
Suppose k ≥ 2 and put

an−k(x) =

{∑
ℓ≥0 c0,k,ℓx

pn−k−ℓ,∑
ℓ≥0 cj,k,ℓ(x− cj)n−k+ℓ (j = 1, . . . , p)

with ci,j,ℓ ∈ C. Note that

an−k(x)∂
n−k =

∑
ℓ≥0

c0,k,ℓx
(p−1)n−ℓ

n−k−1∏
i=0

(ϑ− i)

=
∑
ℓ≥0

cj,k,ℓ(x− cj)ℓ
n−k−1∏
i=0

(
(x− cj)∂ − i

)
.

Then deg r
P (k)
j,ℓ < n− k if and only if deg hj,ℓ ≤ n− k or

(6.16) cj,k,ℓ = −
1

(n− k)!

( dn−k

dtn−k
r
P (k−1)
j,ℓ (t)

)∣∣∣
t=0

.

Namely, we impose the condition (6.16) for all (j, ℓ) satisfying

m̃j,ℓ =

nj∑
ν=1

max{mj,ν − ℓ, 0} > n− k.

The number of the pairs (j, ℓ) satisfying this condition equals (p−1)k+1−Nk−1(m).

Together with the conditions a
(ν)
n−k(cj) = 0 for j = 1, . . . , p and ν = 0, . . . , n−k−1,

the total number of conditions imposing to the polynomial an−k(x) of degree pn−k
equals

p(n− k) + (p− 1)k + 1−Nk−1(m) = (pn− k + 1)−Nk−1(m).

Hence Lemma 6.4 shows that an−k(x) is uniquely defined by giving c0,k,ℓ arbitrarily
for q0k−1 ≤ ℓ < q0k−1 +Nk−1(m) because q0k−1 = #{ℓ ≥ 0 ; m̃0,ℓ > n− k}. Thus we
have the theorem. □

Remark 6.7. The numbers Nν(m) don’t change if we replace a (p + 1)-tuple
m of partitions of n by the (p + 2)-tuple of partitions of n defined by adding a
trivial partition n = n of n to m.

Example 6.8. We will examine the number Nν(m) in Theorem 6.6. In the
case of Simpson’s list (cf. §13.2) we have the following.

m = n− 11, 1n, 1n
(Hn: hypergeometric family)

m̃ = n, n− 2, n− 3, . . . 1;n;n
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m = mm,mm− 11, 12m(EO2m: even family)

m̃ = 2m, 2m− 2, . . . , 2; 2m, 2m− 3, . . . , 1; 2m

m = m+ 1m,mm1, 12m+1(EO2m+1: odd family)

m̃ = 2m+ 1, 2m− 1, . . . , 1; 2m+ 1, 2m− 2, . . . , 2; 2m+ 1

m = 42, 222, 16(X6: extra case)

m̃ = 6, 4, 2, 1; 6, 3; 6

In these cases p = 2 and we have Nν(m) = 0 for ν = 1, 2, . . . , n− 1 because

m̃ := {m̃j,ν ; ν = 0, . . . ,mj,1 − 1, j = 0, . . . , p
}

= {n, n, n, n− 2, n− 3, n− 4, . . . , 2, 1}.
(6.17)

See Proposition 6.17 ii) for the condition that Nν(m) ≥ 0 for ν = 1, . . . , ordm− 1.
We give other examples:

m Pidx m̃ N1, N2, . . . , Nordm−1

221, 221, 221 0 52, 52, 52 0, 1,−1, 0
21, 21, 21, 21 (P3) 0 31, 31, 31, 31 1,−1

22, 22, 22 −3 42, 42, 42 0,−2,−1
11, 11, 11, 11 (D̃4) 1 2, 2, 2, 2 1

111, 111, 111 (Ẽ6) 1 3, 3, 3 0, 1

22, 1111, 1111 (Ẽ7) 1 42, 4, 4 0, 0, 1

33, 222, 111111 (Ẽ8) 1 642, 63, 6 0, 0, 0, 0, 1
21, 21, 21, 111 1 31, 31, 31, 3 1, 0
222, 222, 222 1 63, 63, 63 0, 1,−1, 0, 1

11, 11, 11, 11, 11 2 2, 2, 2, 2, 2 2
55, 3331, 22222 2 10, 8, 6, 4, 2; 10, 6, 3; 10, 5 0, 0, 1, 0, 0, 0, 0, 0, 1
22, 22, 22, 211 2 42, 42, 42, 41 1, 0, 1
22, 22, 22, 22, 22 5 42, 42, 42, 42, 42 2, 0, 3
32111, 3221, 2222 8 831, 841, 84 0, 1, 2, 1, 1, 2, 1

Note that if Pidxm = 0, in particular, if m is rigid, then m doesn’t satisfy
(6.4). The tuple 222, 222, 222 of partitions is the second case in (6.6) with k = 2.

Remark 6.9. Note that [O6, Proposition 8.1] proves that there exit only finite
basic tuples of partitions with a fixed index of rigidity.

Those with index of rigidity 0 are of only 4 types, which are D̃4, Ẽ6, Ẽ7 and
Ẽ8 given in the above (cf. Corollary 6.3, Kostov [Ko]). Namely, those are in the
S∞-orbit of

(6.18) {11, 11, 11, 11 111, 111, 111 22, 1111, 1111 33, 222, 111111}

and the operator P in Theorem 6.6 with any one of this spectral type has one
accessory parameter in its 0-th order term.

The equation corresponding to 11, 11, 11, 11 is called Heun’s equation (cf. [SW,
WW]), which is given by the operator

Pα,β,γ,δ,λ = x(x− 1)(x− c)∂2 +
(
γ(x− 1)(x− c) + δx(x− c)

+ (α+ β + 1− γ − δ)x(x− 1)
)
∂ + αβx− λ

(6.19)

with the Riemann scheme

(6.20)

x = 0 1 c ∞
0 0 0 α ; x

1− γ 1− δ γ + δ − α− β β ; λ

 .
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Here λ is an accessory parameter. Our operation cannot decrease the order of
Pα,β,γ,δ,λ but gives the following transformation.

Ad(∂1−α)Pα,β,γ,δ,λ = Pα′,β′,γ′,δ′,λ′ ,{
α′ = 2− α, β′ = β − α+ 1, γ′ = γ − α+ 1, δ′ = δ − α+ 1,

λ′ = λ+ (1− α)
(
β − δ + 1 + (γ + δ − α)c

)
.

(6.21)

Proposition 6.10. ([O6, Proposition 8.4]). The basic tuples of partitions with
index of rigidity −2 are in the S∞-orbit of the set of the 13 tuples{

11, 11, 11, 11, 11 21, 21, 111, 111 31, 22, 22, 1111 22, 22, 22, 211

211, 1111, 1111 221, 221, 11111 32, 11111, 11111 222, 222, 2211

33, 2211, 111111 44, 2222, 22211 44, 332, 11111111 55, 3331, 22222

66, 444, 2222211
}
.

Proof. Here we give the proof in [O6].
Assume that m ∈ Pp+1 is basic and monotone and idxm = −2. Note that

(5.42) shows

0 ≤
p∑

j=0

nj∑
ν=2

(mj,1 −mj,ν) ·mj,ν ≤ − idxm = 2.

Hence (5.42) implies
∑p

j=0

∑nj

ν=2(mj,1 −mj,ν)mj,ν = 0 or 2 and we have only to
examine the following 5 possibilities.

(A) m0,1 · · ·m0,n0 = 2 · · · 211 and mj,1 = mj,nj for 1 ≤ j ≤ p.
(B) m0,1 · · ·m0,n0

= 3 · · · 31 and mj,1 = mj,nj
for 1 ≤ j ≤ p.

(C) m0,1 · · ·m0,n0 = 3 · · · 32 and mj,1 = mj,nj for 1 ≤ j ≤ p.
(D) mi,1 · · ·mi,n0

= 2 · · · 21 and mj,1 = mj,nj
for 0 ≤ i ≤ 1 < j ≤ p.

(E) mj,1 = mj,nj for 0 ≤ j ≤ p and ordm = 2.

Case (A). If 2 · · · 211 is replaced by 2 · · · 22, m is transformed into m′ with
idxm′ = 0. If m′ is indivisible, m′ is basic and idxm′ = 0 and therefore m is
211, 14, 14 or 33, 2211, 16. If m′ is not indivisible, 1

2m
′ is basic and idx 1

2m
′ = 0

and hence m is one of the tuples in

{211, 22, 22, 22 2211, 222, 222 22211, 2222, 44 2222211, 444, 66}.
Put m = n0 − 1 and examine the identity

p∑
j=0

mj,1

ordm
= p− 1 + (ordm)−2

(
idxm+

p∑
j=0

nj∑
ν=1

(mj,1 −mj,ν)mj,ν

)
Case (B). Note that ordm = 3m+1 and therefore 3

3m+1+
1
n1

+· · ·+ 1
np

= p−1.
Since nj ≥ 2, we have 1

2p− 1 ≤ 3
3m+1 < 1 and p ≤ 3.

If p = 3, we have m = 1, ordm = 4, 1
n1

+ 1
n2

+ 1
n3

= 5
4 , {n1, n2, n3} = {2, 2, 4}

and m = 31, 22, 22, 1111.
Assume p = 2. Then 1

n1
+ 1

n2
= 1 − 3

3m+1 . If min{n1, n2} ≥ 3, 1
n1

+ 1
n2
≤ 2

3

and m ≤ 2. If min{n1, n2} = 2, max{n1, n2} ≥ 3 and 3
3m+1 ≥

1
6 and m ≤ 5. Note

that 1
n1

+ 1
n2

= 13
16 ,

10
13 ,

7
10 ,

4
7 and 1

4 according to m = 5, 4, 3, 2 and 1, respectively.

Hence we have m = 3, {n1, n2} = {2, 5} and m = 3331, 55, 22222.

Case (C). We have 3
3m+2+

1
n1

+· · ·+ 1
np

= p−1. Since nj ≥ 2, 1
2p−1 ≤

3
3m+2 < 1

and p ≤ 3. If p = 3, then m = 1, ordm = 5 and 1
n1

+ 1
n2

+ 1
n3

= 7
5 , which never

occurs.
Thus we have p = 2, 1

n1
+ 1

n2
= 1 − 3

3m+2 and hence m ≤ 5 as in Case (B).

Then 1
n1

+ 1
n2

= 14
17 ,

11
14 ,

8
11 ,

5
8 and 2

5 according to m = 5, 4, 3, 2 and 1, respectively.
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Hence we have m = 1 and n1 = n2 = 5 and m = 32, 11111, 11111 or m = 2 and
n1 = 2 and n2 = 8 and m = 332, 44, 11111111.

Case (D). We have 2
2m+1 + 2

2m+1 + 1
n2

+ · · · + 1
np

= p − 1. Since nj ≥ 3 for

j ≥ 2, we have p − 1 ≤ 3
2

4
2m+1 = 6

2m+1 and m ≤ 2. If m = 1, then p = 3 and
1
n2

+ 1
n3

= 2 − 4
3 = 2

3 and we have m = 21, 21, 111, 111. If m = 2, then p = 2,
1
n2

= 1− 4
5 and m = 221, 221, 11111.

Case (E). Since mj,1 = 1 and (5.42) means −2 =
∑p

j=0 2mj,1 − 4(p − 1), we
have p = 4 and m = 11, 11, 11, 11, 11. □

Remark 6.11. A generalization of Proposition6.10 is given in [HiO] which can
be applied to equations with irregular singularities.

6.3. Divisible spectral types

Proposition 6.12. Let m be any one of the partition of type D̃4, Ẽ6, Ẽ7 or Ẽ8

in Example 6.8 and put n = ordm. Then km is realizable but it isn’t irreducibly
realizable for k = 2, 3, . . .. Moreover we have the operator P of order k ordm
satisfying the properties in Theorem 6.6 ii) for the tuple km.

Proof. Let P (k, g) be the operator of the normal form with the Riemann
scheme 

x = c0 =∞ x = cj (j = 1, . . . , p)
[λ0,1 − k(p− 1)n+ km0,1](m0,1) [λj,1 + kmj,1](mj,1)

...
...

[λ0,n1 − k(p− 1)n+ km0,1](m0,n1 )
[λj,nj + kmj,nj ](mj,nj

)


of type m. Here m =

(
mj,ν

)
j=0,...,p
ν=1,...,nj

, n = ordm and g is the accessory parameter

contained in the coefficient of the 0-th order term of P (k, g). Since Pidxm = 0
means

p∑
j=0

nj∑
ν=1

m2
j,ν = (p− 1)n2 =

n0∑
ν=0

(p− 1)nm0,ν ,

the Fuchs relation (4.16) is valid for any k. Then it follows from Lemma 4.1
that the Riemann scheme of the operator Pk(g1, . . . , gk) = P (k − 1, gk)P (k −
2, gk−1) · · ·P (0, g1) equals

(6.22)


x = c0 =∞ x = cj (j = 1, . . . , p)
[λ0,1](km0,1) [λj,1](kmj,1)

...
...

[λ0,n1 ](km0,n1 )
[λj,nj ](kmj,nj

)


and it contain an independent accessory parameters in the coefficient of νn-th order
term of Pk(g1, . . . , gk) for ν = 0, . . . , k − 1 because for the proof of this statement
we may assume λj,ν are generic under the Fuchs relation.

Note that

Nν(km) =


1 (ν ≡ n− 1 mod n),

−1 (ν ≡ 0 mod n),

0 (ν ̸≡ 0, n− 1 mod n)

for ν = 1, . . . , kn− 1 because

k̃m =


{2i, 2i, 2i, 2i ; i = 1, 2, . . . , k} if m is of type D̃4,

{ni, ni, ni, ni− 2, ni− 3, . . . , ni− n+ 1 ; i = 1, 2, . . . , k}
if m is of type Ẽ6, Ẽ7 or Ẽ8
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under the notation (6.2) and (6.17). Then the operator Pk(g1, . . . , gk) shows that
when we inductively determine the coefficients of the operator with the Riemann
scheme (6.22) as in the proof of Theorem 6.6, we have a new accessory parameter
in the coefficient of the

(
(k − j)n

)
-th order term and then the conditions for the

coefficients of the
(
(k − j)n − 1

)
-th order term are overdetermined but they are

automatically compatible for j = 1, . . . , k − 1.
Thus we can conclude that the operators of the normal form with the Riemann

scheme (6.22) are Pk(g1, . . . , gk), which are always reducible. □

Proposition 6.13. Let k be a positive integer and let m be an indivisible
(p+1)-tuple of partitions of n. Suppose km is realizable and idxm < 0. Then any
Fuchsian differential equation with the Riemann scheme (6.22) is always irreducible
if λj,ν is generic under the Fuchs relation

(6.23)

p∑
j=0

nj∑
ν=1

mj,νλj,ν = ordm− k idxm
2

.

Proof. Since ord km = k ordm and idx km = k2 idxm, the above Fuchs
relation follows from (4.32).

Suppose Pu = 0 is reducible. Then Remark 4.17 ii) says that there ex-
ist m′, m′′ ∈ P such that km = m′ + m′′ and 0 < ordm′ < k ordm and
|{λm′}| ∈ {0,−1,−2, . . .}. Suppose λj,ν are generic under (6.23). Then the condi-
tion |{λm′}| ∈ Z implies m′ = ℓm with a positive integer satisfying ℓ < k and

|{λℓm}| =
p∑

j=0

nj∑
ν=1

ℓmj,νλj,ν − ord ℓm+ ℓ2 idxm

= ℓ
(
ordm− k idxm

2

)
− ℓ ordm+ ℓ2 idxm

= ℓ(ℓ− k) idxm > 0.

Hence |{λm′}| > 0. □

6.4. Universal model

Now we have a main result in Chapter 6 which assures the existence of Fuchsian
differential operators with given spectral types.

Theorem 6.14. Fix a tuple m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

∈ P(n)
p+1.

i) Under the notation in Definitions 4.10, 4.16 and 5.7, the tuple m is realizable
if and only if there exists a non-negative integer K such that ∂imaxm are well-defined
for i = 1, . . . ,K and

ordm > ord ∂maxm > ord ∂2maxm > · · · > ord ∂Kmaxm,

dmax(∂
K
maxm) = 2 ord ∂Kmaxm or dmax(∂

K
maxm) ≤ 0.

(6.24)

ii) Fix complex numbers λj,ν . If there exists an irreducible Fuchsian operator
with the Riemann scheme (4.15) such that it is locally non-degenerate (cf. Defini-
tion 9.8), then m is irreducibly realizable.

Here we note that if P is irreducible and m is rigid, P is locally non-degenerate
(cf. Definition 9.8).

Hereafter in this theorem we assume m is realizable.
iii) m is irreducibly realizable if and only if m is indivisible or idxm < 0.
iv) There exists a universal model Pmu = 0 associated with m which has the

following property.
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Namely, Pm is the Fuchsian differential operator of the form

Pm =
( p∏
j=1

(x− cj)n
) dn
dxn

+ an−1(x)
dn−1

dxn−1
+ · · ·+ a1(x)

d

dx
+ a0(x),

aj(x) ∈ C[λj,ν , g1, . . . , gN ],
∂2aj(x)

∂gi∂gi′
= 0 (1 ≤ i ≤ i′ ≤ N, 0 ≤ j < n)

(6.25)

such that Pm has regular singularities at p + 1 fixed points x = c0 = ∞, c1, . . . , cp
and the Riemann scheme of Pm equals (4.15) for any gi ∈ C and λj,ν ∈ C under
the Fuchs relation (4.16). Moreover the coefficients aj(x) are polynomials of x, λj,ν
and gi with the degree at most (p − 1)n + j for j = 0, . . . , n, respectively. Here gi
are called accessory parameters and we call Pm the universal operator of type m.

The non-negative integer N will be denoted by Ridxm and given by

(6.26) N = Ridxm :=


0 (idxm > 0),

gcdm (idxm = 0),

Pidxm (idxm < 0).

Put m =
(
mj,ν

)
0≤j≤p
1≤ν≤nj

:= ∂Kmaxm with the non-negative integer K given in i).

When idxm ≤ 0, we define

q0ℓ := #{i ;
n̄0∑
ν=1

max{m0,ν − i, 0} ≥ ordm− ℓ, i ≥ 0},

Im := {(j, ν) ∈ Z2 ; q0ν ≤ j ≤ q0ν +Nν − 1, 1 ≤ ν ≤ ordm− 1}.

When idxm > 0, we put Im = ∅.
Then #Im = Ridxm and we can define Ii such that Im = {Ii ; i = 1, . . . , N}

and gi satisfy (6.13) by putting gIi = gi for i = 1, . . . , N .
v) Retain the notation in Definition 5.12. If λj,ν ∈ C satisfy

(6.27)


∑p

j=0 λ(k)j,ℓ(k)j+δj,jo (νo−ℓ(k)j)

/∈ {0,−1,−2,−3, . . . ,m(k)jo,ℓ(k)jo −m(k)jo,νo − d(k) + 2}
for any k = 0, . . . ,K − 1 and (j0, νo) satisfying

m(k)jo,νo ≥ m(k)jo,ℓ(k)jo − d(k) + 2,

any Fuchsian differential operator P of the normal form which has the Riemann
scheme (4.15) belongs to Pm with a suitable (g1, . . . , gN ) ∈ CN .{

If m is a scalar multiple of a fundamental tuple or simply reducible,

(6.27) is always valid for any λj,ν .
(6.28) 

Fix λj,ν ∈ C. Suppose there is an irreducible Fuchsian differential

operator with the Riemann scheme (4.15) such that the operator is

locally non-degenerate or K ≤ 1, then (6.27) is valid.

(6.29)

Suppose m is monotone. Under the notation in §7.1, the condition (6.27) is
equivalent to

(Λ(λ)|α) + 1 /∈ {0,−1, . . . , 2− (α|αm)}
for any α ∈ ∆(m) satisfying (α|αm) > 1.

(6.30)

Example 5.6 gives a Fuchsian differential operator with the rigid spectral type
21, 21, 21, 21 which doesn’t belong to the corresponding universal operator.

The fundamental tuple and the simply reducible tuple are defined as follows.
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Definition 6.15. i) (fundamental tuple) An irreducibly realizable tuple m ∈
P is called fundamental if ordm = 1 or dmax(m) ≤ 0.

For an irreducibly realizable tuple m ∈ P, there exists a non-negative integer
K such that ∂Kmaxm is fundamental and satisfies (6.24). Then we call ∂Kmaxm is a
fundamental tuple corresponding to m and define fm := ∂Kmaxm.

ii) (simply reducible tuple) A tuple m is simply reducible if there exists a
positive integer K satisfying (6.24) and ord ∂Kmaxm = ordm−K.

Proof of Theorem 6.14. i) We have proved thatm is realizable if the condi-
tion dmax(m) ≤ 0 is valid. Note that the condition dmax(m) = 2 ordm is equivalent
to the fact that sm is trivial. Hence Theorem 5.10 proves the claim.

iv) Now we use the notation in Definition 5.12. The existence of the universal
operator is clear if sm is trivial. If dmax(m) ≤ 0, Theorem 6.6 and Proposition 6.12
with Corollary 6.3 assure the existence of the universal operator Pm claimed in iii).
Hence iii) is valid for the tuple m(K) and we have a universal operator PK with
the Riemann scheme {λ(K)m(K)}.

The universal operator Pk with the Riemann scheme {λ(k)m(k)} are inductively
obtained by applying ∂ℓ(k) to the universal operator Pk+1 with the Riemann scheme
{λ(k+1)m(k+1)} for k = K − 1,K − 2, . . . , 0. Since the claims in iii) such as (6.13)
are kept by the operation ∂ℓ(k), we have iv).

iii) Note that m is irreducibly realizable if m is indivisible (cf. Remark 4.17
ii)). Hence suppose m is not indivisible. Put k = gcdm and m = km′. Then
idxm = k2 idxm′.

If idxm > 0, then idxm > 2 and the inequality (5.19) in Lemma 5.3 implies
that m is not irreducibly realizable. If idxm < 0, Proposition 6.13 assures that m
is irreducibly realizable.

Suppose idxm = 0. Then the universal operator Pm has k accessory param-
eters. Using the argument in the first part of the proof of Proposition 6.12, we
can construct a Fuchsian differential operator P̃m with the Riemann scheme

{
λm
}
.

Since P̃m is a product of k copies of the universal operator Pm and it has k ac-
cessory parameters, the operator Pm coincides with the reducible operator P̃m and
hence m is not irreducibly realizable.

v) Fix λj,ν ∈ C. Let P be a Fuchsian differential operator with the Riemann
scheme {λm}. Suppose P is of the normal form.

Theorem 6.6 and Proposition 6.12 assure that P belongs to Pm if K = 0.
Theorem 5.2 proves that if ∂kmaxP has the Riemann scheme {λ(k)m(k)} and

(6.27) is valid, then ∂k+1
maxP = ∂ℓ(k)∂

k
maxP is well-defined and has the Riemann

scheme {λ(k+1)m(k+1)} for k = 0, . . . ,K − 1 and hence it follows from (5.27) that

P belongs to the universal operator Pm because ∂KmaxP belongs to the universal
operator Pm(K).

Ifm is simply reducible, d(k) = 1 and therefore (6.27) is valid becausem(k)j,ν ≤
m(k)j,ℓ(k)ν < m(k)j,ℓ(k)ν − d(k) + 2 for j = 0, . . . , p and ν = 1, . . . , nj and k =
0, . . . ,K − 1.

The equivalence of the conditions (6.27) and (6.30) follows from the argument
in §7.1, Proposition 7.9 and Theorem 10.13.

ii) Suppose there exists an irreducible operator P with the Riemann scheme
(4.15). Let M = (M0, . . . ,Mp) be the tuple of monodromy generators of the equa-
tion Pu = 0 and putM(0) = M. LetM(k+1) be the tuple of matrices applying the
operations in §9.1 to M(k) corresponding to the operations ∂ℓ(k) for k = 0, 1, 2, . . ..

Comparing the operations on M(k) and ∂ℓ(k), we can conclude that there ex-
ists a non-negative integer K satisfying the claim in i). In fact Theorem 9.3 proves
that M(k) are irreducible, which assures that the conditions (5.6) and (5.7) corre-
sponding to the operations ∂ℓ(k) are always valid (cf. Corollary 10.12). Therefore
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m is realizable and moreover we can conclude that (6.29) implies (6.27). If idxm
is divisible and idxm = 0, then Pm is reducible for any fixed parameters λj,ν and
gi. Hence m is irreducibly realizable. □

Remark 6.16. i) The uniqueness of the universal operator in Theorem 6.14
is obvious. But it is not valid in the case of systems of Schlesinger canonical form
(cf. Example 9.2).

ii) The assumption that Pu = 0 is locally non-degenerate seems to be not
necessary in Theorem 6.14 ii) and (6.29). When K = 1, this is clear from the proof
of the theorem. For example, the rigid irreducible operator with the spectral type
31, 31, 31, 31, 31 belongs to the universal operator of type 211, 31, 31, 31, 31.

6.5. Simply reducible spectral type

In this section we characterize the tuples of the simply reducible spectral type.

Proposition 6.17. i) A realizable tuple m ∈ P(n) satisfying m0,ν = 1 for
ν = 1, . . . , n is simply reducible if m is not fundamental.

ii) The simply reducible rigid tuple corresponds to the tuple in Simpson’s list
(cf. §13.2) or it is isomorphic to 21111, 222, 33.

iii) Suppose m ∈ Pp+1 is not fundamental. Then m satisfies the condition
Nν(m) ≥ 0 for ν = 2, . . . , ordm− 1 in Definition 6.1 if and only if m is realizable
and simply reducible.

iv) Let m ∈ Pp+1 be a realizable monotone tuple. Suppose m is not fundamen-
tal. Then under the notation in §7.1, m is simply reducible if and only if

(6.31) (α|αm) = 1 (∀α ∈ ∆(m)),

namely [∆(m)] = 1#∆(m) (cf. Remark 7.11 ii)).

Proof. i) The claim is obvious from the definition.
ii) Let m′ be a simply reducible rigid tuple. We have only to prove that

m = ∂maxm
′ is in the Simpson’s list or 21111, 222, 33 and ordm′ = ordm + 1

and dmax(m) = 1, then m′ is in Simpson’s list or 21111, 222, 33. The condition
ordm′ = ordm + 1 implies m ∈ P3. We may assume m is monotone and m′ =
∂ℓ0,ℓ1,ℓ2m. The condition ordm′ = ordm+ 1 also implies

(m0,1 −m0,ℓ0) + (m1,1 −m1,ℓ0) + (m2,1 −m2,ℓ0) = 2.

Since ∂maxm
′ = m, we have mj,ℓj ≥ mj,1 − 1 for j = 0, 1, 2. Hence there exists an

integer k with 0 ≤ k ≤ 2 such that mj,ℓj = mj,1 − 1 + δj,k for j = 0, 1, 2. Then the
following claims are easy, which assures the proposition.

If m = 11, 11, 11, m′ is isomorphic to 13, 13, 21.
If m = 13, 13, 21, m′ is isomorphic to 14, 14, 31 or 14, 211, 22.
If m = 1n, 1n, n− 11 with n ≥ 4, m′ = 1n+1, 1n+1, n1.
If m = 12n, nn− 11, nn with n ≥ 2, m′ = 12n+1, nn1, n+ 1n.
If m = 15, 221, 32, then m′ = 16, 33, 321 or 16, 222, 42 or 21111, 222, 33.
If m = 12n+1, n+ 1n, nn1 with n ≥ 3, m′ = 12n+2, n+ 1n+ 1, n+ 1n1.
If m = 16, 222, 42 or m = 21111, 222, 33, m′ doesn’t exists.
iii) Note that Theorem 6.6 assures that the condition Nν(m) ≥ 0 for ν =

1, . . . , ordm− 1 implies that m is realizable.

We may assume m ∈ P(n)
p+1 is standard. Put d = m0,1+ · · ·+mp,1−(p−1)n > 0

and m′ = ∂maxm. Then m′
j,ν = mj,ν − δν,1d for j = 0, . . . , p and ν ≥ 1. Under the

notation in Definition 6.1 the operation ∂max transforms the sets

mj := {m̃j,k ; k = 0, 1, 2, . . . and m̃j,k > 0}
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into

m′
j =

{
m̃j,k −min{d,mj,1 − k} ; k = 0, . . . ,max{mj,1 − d,mj,2 − 1}

}
,

respectively because m̃j,i =
∑

ν max{mj,ν − i, 0}. Therefore Nν(m
′) ≤ Nν(m) for

ν = 1, . . . , n− d− 1 = ordm′ − 1. Here we note that

n−1∑
ν=1

Nν(m) =

n−d−1∑
ν=1

Nν(m
′) = Pidxm.

Hence Nν(m) ≥ 0 for ν = 1, . . . , n − 1 if and only if Nν(m
′) = Nν(m) for ν =

1, . . . , (n− d)− 1 and moreover Nν(m) = 0 for ν = n− d, . . . , n− 1. Note that the
condition that Nν(m

′) = Nν(m) for ν = 1, . . . , (n− d)− 1 equals

(6.32) mj,1 − d ≥ mj,2 − 1 for j = 0, . . . , p.
+ + + − − −
+ + + +
+ + + +

+

This is easy to see by using a Young diagram. For example, when {8, 6, 6, 3, 1} =
{m0,1,m0,2,m0,3,m0,4,m0,5} is a partition of n = 24, the corresponding Young
diagram is as above and then m̃0,2 equals 15, namely, the number of boxes with the
sign + or −. Moreover when d = 3, the boxes with the sign − are deleted by ∂max

and the number m̃0,2 changes into 12. In this case m0 = {24, 19, 15, 11, 8, 5, 2, 1}
and m′

0 = {21, 16, 12, 8, 5, 2}.
If d ≥ 2, then 1 ∈ mj for j = 0, . . . , p and therefore Nn−2(m)−Nn−1(m) = 2,

which means Nn−1(m) ̸= 0 or Nn−2(m) ̸= 0. When d = 1, we have Nν(m) =
Nν(m

′) for ν = 1, . . . , n− 2 and Nn−1(m) = 0. Thus we have the claim.
iv) The claim follows from Proposition 7.9. □

Example 6.18. We show the simply reducible tuples with index 0 whose fun-
damental tuple is of type D̃4, Ẽ6, Ẽ7 or Ẽ8 (cf. Example 6.8).

D̃4: 21, 21, 21, 111 22, 22, 31, 211 22, 31, 31, 1111
Ẽ6: 211, 211, 1111 221, 221, 2111 221, 311, 11111 222, 222, 3111 222, 321, 2211

222, 411, 111111 322, 331, 2221 332, 431, 2222 333, 441, 3222
Ẽ7: 11111, 2111, 32 111111, 2211, 42 21111, 2211, 33 111111, 3111, 33

22111, 2221, 43 1111111, 2221, 52 22211, 2222, 53 11111111, 2222, 62
32111, 2222, 44 22211, 3221, 53

Ẽ8: 1111111, 322, 43 11111111, 332, 53 2111111, 332, 44 11111111, 422, 44
2211111, 333, 54 111111111, 333, 63 2221111, 433, 55 2222111, 443, 65
3222111, 444, 66 2222211, 444, 75 2222211, 543, 66 2222221, 553, 76
2222222, 653, 77

In general, we have the following proposition.

Proposition 6.19. There exist only a finite number of standard and simply
reducible tuples with any fixed non-positive index of rigidity.

Proof. First note thatm ∈ Pp+1 if dmax(m) = 1 and ordm > 3 and ∂maxm ∈
Pp+1. Since there exist only finite basic tuples with any fixed index of rigidity
(cf. Remark 7.15), we have only to prove the non-existence of the infinite sequence

m(0)
∂max←−−−m(1)

∂max←−−− · · · · · · ∂max←−−−m(k)
∂max←−−−m(k + 1)

∂max←−−− · · ·

such that dmax(m(k)) = 1 for k ≥ 1 and idxm(0) ≤ 0.
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Put

m̄(k)j = max
ν
{m(k)j,ν},

a(k)j = #{ν ; m(k)j,ν = m̄(k)j},

b(k)j =

{
#{ν ; m(k)j,ν = m̄(k)j − 1} (m̄(k)j > 1),

∞ (m̄(k)j = 1).

The assumption dmax(m(k)) = dmax(m(k+1)) = 1 implies that there exist indices
0 ≤ jk < j′k such that

(6.33) (a(k + 1)j , b(k + 1)j) =

{
(a(k)j + 1, b(k)j − 1) (j = jk or j′k),

(1, a(k)j − 1) (j ̸= jk and j′k)

and

(6.34) m̄(k)0 + · · ·+ m̄(k)p = (p− 1) ordm(k) + 1 (p≫ 1)

for k = 1, 2, . . . . Since a(k+ 1)j + b(k+ 1)j ≤ a(k)j + b(k)j , there exists a positive
integer N such that a(k + 1)j + b(k + 1)j = a(k)j + b(k)j for k ≥ N , which means

(6.35) b(k)j

{
> 0 (j = jk or j′k),

= 0 (j ̸= jk and j′k).

Putting (aj , bj) = (a(N)j , b(N)j), we may assume b0 ≥ b1 > b2 = b3 = · · · = 0 and
a2 ≥ a3 ≥ · · · . Moreover we may assume j′N+1 ≤ 3, which means aj = 1 for j ≥ 4.
Then the relations (6.33) and (6.35) for k = N,N + 1, N + 2 and N + 3 prove that(
(a0, b0), · · · , (a3, b3)

)
is one of the followings:

((a0,∞), (a1,∞), (1, 0), (1, 0)),(6.36)

((a0,∞), (1, 1), (2, 0), (1, 0)),(6.37)

((2, 2), (1, 1), (4, 0), (1, 0)), ((1, 3), (3, 1), (2, 0), (1, 0)),(6.38)

((1, 2), (2, 1), (3, 0), (1, 0)),(6.39)

((1, 1), (1, 1), (2, 0), (2, 0)).(6.40)

In fact if b1 > 1, a2 = a3 = 1 and we have (6.36). Thus we may assume b1 = 1. If
b0 =∞, a3 = 1 and we have (6.37). If b0 = b1 = 1, we have easily (6.40). Thus we
may moreover assume b1 = 1 < b0 < ∞ and a3 = 1. In this case the integers j′′k
satisfying b(k)j′′k = 0 and 0 ≤ j′′k ≤ 2 for k ≥ N are uniquely determined and we

have easily (6.38) or (6.39).
Put n = ordm(N). We may suppose m(N) is standard. Let p be an integer

such that mj,0 < n if and only if j ≤ p. Note that p ≥ 2. Then if m(N) satisfies
(6.36) (resp. (6.37)), (6.34) implies m(N) = 1n, 1n, n− 11 (resp. 1n,mm− 11,mm
or 1n,m+ 1m,mm1) and m(N) is rigid.

Suppose one of (6.38)–(6.40). Then it is easy to check that m(N) doesn’t
satisfy (6.34). For example, suppose (6.39). Then 3m0,1 − 2 ≤ n, 3m1,1 − 1 ≤ n
and 3m2,1 ≤ n and we have m0,1 +m1,1 +m2,1 ≤ [n+2

3 ] + [n+1
3 ] + [n3 ] = n, which

contradicts to (6.34). The relations [n+2
4 ] + [n2 ] + [n4 ] ≤ n and 2[n+1

2 ] + 2[n2 ] = 2n
assure the same conclusion in the other cases. □


