
CHAPTER 3

Series expansion and Contiguity relation

In this chapter we examine the transformation of series expansions and contigu-
ity relations of the solutions of Fuchsian differential equations under our operations,
which will be used in Chapter 8 and Chapter 11.

3.1. Series expansion

In this section we review the Euler transformation and remark on its relation
to middle convolutions.

First we note the following which will be frequently used:∫ 1

0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α+ β)
,(3.1)

(1− t)−γ =
∞∑
ν=0

(−γ)(−γ − 1) · · · (−γ − ν + 1)

ν!
(−t)ν

=
∞∑
ν=0

Γ(γ + ν)

Γ(γ)ν!
tν =

∞∑
ν=0

(γ)ν
ν!

tν .

(3.2)

The integral (3.1) converges if Reα > 0 and Reβ > 0 and the right hand side
is meromorphically continued to α ∈ C and β ∈ C. If the integral in (3.1) is
interpreted in the sense of generalized functions, (3.1) is valid if α /∈ {0,−1,−2, . . .}
and β /∈ {0,−1,−2, . . .}.

Euler transformation Iµc is sometimes expressed by ∂−µ and as is shown in
([Kh, §5.1]), we have

Iµc u(x) :=
1

Γ(µ)

∫ x

c

(x− t)µ−1u(t)dt

=
(x− c)µ

Γ(µ)

∫ 1

0

(1− s)µ−1u((x− c)s+ c)ds,

(3.3)

Iµc ◦ Iµ
′

c = Iµ+µ′

c ,(3.4)

I−n
c u(x) =

dn

dxn
u(x),(3.5)

Iµc

∞∑
n=0

cn(x− c)λ+n =

∞∑
n=0

Γ(λ+ n+ 1)

Γ(λ+ µ+ n+ 1)
cn(x− c)λ+µ+n

=
Γ(λ+ 1)

Γ(λ+ µ+ 1)

∞∑
n=0

(λ+ 1)ncn
(λ+ µ+ 1)n

(x− c)λ+µ+n,

(3.6)

Iµ∞

∞∑
n=0

cnx
λ−n = eπ

√
−1µ

∞∑
n=0

Γ(−λ− µ+ n)

Γ(−λ+ n)
cnx

λ+µ−n.(3.7)
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28 3. SERIES EXPANSION AND CONTIGUITY RELATION

Moreover the following equalities which follow from (1.47) are also useful.

Iµ0

∞∑
n=0

cnx
λ+n(1− x)β

=
Γ(λ+ 1)

Γ(λ+ µ+ 1)

∞∑
m,n=0

(λ+ 1)m+n(−β)mcn
(λ+ µ+ 1)m+nm!

xλ+µ+m+n

=
Γ(λ+ 1)

Γ(λ+ µ+ 1)
(1− x)−β

∞∑
m,n=0

(λ+ 1)n(µ)m(−β)mcn
(λ+ µ+ 1)m+nm!

xλ+µ+n
( x

x− 1

)m
.

(3.8)

If λ /∈ Z<0 (resp. λ + µ /∈ Z≥0) and moreover the power series
∑∞

n=0 cnt
n

has a positive radius of convergence, the equalities (3.6) (resp. (3.7)) is valid since
Iµc (resp. Iµ∞) can be defined through analytic continuations with respect to the
parameters λ and µ. Note that Iµc is an invertible map of Oc(x− c)λ onto Oc(x−
c)λ+µ if λ /∈ {−1,−2,−3, . . .} and λ+ µ /∈ {−1,−2,−3, . . .}.

Proposition 3.1. Let λ and µ be complex numbers satisfying λ /∈ Z<0. Dif-
ferentiating the equality (3.6) with respect to λ, we have the linear map

(3.9) Iµc : Oc(λ,m)→ Oc(λ+ µ,m)

under the notation (2.5), which is also defined by (3.3) if Reλ > −1 and Reµ > 0.
Here m is a non-negative integer. Then we have

(3.10) Iµc
( m∑
j=0

ϕj log
j(x− c)

)
− Iµc (ϕm) logm(x− c) ∈ O(λ+ µ,m− 1)

for ϕj ∈ Oc and Iµc satisfies (1.43). The map (3.9) is bijective if λ + µ /∈ Z<0.
In particular for k ∈ Z≥0 we have Iµc ∂

k = ∂kIµc = Iµ−k
c on Oc(λ,m) if λ − k /∈

{−1,−2,−3, . . . }.
Suppose that P ∈ W [x] and ϕ ∈ Oc(λ,m) satisfy Pϕ = 0, P ̸= 0 and ϕ ̸= 0.

Let k and N be non-negative integers such that

(3.11) ∂kP =
N∑
i=0

∑
j≥0

ai,j∂
i
(
(x− c)∂

)j
with suitable aj,j ∈ C and put Q =

∑N
i=0

∑
j≥0 ci,j∂

i
(
(x − c)∂ − µ

)j
. Then if

λ /∈ {N − 1, N − 2, . . . , 0,−1, . . .}, we have

(3.12) Iµc ∂
kPu = QIµc (u) for u ∈ Oc(λ,m)

and in particular QIµc (ϕ) = 0.

Fix ℓ ∈ Z. For u(x) =
∑∞

i=ℓ

∑m
j=0 ci,j(x − c)i log

j(x − c) ∈ Oc(ℓ,m) we put

(ΓNu)(x) =
∑∞

ν=max{ℓ,N−1}
∑m

j=0 ci,j(x− c)i log
j(x− c). Then( ∏

ℓ−N≤ν≤N−1

(
(x− c)∂ − ν

)m+1
)
∂kP

(
u(x)− (ΓNu)(x)

)
= 0

ane therefore ( ∏
ℓ−N≤ν≤N−1

(
(x− c)∂ − µ− ν

)m+1
)
QIµc (ΓNu)

= Iµc

( ∏
ℓ−N≤ν≤N−1

(
(x− c)∂ − ν

)m+1
)
∂kPu.

(3.13)

In particular,
∏

ℓ−N≤ν≤N−1

(
(x− c)∂ − µ− ν

)m+1 ·QIµc
(
ΓN (u)

)
= 0 if Pu = 0.
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Suppose moreover λ /∈ Z and λ + µ /∈ Z and Q = ST with S, T ∈ W [x]
such that x = c is not a singular point of the operator S. Then TIµc (ϕ) = 0. In
particular,

(3.14)
(
RAd(∂−µ)P

)
Iµc (ϕ) = 0.

Hence if the differential equation
(
RAd(∂−µ)P

)
v = 0 is irreducible, we have

(3.15) W (x)
(
RAd(∂−µ)P

)
= {T ∈W (x) ; TIµc (ϕ) = 0}.

The statements above are also valid even if we replace x− c, Iµc by 1
x , I

µ
∞, respec-

tively.

Proof. It is clear that (3.9) is well-defined and (3.10) is valid. Then (3.9) is
bijective because of (3.6) and (3.10). Since (1.43) is valid when m = 0, it is also
valid when m = 1, 2, . . . by the definition of (3.9).

The equalities (3.6) and (3.7) assure that QIµc (ϕ) = 0. Note that TIµc (ϕ) ∈
O(λ+ µ−N,m) with a suitable positive integer N . Since λ+ µ−N /∈ Z and any
solution of the equation Sv = 0 is holomorphic at x = c, the equality S

(
TIµc (ϕ)

)
= 0

implies TIµc (ϕ) = 0.
The remaining claims in the theorem are similarly clear. □
Remark 3.2. i) Let γ : [0, 1]→ C be a path such that γ(0) = c and γ(1) = x.

Suppose u(x) is holomorphic along the path γ(t) for 0 < t ≤ 1 and u(γ(t)) = ϕ(γ(t))
for 0 < t≪ 1 with a suitable function ϕ ∈ Oc(λ,m). Then Iµc (u) is defined by the
integration along the path γ. In fact, if the path γ(t) with t ∈ [0, 1] splits into the
three paths corresponding to the decomposition [0, 1] = [0, ϵ] ∪ [ϵ, 1− ϵ] ∪ [1− ϵ, 1]
with 0 < ϵ ≪ 1. Let c1 = c, . . . , cp be points in Cn and suppose moreover u(x) is
extended to a multi-valued holomorphic function on C \ {c1, . . . , cp}. Then Ixc (u)
also defines a multi-valued holomorphic function on C \ {c1, . . . , cp}.

ii) Proposition 3.1 is also valid if we replace Oc(λ,m) by the space of functions
given in Remark 1.7 ii). In fact the above proof also works in this case.

3.2. Contiguity relation

The following proposition is clear from Proposition 3.1.

Proposition 3.3. Let ϕ(x) be a non-zero solution of an ordinary differential
equation Pu = 0 with an operator P ∈W [x]. Let Pj and Sj ∈W [x] for j = 1, . . . , N

so that
∑N

j=1 PjSj ∈W [x]P . Then for a suitable ℓ ∈ Z we have

(3.16)
∑

Qj

(
Iµc (ϕj)

)
= 0

by putting

ϕj = Sjϕ,

Qj = ∂ℓ−µ ◦ Pj ◦ ∂µ ∈W [x],
(j = 1, . . . , N)(3.17)

if ϕ(x) ∈ O(λ,m) with a non-negative integer m and a complex number λ satis-
fying λ /∈ Z and λ + µ /∈ Z or ϕ(x) is a function given in Remark 1.7 ii). If
Pj =

∑
k≥0, ℓ≥0 cj,k,ℓ∂

kϑℓ with cj,k,ℓ ∈ C, then we can assume ℓ ≤ 0 in the above.
Moreover we have

(3.18) ∂
(
Iµ+1
c (ϕ1)

)
= Iµc (ϕ1).

Proof. Fix an integer k such that ∂kPj = P̃j(∂, ϑ) =
∑

i1,i2
ci1,i2∂

i1ϑi2 with

ci1,i2 ∈ C. Since 0 =
∑N

j=1 ∂
kPjSjϕ, Proposition 3.1 proves

0 =
N∑
j=1

Iµc (P̃j(∂, ϑ)Sjϕ) =
N∑
j=1

P̃j(∂, ϑ− µ)Iµc (Sjϕ),
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which implies the first claim of the proposition.
The last claim is clear from (3.4) and (3.5). □
Corollary 3.4. Let P (ξ) and K(ξ) be non-zero elements of W [x; ξ]. If

we substitute ξ and µ by generic complex numbers, we assume that there exists
a solution ϕξ(x) satisfying the assumption in the preceding proposition and that
Iµc (ϕξ) and I

µ
c (K(ξ)ϕξ) satisfy irreducible differential equations T1(ξ, µ)v1 = 0 and

T2(ξ, µ)v2 = 0 with T1(ξ, µ) and T2(ξ, µ) ∈ W (x; ξ, µ), respectively. Then the dif-
ferential equation T1(ξ, µ)v1 = 0 is isomorphic to T2(ξ, µ)v2 = 0 as W (x; ξ, µ)-
modules.

Proof. Since K(ξ) · 1− 1 ·K(ξ) = 0, we have Q(ξ, µ)Iµc (ϕξ) = ∂ℓIµc (K(ξ)ϕξ)
withQ(ξ, µ) = ∂ℓ−µ◦K(ξ)◦∂µ. Since ∂ℓIµc (ϕξ) ̸= 0 and the equations Tj(ξ, µ)vj = 0
are irreducible for j = 1 and 2, there exist R1(ξ, µ) and R2(ξ, µ) ∈W (x; ξ, µ) such
that Iµc (ϕξ) = R1(ξ, µ)Q(ξ, µ)Iµc (ϕξ) = R1(ξ, µ)∂

ℓIµc (K(ξ)ϕξ) and Iµc (K(ξ)ϕξ) =
R2(ξ, µ)∂

ℓIµc (K(ξ)ϕξ) = R2(ξ, µ)Q(ξ, µ)Iµc (ϕξ). Hence we have the corollary. □
Using the proposition, we get the contiguity relations with respect to the pa-

rameters corresponding to powers of linear functions defining additions and the
middle convolutions.

For example, in the case of Gauss hypergeometric functions, we have

uλ1,λ2,µ(x) := Iµ0 (x
λ1(1− x)λ2),

uλ1,λ2,µ−1(x) = ∂uλ1,λ2,µ(x),

∂uλ1+1,λ2,µ(x) = (x∂ + 1− µ)uλ1,λ2,µ(x),

∂uλ1,λ2+1,µ(x) = ((1− x)∂ + µ− 1)uλ1,λ2,µ(x).

Here Proposition 3.3 with ϕ = xλ1(1 − x)λ2 , (P1, S1, P2, S2) = (1, x,−x, 1) and
ℓ = 1 gives the above third identity.

Since Pλ1,λ2,µuλ1,λ2,µ(x) = 0 with

Pλ1,λ2,µ =
(
x(1− x)∂ + (1− λ1 − µ− (2− λ1 − λ2 − 2µ)x

)
∂

− (µ− 1)(λ1 + λ2 + µ)

as is given in Example 1.8, the inverse of the relation uλ1,λ2,µ−1(x) = ∂uλ1,λ2,µ(x)
is

uλ1,λ2,µ(x) = −
x(1− x)∂ + (1− λ1 − µ− (2− λ1 − λ2 − 2µ)x

)
(µ− 1)(λ1 + λ2 + µ)

uλ1,λ2,µ−1(x).

The equalities uλ1,λ2,µ−1(x) = ∂uλ1,λ2,µ(x) and (1.47) mean

Γ(λ1 + 1)xλ1+µ−1

Γ(λ1 + µ)
F (−λ2, λ1 + 1, λ1 + µ;x)

=
Γ(λ1 + 1)xλ1+µ−1

Γ(λ1 + µ)
F (−λ2, λ1 + 1, λ1 + µ+ 1;x)

+
Γ(λ1 + 1)xλ1+µ

Γ(λ1 + µ+ 1)

d

dx
F (−λ2, λ1 + 1, λ1 + µ+ 1;x)

and therefore uλ1,λ2,µ−1(x) = ∂uλ1,λ2,µ(x) is equivalent to

(γ − 1)F (α, β, γ − 1;x) = (ϑ+ γ − 1)F (α, β, γ;x).

The contiguity relations are very important for the study of differential equations.
For example the author’s original proof of the connection formula (0.24) announced
in [O6] is based on the relations (cf. §12.3).

Some results related to contiguity relations will be given in Chapter 11 but we
will not go further in this subject and it will be discussed in another paper.


